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Abstract
There is an urgent need to understand severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-host interactions 
involved in virus spread and pathogenesis, which might contribute to the identification of new therapeutic targets. In this 
study, we investigated the presence of SARS-CoV-2 in postmortem lung, kidney, and liver samples of patients who died 
with coronavirus disease (COVID-19) and its relationship with host factors involved in virus spread and pathogenesis, using 
microscopy-based methods. The cases analyzed showed advanced stages of diffuse acute alveolar damage and fibrosis. We 
identified the SARS-CoV-2 nucleocapsid (NC) in a variety of cells, colocalizing with mitochondrial proteins, lipid droplets 
(LDs), and key host proteins that have been implicated in inflammation, tissue repair, and the SARS-CoV-2 life cycle (vimen-
tin, NLRP3, fibronectin, LC3B, DDX3X, and PPARγ), pointing to vimentin and LDs as platforms involved not only in the 
viral life cycle but also in inflammation and pathogenesis. SARS-CoV-2 isolated from a patient´s nasal swab was grown in 
cell culture and used to infect hamsters. Target cells identified in human tissue samples included lung epithelial and endothe-
lial cells; lipogenic fibroblast-like cells (FLCs) showing features of lipofibroblasts such as activated PPARγ signaling and 
LDs; lung FLCs expressing fibronectin and vimentin and macrophages, both with evidence of NLRP3- and IL1β-induced 
responses; regulatory cells expressing immune-checkpoint proteins involved in lung repair responses and contributing to 
inflammatory responses in the lung; CD34+ liver endothelial cells and hepatocytes expressing vimentin; renal interstitial 
cells; and the juxtaglomerular apparatus. This suggests that SARS-CoV-2 may directly interfere with critical lung, renal, 
and liver functions involved in COVID-19-pathogenesis.

Introduction

Infection with severe acute respiratory syndrome corona-
virus 2 (SARS-CoV-2) leading to coronavirus disease 19 
(COVID-19) has been posing a great threat to global public 
health since 2020 [111, 121]. There is an urgent need to 
understand virus-host interactions involved in the mecha-
nisms of SARS-CoV-2 infection and pathogenesis that 
may contribute to the identification of new therapeutic 
targets. About 20% of COVID-19 patients develop serious 
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manifestations such as severe pneumonia, acute respiratory 
distress syndrome (ARDS), sepsis, and death [104].

SARS-CoV-2 is an enveloped positive-sense single-
stranded RNA virus with a genome size of approximately 
30 kb [100]. Two overlapping open reading frames (ORFs) 
are translated from the 5’ region: ORF1a and ORF1b. The 
latter is translated from a -1 frameshift that allows a large 
polyprotein to be produced beyond the stop codon of ORF1a. 
The two polyproteins are proteolytically processed by viral 
proteases to yield the non-structural proteins NSP1-NSP16. 
Additional smaller ORFs encode the structural proteins: 
spike (S), envelope (E), membrane (M), nucleocapsid (NC), 
and other polypeptides [30]. Angiotensin-converting enzyme 
(ACE) 2 (ACE2) has been identified as the main functional 
receptor of SARS-CoV-2, interacting with the viral S pro-
tein. Importantly, the primary physiological role of ACE2 is 
the regulation of vasoconstriction and blood pressure [23].

Detection of SARS-CoV-2 in different organs and vari-
ous COVID-19 manifestations such as cardiovascular and 
nervous system complications, kidney injury, and gastroin-
testinal tract symptoms suggest that extrapulmonary sites of 
infection contribute to disease pathogenesis [8, 11, 13, 25, 
68, 70, 73, 90]. In particular, the kidney has been shown to 
be involved in COVID-19 pathogenesis, and renal injury is 
associated with morbidity and mortality [55]. Postmortem 
analysis and the possible impact of SARS-CoV-2 on differ-
ent organs are valuable for understanding virus spread and 
the pathophysiological mechanisms of infection. Investigat-
ing the cell tropism of the virus and its role in virus-induced 
pathogenesis is especially important for understanding the 
mechanisms of SARS-CoV-2 infection and identifying new 
therapeutic targets. In this work, we investigated the pres-
ence of SARS-CoV-2 in various tissues of patients who 
died with COVID-19 and its relationship with host factors 
involved virus-induced pathogenesis. We identified potential 
cellular and molecular targets that may be involved in and 
affected by SARS-CoV-2 infection, with implications for 
virus-induced pathogenesis and therapeutics.

Materials and methods

Patients

Five patients (R, J, D, B, and T) with a nasopharyngeal swab 
that was positive for SARS-CoV-2 by real-time RT-PCR 
(qRT-PCR) [67] and who died with COVID-19 from April 
to September 2020, were studied in this work. Lung samples 
were also obtained from a person who died from a cause that 
was unrelated to COVID-19 (Table 1). These cases were part 
of a larger cohort whose main pathological findings have 
been summarized previously [15].

Procurement of specimens

With permission from the patient’s family, a limited autopsy 
to collect postmortem specimens [6] was performed in all 
cases by the autopsy service of the pathology department 
from the Hospital “Luis Díaz Soto” of Havana. This study 
received approval from the Ethics Committees of Hospital 
“Luis Díaz Soto” and the Center for Genetic Engineering 
and Biotechnology (CIGB). Postmortem tissue samples were 
obtained from visceral organs, including the lungs, liver, and 
kidneys within 3 hours after death. Autopsy was performed 
following recommendations and guidance on postmortem 
examinations of COVID-19 cases [38] and procedures estab-
lished by the Cuban Health Ministry. Tissues were fixed with 
4% paraformaldehyde in PBS for 1 hour and then routinely 
processed under standard biosafety conditions. To prepare 
frozen sections, tissues were washed with 20% sucrose in 
PBS overnight and then embedded in Tissue-Tek OCT com-
pound (Sakura FineTek, Cat #4583, Tokyo, Japan). Ten-µm 
frozen sections were used.

Masson’s trichrome and Picro Mallory staining

Staining of frozen lung and kidney sections with Mas-
son’s trichrome and Picro Mallory stain was performed as 
described elsewhere [57, 122]. Staining was quantified using 
the open-source image processing package Fiji (National 
Institute of Health).

Immunofluorescence staining and confocal 
microscopy

Immunofluorescent staining and confocal microscopy 
analysis of frozen lung, kidney, and liver sections was done 
as described previously with minor modifications [25, 26]. 
Tissue sections were washed with PBS, permeabilized 
with 0.5% Tween 20 (T20) in PBS (PBS+T20 0.5%), and 
saturated with 2% BSA in PBS+T20 0.1%, for 30 min. 
To detect the SARS-CoV-2 NC, sections were incubated 
with either mouse monoclonal IgG antibody (SINO Bio-
logicals, catalog no. 40143-MM05) or SARS-CoV-2 NC 
peptide-specific (PKKDKKKKADETQALPQRQKK) 
[41] rabbit polyclonal antibodies or mouse monoclonal 
IgG antibody (CIGB Sancti Spíritus, Cuba; catalog no. 
CBSSNCov.2) for 2 hours at 27  °C (1:200 dilution in 
PBS+T20 0.1%). In addition, the following primary anti-
bodies were used (1:100-200 dilutions in PBS+T20 0.1%): 
rabbit polyclonal anti-fibronectin (Dako Omnis, Agilent; 
catalog no. A0245), mouse monoclonal anti-microtubule-
associated protein 2 (MAP2; Sigma; catalog no. M2320), 
rabbit polyclonal anti-ACE2 (a kind gift from the Center of 
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Molecular Immunology, Havana, Cuba), rabbit polyclonal 
anti-DDX3X (a kind gift from A.H. Patel, MRC-Univer-
sity of Glasgow Centre for Virus Research, Glasgow, 
UK), rabbit polyclonal anti-NG2 (chondroitin sulphate 
proteoglycan 4 [CSPG4]; Abcam; catalog no. Ab81104), 
rabbit polyclonal anti-phospho S112 peroxisome pro-
liferator activated-receptor γ (PPARγ; Abcam; catalog 
no. Ab60953), rabbit polyclonal anti-prohibitin (PHB; 
Abcam; catalog no. Ab 75766), rabbit polyclonal anti-
PGC1 (Abcam; catalog no. Ab 72230), mouse monoclo-
nal anti-keratin 10 (K10) (Thermo Scientific, catalog no. 

MA1-35857), mouse monoclonal anti-CD34-FITC con-
jugate (Dako, catalog no. F7081), mouse monoclonal IgG 
anti-CD68 (Dako Omnis, Agilent; catalog no. M0814), 
mouse monoclonal anti-CD163-FITC conjugate (Pharmi-
gen, catalog no. 563697), mouse monoclonal anti-CD163-
APC conjugate (Invitrogen, catalog no. 17-1639-42), 
mouse monoclonal anti-IL1β-FITC conjugate (Invitrogen, 
catalog no. 11-7018-42), mouse monoclonal anti-PD1-
APC conjugate (Invitrogen, catalog no. 17-2799-42), 
mouse monoclonal anti-CD47-FITC conjugate (Biolegend, 
catalog no. 323106), mouse monoclonal anti-PDL1-APC 

Table 1   Features of patients and clinical presentation

1 Nonalcoholic steatohepatitis
2 No history of HCV/HBV infection
3 Bilateral ground glass opacity
4 Lopinavir, ritonavir

Patient Age/sex Symptoms Coexisting  
conditions

Chest radiograph; 
treatment

Altered blood 
laboratory  
findings

Time of death 
from onset of 
symptoms

Postmortem 
tissues

R 77/F -Shortness of 
breath

-Dyspnea
-Cough
-Fatigue
-Fever

-Ischemic  
cardiomyopathy

-Hypertension
-Type II diabetes 

mellitus
-NASH1

-Dementia
-NHC/B2

-BGGO3

-Kaletra4, 
chloroquine, 
Ceftriaxone

Increased cre-
atinine levels, 
proteinemia, 
albuminemia

18 days Trachea
Lung, Kidney, 

Liver

J 70/M -Dyspnea
-Fever

-Ischemic  
cardiomyopathy

-Hypertension
-Coronary artery 

disease
-Dementia
-NHC/B

-BGGO
-Kaletra,  

interferon  
alfa-2b,  
Azithromycin

Increased creati-
nine levels

15 days Lung, Kidney

D 85/M -Dyspnea
-Fever

-Coronary artery 
disease

-Hypertension
-Dementia
-NHC/B

-BGGO
--Kaletra,  

interferon  
alfa-2b,  
Azithromycin

Increased creati-
nine levels

15 days Lung, Kidney

B 68/F -Shortness of 
breath

-Dyspnea
-Cough

-Coronary artery 
disease

-Asthma
-Obesity
-NASH
- Hypertension
-NHC/B

-BGGO
-Kaletra,  

interferon  
alfa-2b,  
Azithromycin

Increased cre-
atinine levels, 
proteinemia, 
albuminemia, 
Increased liver 
damage markers

13 days Lung, Kidney, 
Liver

T 80/F -Dyspnea
-Cough
-Fatigue

-Coronary artery 
disease

-Hypertension

-BGGO
-Kaletra,  

interferon  
alfa-2b,  
Azithromycin

15 days Lung

C (No COVID) 75/M -Chronic obstruc-
tive pulmonary 
disease

-Hypertension
-Coronary artery 

disease

- - Lung
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conjugate (Invitrogen, catalog no. 17-5983-42), mouse 
monoclonal anti-IL6-PE conjugate (Invitrogen, catalog 
no. 12-7069-82), and mouse monoclonal anti-vimentin 

(VMT) (Sigma Aldrich, catalog no. V6389). After wash-
ing with PBS+T20 0.1%, slides were incubated for 1 hour 
at 27 °C with one of the following secondary antibodies: 
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fluorescein-conjugated goat anti-rabbit IgG (KPL; cata-
log no. 172-1506) or goat anti-mouse IgG (KPL; catalog 
no. 02-18-18), Alexa Fluor 647–conjugated either anti-
mouse IgG (Cell Signalling; catalog no. 4410S) or anti-
rabbit IgG (Cell Signalling; catalog no. 4414S), Alexa 
Fluor 594–conjugated anti-rabbit IgG (Cell Signalling; 
catalog no. 8889) (1:250-500 dilution in PBS+T20 0.1%, 
depending on the combination of primary and secondary 
antibodies used). When required, lipid droplets (LDs) were 
stained using Oil Red O for 30 min and washed with water. 
Some negative controls included sections that were incu-
bated directly with Alexa 647– or fluorescein-conjugated 
goat anti-mouse/rabbit IgGs. Subsequently, samples were 
washed with PBS+T20 0.1%, nuclei were counterstained 
with 4′,6-diamidino,2-phenylindole (DAPI) (1 mg/mL) 
(KPL; catalog no. 1-03-01, Gaithersburg, USA), and 
the preparation was coverslipped in Vectashield mount-
ing medium (Vector Laboratories, catalog no. H-1000, 
Burlingame, CA., USA). Samples were analyzed using an 
Olympus FV1000 IX81 laser scanning fluorescence micro-
scope (Olympus Corporation, Japan) and the imaging soft-
ware FlowView Viewer v3.1. Images were also taken with 
differential interference contrast (DIC) microscopy. Chan-
nels were recorded sequentially, and images were acquired 
as z-stack series. Images with a field of view of 512×512 
pixels, 621,000.0 µm/pixel, were acquired with a sampling 
speed of 20000.0 µs/pixel. All images were taken with a 
bit depth of 12 bits. Colocalization between the differ-
ent channels (described in Supplementary methods) was 
analyzed from image stacks using the open-source image 
processing package Fiji with Just Another Colocalization 
Plugin (JACoP) [10].

Results

Analysis of postmortem lung samples

Both clinical and pathology evidence indicated the devel-
opment of ARDS in all patients [27]. The pulmonary tis-
sue showed evidence of a distinctive diffuse acute alveolar 
damage (DAD) pattern with predominant advanced phases 
(fibro-proliferative and fibrotic phases) (Supplementary 
Fig. S1, representative results illustrated for patient R). Lung 
remodeling with typical interstitial fibrosis showing features 
of fibrosis by accretion was the most important pathological 
mechanism identified in all patients. Alveolar damage with 
destruction of the alveolar wall lining with desquamation of 
alveolar type I pneumocytes (AT1) and type 2-like pneumo-
cytes (AT2) proliferating along the surface of fibrous alveo-
lar septa were frequently observed (Supplementary Figs. S1 
and S2A). On the other hand, SARS-CoV-2 isolated from 
nasal swaps from patient R was grown in cell culture (Vero 
E6 cells), where numerous virus-like particles (VLPs) (rang-
ing from 80 nm to 125 nm in diameter) could be seen at low 
magnification (Supplementary Fig. S3). In addition, aged 
hamsters could be infected by cell-culture-adapted SARS-
CoV-2 (Supplementary Fig. S4) pointing to the infectious 
nature of these viral isolates. Interestingly, infected hamsters 
developed features of pulmonary fibrosis (Supplementary 
Fig. S2B).

Next, SARS-CoV-2 was detected in samples using confo-
cal microscopy and antibodies specific for the NC protein 
of SARS-CoV-2 as described previously [25, 41, 61]. First, 
primary anti-NC antibodies were detected in lung samples 
from SARS-CoV-2-infected hamsters. As shown in Supple-
mentary Fig. S4A-C, NC was detected (by all of the primary 
anti-NC antibodies used) in the lungs of SARS-CoV-2-in-
fected hamsters, but not in those of mock-infected animals. 
The presence of SARS-CoV-2 was then analyzed in post-
mortem lung samples. While SARS-CoV-2 NC could not 
be detected in lung samples from patient T or from a non-
COVID-19 patient who died after suffering from chronic 
obstructive pulmonary disease (COPD) (Fig. 1A, Supple-
mentary Fig. 4D, 5A), it was identified in lung sections from 
patients R, J, D, and V (Fig. 1, Supplementary Figs. S4E and 
F and S5). These results indicated the presence of SARS-
CoV-2 in the lungs of patients R, J, D, and B, but not of 
patient T, at advanced stages of DAD.

Interestingly, a striking colocalization of NC and 
LC3B was observed, indicating the possible involve-
ment of autophagic functions during SARS-CoV-2 infec-
tion (Fig. 1B). NC localized to alveolar epithelial cells, 
endothelial-like cells (ECLs), and macrophage-like cells 
(MLCs) (Figs. 1, 2, and 4; Supplementary Figs S5-S9). 
Markers of endothelium and endothelial progenitor cells 

Fig. 1   Representative confocal microscopy images of lung sections 
from a person who died from a cause unrelated to COVID-19 and 
from patient R, incubated with various combinations of rabbit and 
mouse (CIGB, Sancti Spíritus) antibodies against NC and host pro-
teins, followed by Alexa 647 (A647)- and fluorescein/(FITC)-con-
jugated anti-mouse/rabbit IgGs in different combinations, or other 
host-protein-specific (IL1β, CD163) primary mouse monoclonal 
antibodies conjugated to either FITC or APC. DAPI was used to stain 
the nucleus (blue channel). Colocalization was quantified using cal-
culated intensity correlation quotients (ICQ) and Pearson’s (PC) and 
Manders’ (M1, M2) coefficients (see Supplementary Fig. S6). Bars: 
50 µm. (A) Lung section of a person who died from a cause unrelated 
to COVID-19, showing no staining for NC (A647). As a reference, a 
mouse monoclonal antibody against LC3B was used (FITC; arrows) 
(20X magnification). (B–E) Illustrative regions of interest (ROIs) 
of lung sections from patient R showing colocalization between NC 
(A647) and LC3B (FITC) (B) (20X magnification) localization of 
NC (FITC or A647) with CD34+ (FITC) (C) or K10+ (D) cells and, 
concomitant with CD163+ (APC) and IL1β (FITC). Arrows indicate 
positive co-staining (40X magnification)

◂
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(CD34) [88, 114] (Fig. 1C), bronchial and alveolar epithe-
lial cells (K10) [87] (Fig. 1D), and monocyte/macrophages 
(CD163) [14] (Fig.  1E; Supplementary Figs.  S5-S9)/
(CD68, [25]) showed that NC was present in these cell 
types. NC was detected in both alveolar and interstitial 
CD163+ MLCs [14] (Supplementary Figs. S5C and S8B). 

In agreement with our previous study showing activation 
of NLRP3 in lung macrophages containing SARS-CoV-2 
[25], NC was detected in CD163+ MLCs showing expres-
sion of IL1β (Fig. 1E; Supplementary Fig. S6D).

In addition, NC staining was found on ACE2+ cells (Sup-
plementary Figs. S5B andS8A), and interestingly, NC also 

Fig. 2   Representative confocal microscopy images of lung sec-
tions from patient R incubated with various combinations of rabbit 
or mouse (CIGB, Sancti Spíritus) antibodies against NC and anti-
fibronectin, anti-VMT, anti-DDX3X, or anti-phospho S112 PPARγ 
(PPARγ-P) antibodies, followed by fluorescein- (FITC) or Alexa 
594/647 (A594/647)-conjugated anti-rabbit/mouse IgGs) or stained 
with Oil Red O (ORO, TxRed channel). DAPI was used to stain the 
nucleus (blue channel). Colocalization was quantified using calcu-

lated intensity correlation quotients (ICQ) and Pearson’s (PC) and 
Manders’ (M1, M2) coefficients (see Supplementary Fig. S7). Bars: 
50 µm. (A–D) Illustrative ROIs of lung sections showing NC (FITC) 
detected in fibronectin+ cells (A647) (A) and VMT+ (VIM)  cells 
(A647) (B) (40X magnification); NC (A647) detected in cells show-
ing concomitant LDs (ORO) and PPARγ-P (FITC) (C) (20X magni-
fication) colocalization of NC (FITC) and DDX3X+(A647) (D) (40X 
magnification). Arrows indicate positive co-staining
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displayed a staining pattern indicating its presence in the 
interface of the capillary endothelium and alveolar epithe-
lial cells, along the inside of the alveolar septum, and sur-
rounding the blood vessels representing the connective tis-
sue, including fibroblast-like cells (FLCs) (Supplementary 
Fig. S5D). In addition, analysis of tracheal sections from 
patient R showed the presence of SARS-CoV-2 NC in the 
connective tissue and FLCs (Supplementary Fig. S5D). 
To investigate possible interactions of SARS-CoV-2 with 
extracellular matrix (ECM) components and FLCs, we per-
formed double immunofluorescence staining of NC with key 
molecular targets involved in the wound healing response 
and lung pathogenesis. First, co-staining of NC and fibronec-
tin was studied. As shown in Fig. 2A, NC was co-detected 
with fibronectin in the alveolar septa, suggesting its presence 
in fibronectin-expressing cells, including FLCs, and also in 
the ECM (Fig. 2A; Supplementary Fig. S7A). Then, VMT 
(major type III intermediate filament cytoskeletal protein 
of mesenchymal cell origin, including FLCs), which is also 
expressed in alveolar epithelial cells undergoing epithelial-
to-mesenchymal transition (EMT) during injury repair [47], 
was studied. Notably, NC was strongly co-detected with 
VMT (Fig. 2B; Supplementary Fig. S7B), suggesting the 
presence of SARS-CoV-2 in the connective tissue and asso-
ciated cells. Subsequently, the presence of SARS-CoV-2 in 
lipofibroblast-like cells (LPFs), a critical cell type for lung 
homeostasis and injury repair, was investigated. LPFs are 
the main LD-producing cells in the alveolar interstitium 
[71, 72], and therefore, the presence of LDs and expression 
of PPARγ are key features of LPFs [71, 72]. Notably, NC 
was detected in interstitial cells showing the simultaneous 
presence of LDs and activated (phosphoS112) PPARγ, sug-
gesting the presence of SARS-CoV-2 in LPFs displaying 
PPARγ signaling (Fig. 2C; Supplementary Fig. S7D). On 
the other hand, DDX3X, a host protein involved in the life 
cycle of various viruses that has been shown to be recruited 
to LDs during HCV infection [4], was co-detected with NC 
(Fig. 2D; Supplementary Fig. S7C), and DDX3X also colo-
calized with LDs (not shown).

Interestingly, NLRP3 staining was observed not only in 
CD68+ and CD163+ cells but also in CD68- and CD163- 
interstitial cells (Fig. 3A and B, Supplementary Fig. S8C 
and D). Given that FLCs are involved in the inflammas-
ome-mediated response [77] and that VMT has been shown 
to play a key role in biogenesis of LDs and activation of 
NLRP3 [24, 40], we investigated the colocalization of 
these proteins. Interestingly, NLRP3 partially colocalized 
to alveolar interstitial cells showing concomitant expres-
sion of vimentin and ORO staining (Fig. 3C, Supplemen-
tary Fig. S8F), suggesting that LD-containing cells possibly 
representing LPFs may be involved in the inflammasome 
response. IL1β staining was also observed in fibronectin-
expressing cells (Fig. 3D, Supplementary Fig. S8E). We 

noted frequent mitochondrial damage in the samples ana-
lyzed by electron microscopy (Supplementary Fig. S2, S11, 
and S14). As mitochondrial damage is related to NLRP3 
activation through mitochondrial reactive oxygen species 
(mtROS) and oxidized mitochondrial DNA (mtDNA), which 
are increased in airway macrophages in cases of pulmonary 
fibrosis [99], we searched for colocalization of NC with 
proteins that are commonly recruited or present in mito-
chondria, including prohibitin (PHB) and PGC1α [5, 89]. 
As illustrated in Fig. 3E, NC colocalized with PHB in some 
cells (Fig. 3, Supplementary Fig. S8F), raising the possibil-
ity of direct virus-mediated mitochondrial impairment.

Previous studies have shown that populations of lung-
fibrotic fibroblasts (expressing JUN and IL6 with upregula-
tion of the immune-checkpoint proteins CD47 and PDL1) 
and immunosuppressive PD1+ macrophages (expressing 
IL1β) are involved in impaired alveolar regeneration and a 
weakened adaptive T cell immune response during pulmo-
nary fibrosis in humans and mice, as well as during SARS-
CoV-2 infection [18, 19, 21, 59]. Given our evidence for 
impaired epithelial regeneration, induction of IL1β, and the 
presence of SARS-CoV-2 NC in FLCs and MLCs, we next 
studied the occurrence of NC in CD47+ PDL1+ IL6+ and 
CD163+ PD1+ cells. As shown in Fig. 4A, NC was detected 
concomitantly with CD163 and PD1, indicating its presence 
in regulatory CD163+ PD1+ macrophages (Supplementary 
Fig. S9A). Interestingly, NC was also co-detected with PD1 
and IL1β, suggesting that regulatory PD1+ macrophages 
containing NC were able to produce IL1β (Fig. 4B, Supple-
mentary Fig. S9B). In addition, CD47 and PDL1 were iden-
tified simultaneously with fibronectin (Fig. 4C, Supplemen-
tary Fig. S9C) as well as with IL6 (Fig. 4D, Supplementary 
Fig. S9D), indicating the presence of CD47+ PDL1+ FLCs 
able to produce IL6. Notably, NC was also found together 
with CD47 and IL6 (Fig. 4E, Supplementary Fig. S9E), sug-
gesting the presence of SARS-CoV-2 in lung-fibrotic FLCs.

Analysis of postmortem kidney samples

Pathological features observed in kidney samples included 
acute tubule injury and interstitial fibrosis (Supplementary 
Fig. S10A and S11) [15]. Some glomeruli were shrunken 
with widened Bowman space. There was also some occlu-
sion of the microvascular lumen in peritubular and glomeru-
lar capillary loops. Damaged mitochondria were commonly 
observed. Some VLPs ranging from 60 nm to 84 nm in 
diameter were found in a proximal tubule cell (Supplemen-
tary Fig. S11). However, as these are low-magnification 
electron microscopy images, these VLPs lacked sufficient 
ultrastructural detail to be identified as SARS-CoV-2-related 
particles. Immunofluorescence analysis of SARS-CoV-2 
showed patchy granular cytoplasmic staining of NC in 
tubular epithelial cells (Fig. 5A). Importantly, NC staining 
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in the juxtaglomerular apparatus was also observed (Sup-
plementary Fig. S10B1, B2 and C). In addition, NC could 
be detected in podocytes, mesangial cells, and endothe-
lial cells in some glomeruli (Supplementary Fig. S10B3). 

Moreover, NC was found in the medullar region, in CD34+ 
endothelium of vessels, and in interstitial cells (Fig. 5B, 
Supplementary Fig. S12A). Interestingly, NC localized to 
peritubular fibronectin+ interstitial cells and also to some 
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VMT+ cells (Fig. 5A, C, and D; Supplementary Fig. S12B, 
and C). In addition, NC staining colocalized with PGC1α 
(Fig. 5E, Supplementary Fig. S12D) and PHB (not shown), 
providing further support for the presence of NC in or near 
mitochondria.

A key feature of interstitial cells is the accumulation of 
LDs (Supplementary Fig. S11C) as well as the expression 
of NG2, especially in the medullar region [52]. Notably, 
NC was found in NG2+ cells displaying strong LD staining, 
further suggesting the presence of SARS-CoV-2 in renal 
interstitial cells (Fig. 6A, Supplementary Fig. S13A). NC 
localized to both renal tubular and interstitial ACE2+ cells 
(Supplementary Figs. S10D and S13B). Moreover, similar 
to what was observed in lung samples, NC colocalized with 
LC3B and DDX3X (Fig. 6B and C and Supplementary Fig. 
S13C and S13D).

Analysis of postmortem liver samples

Steatosis was the major pathological finding observed in 
liver samples [15]. In addition, clusters of small LDs in 
lipolysosome-like structures similar to those reported in 
hepatocytes [82] and in non-alcoholic fatty liver disease 
(NAFLD) patients [16], as well as damaged mitochondria, 
were frequently observed (Supplementary Fig. S14). Immu-
nostaining of NC was detected in portal tracks including 
the connective tissue (Supplementary Fig. S15) and hepato-
cytes (Fig. 7, Supplementary Fig. S15). NC was also found 
in liver endothelial sinusoidal cells (LESCs) and adjacent 
hepatocytes, some of which showed ACE2 staining (Sup-
plementary Figs. S15 and S16F). Interestingly, NC could be 
detected despite scarce ACE2 staining in liver samples from 
patient B (Supplementary Fig. S15C). Moreover, NC was 
detected in CD34+ cells, indicating the presence of SARS-
CoV-2 in LSECs (Fig.  7B, Supplementary Fig. S16B). 
Furthermore, NC showed strong co-staining with LC3B, 
LDs, DDX3X, and VMT (Fig. 7; Supplementary Fig. S16). 

DDX3X (not shown) and LC3B (Fig. 8) also colocalized 
with LDs. This granulated staining pattern may indicate cel-
lular redistribution of viral and host proteins to LDs and/
or possibly viral replication-morphogenesis sites. Moreo-
ver, NC colocalized with PGC1α (Fig. 8A; Supplementary 
Fig. S16G) and PHB (not shown). These staining patterns 
prompted us to investigate the relationship of VMT with 
LDs, autophagy, and inflammasome markers in liver sam-
ples [9, 24, 40]. As shown in Fig. 8B and C (Supplementary 
Fig. S17), VMT localized together with LDs, LC3B, and 
NLRP3, suggesting its involvement in lipid metabolism, 
autophagy, and inflammasome functions.

Discussion

Findings in postmortem lungs

DAD is the pathological hallmark of ARDS [7]. SARS-CoV-
2-mediated direct lung injury has been shown previously to 
be particularly relevant at early stages of infection, while 
later stages of DAD development have mostly been associ-
ated with host cellular responses [11, 79]. Advanced DAD 
with fibro-proliferation and fibrosis was seen in all of the 
samples. The patients included in this study had features 
that might have influenced the development of interstitial 
lung diseases and pulmonary fibrosis, such as age and cer-
tain comorbidities (Table 1) [64, 83]. However, none of 
these patients showed evidence of a previous pulmonary 
fibrosis disorder, and no fibrotic-like radiographic abnor-
malities were found when they were first diagnosed. These 
observations point to SARS-CoV-2 infection as a driver of 
the observed pathological changes, which were possibly 
enhanced by age and comorbidities. The ability of SARS-
CoV-2 to induce fibrosis was also shown in infected aged 
hamsters. Interestingly, although there was evidence of pro-
liferating AT2, the abundant loss of alveolar epithelial cells 
suggests that the epithelial cell regenerative response failed 
to restore the damaged alveolar epithelium. This is consist-
ent with other studies describing impaired AT2 regeneration 
in postmortem lungs from COVID-19 cases [59, 74].

Detection of NC in lung samples from patients R, J, D, 
and B indicated the presence of SARS-CoV-2 at advanced 
stages of DAD. Thus, the approach used in this work to 
detect NC in human tissues, based on indirect immunofluo-
rescence (IF) followed by confocal microscopy analysis, 
was found to be effective for monitoring the presence of 
SARS-CoV-2 in a variety of samples, in agreement with 
our previous report [25]. In addition, postmortem tissue 
samples were collected soon after the patient’s death, thus 
limiting tissue damage and increasing the chances of detect-
ing both viral and host antigens under our experimental 
conditions. Although a small number of cases were studied 

Fig. 3   Representative confocal microscopy images of lung sections 
from patient R incubated with various combinations of rabbit and 
mouse antibodies against NC, fibronectin, VMT, CD68, NLRP3, and 
PHB, followed by fluorescein- (FITC) or Alexa 594/647 (A594/647)-
conjugated anti-rabbit/mouse IgG or host-protein-specific (IL1β, 
CD163) primary mouse monoclonal antibodies conjugated to either 
FITC or APC, respectively; or stained with Oil Red O (ORO, TxRed 
channel). DAPI was used to stain the nucleus (blue channel). Colocal-
ization was quantified using calculated intensity correlation quotients 
(ICQ) and Pearson’s (PC) and Manders’ (M1, M2) coefficients (see 
Supplementary Fig.  S8C-G). Bars: 50  µm. (A–D) Illustrative ROIs 
of lung sections showing NLRP3 (FITC) localized to either CD68+ 
(arrows) or CD68- cells (arrowheads) (A647) (A) (20X magnifica-
tion); NLRP3 (A594) localized to either CD163+ (arrows) or CD163- 
cells (arrowheads) (APC) (B); concomitant localization of VMT 
(VIM)(FITC) with ORO (TxRed) and NLRP3 (A647) (C); IL1B 
localized to Fib-expressing cells (D) (40X magnification). Arrows 
indicate positive co-staining.

◂
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in this work, our IF approach performed similarly to the 
highly sensitive approaches used by others, such as RT-
qPCR and RNA sequencing, for detection of SARS-CoV-2 

at advanced stages of DAD [21, 68, 75, 110]. On the other 
hand, IF has been described to be more sensitive and specific 
than immunohistochemistry (IHC) [45, 109] and has been 
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used successfully by others to detect SARS-CoV-2 in dif-
ferent tissue samples, including kidney and liver [68, 108]. 
Accordingly, some reports have illustrated that IHC could 
be less specific than in situ hybridization (ISH) to detect 
SARS-CoV-2 in formalin-fixed paraffin-embedded (FFPE) 
tissue samples [58, 110].

The presence of NC in the interface of the capillary 
endothelium and alveolar epithelial cells as well as adjacent 
connective tissue suggests that SARS-CoV-2 may contribute 
directly to sustained damage and interference with the alveo-
lar air-blood interface, deregulation of the wound-healing 
response (WHR) and immune responses leading to impaired 
viral clearance, reduced epithelium regeneration, tissue 
remodeling, and pathology. In addition, detection of NC in 
ELCs and their associated damage, not only in lung samples 
but also in kidney and liver, strongly suggests viral infection 
of endothelial cells. This is in agreement with other stud-
ies describing the presence of SARS-CoV-2 components in 
lung capillary endothelium and increased ACE2 expression 
in activated vascular endothelium [21, 42, 49, 56, 78, 102, 
113, 118]. Macrophages have been shown to be key players 
during SARS-CoV-2 infection and its associated pathogen-
esis [25, 34, 59, 74, 118]. Interestingly, NC was identified 
in CD163+ and CD68+ cells corresponding to alveolar and 
interstitial MLCs, in accordance with other reports [14, 21, 
25, 74, 105]. Importantly, co-detection of NC with NLRP3 
and IL1β in MLCs and possibly in LPFs (see below) might 
indicate direct viral induction of inflammatory responses, 
which has been associated with COVID-19 pathogenesis 
[39]. We observed the common occurrence of mitochondrial 
damage in different cells in the tissues analyzed by electron 
microscopy. Colocalization of NC with PHB and PGC1α 
suggests that NC could be recruited to or close to mito-
chondria, suggesting a possible direct virus-mediated mito-
chondrial dysfunction, which may be associated with the 
generation of mtROS and mtDNA, contributing to NLRP3 
activation and production of IL1β. Evidence supporting this 
view includes the observations that SARS-CoV-2 infection 

affects mitochondria structure and function [17], NSP2 inter-
acts with mitochondrial PHB [20], and viral double-stranded 
RNA (dsRNA) is localized in mitochondria, leading to 
mitochondrial dysfunction in infected cultured cells [84]. 
Thus, mitochondrial dysfunction mediated by both viral and 
inflammatory responses may be connected to the ability of 
SARS-CoV-2 infection to stimulate the NLRP3 inflamma-
some and IL1β production [25, 95].

Lung fibrosis have been suggested to contribute to the 
progression of COVID-19 disease and post-COVID-19 
sequelae [74, 103]. Notably, NC was detected in connective 
tissue and FLCs. LPFs are adipocyte-like cells that play a 
key role in mesenchymal-epithelial communication, pro-
viding triglyceride substrate to AT2 for surfactant synthesis 
[72]. Of note, impairment of homeostatic communications 
between AT2 and LPFs in the alveolar wall, leading to sur-
factant insufficiency, has been implicated in chronic lung 
diseases. These communications play an essential role in 
the repair response to lung injury, supporting AT2 growth 
and differentiation [72]. A key feature of this process is the 
activation of PPARγ signaling in LPFs induced by AT2-
produced parathyroid hormone-related protein. Results 
from this work suggested the presence of SARS-CoV-2 in 
LPFs. The lipogenic nature of these cells was suggested by 
the concomitant detection of LDs and activated PPARγ. 
Thus, SARS-CoV-2 may impact LPFs, disrupting normal 
mesenchymal-epithelial homeostatic communications and 
surfactant production and contribute to lung pathogenesis. 
This may be particularly relevant, as reduced pulmonary 
surfactant levels are a hallmark of COVID-19 ARDS [81]. 
Impaired regulatory functions of LPFs may promote trans-
differentiation to myofibroblasts and increased fibrosis. 
This is also important given that transdifferentiated LPFs 
are unable to support AT2 growth and differentiation during 
injury/repair responses [97]. Therefore, together with the 
direct influence of SARS-CoV-2 on AT2, this study raises 
the interesting possibility that SARS-CoV-2 may disrupt the 
regulatory functions of LPFs to promote fibrosis and disturb 
epithelial regeneration. Interestingly, PPARγ agonists have 
been used to promote repair responses in the lung by restor-
ing epithelial–mesenchymal interactions and alveolar home-
ostasis in various models of lung injury [72]. Collectively, 
these observations point to PPARγ as a potential therapeutic 
target for COVID-19.

Additional findings from this work indicating the occur-
rence of SARS-CoV-2 in fibronectin+ FLCs support the 
above-mentioned hypothesis. Fibronectin is a key com-
ponent of the ECM involved in the pathogenesis of lung 
diseases. Although collagens are the predominant ECM 
proteins identified in fibrotic lesions, highly increased lev-
els of fibronectins have been described to localize in pul-
monary areas of active fibrogenesis [51]. Consequently, 
increased fibronectin deposition and fibronectin expression 

Fig. 4   Representative confocal microscopy images of lung sec-
tions from patient R incubated with various combinations of rabbit 
polyclonal antibodies against NC or fibronectin, followed by Alexa 
594/647 (A594/647)-conjugated anti-rabbit IgG and host protein-
specific (IL1β, CD163, PD1, CD47, IL6, PDL1) primary mouse 
monoclonal antibodies conjugated to FITC, PE, or APC. DAPI was 
used to stain the nucleus (blue channel). Colocalization was quanti-
fied using calculated intensity correlation quotients (ICQ) and Pear-
son’s (PC) and Manders’ (M1, M2) coefficients (see Supplementary 
Fig. S9). Bars: 50 µm. (A–E) Illustrative ROIs of lung sections show-
ing NC (A594) detected in PD1+ cells (APC) concomitantly with 
either CD163 (A) or IL1β (B) (FITC) (arrows) (20X and 40X magni-
fication, respectively); Fib (A594) (C) or IL6 (PE) (D) detected con-
comitantly with CD47 (FITC) and PDL1 (APC) (arrows); NC (A647) 
detected in CD47+ cells (FITC) concomitantly with IL6 (PE) (E) 
(arrows) (40X magnification)
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in fibroblasts have been described in various pathological 
conditions of the lung, including idiopathic pulmonary fibro-
sis (IPF), COPD, and cancer [37, 50, 62, 120]. Fibronectin 
has also been described to induce EMT of alveolar epithelial 
cells during lung injury, a cellular process that is involved 
in the opening of epithelial barriers and cell migration [47]. 

Thus, co-detection of NC with fibronectin in the connective 
tissue and FLCs suggest that SARS-CoV-2 may modulate 
fibronectin production and related functions [98]. Inhibition 
of fibronectin assembly has been proposed as a therapeutic 
opportunity for fibrosis [2, 98] and may also be considered 

Fig. 5   Representative confocal microscopy images of kidney sec-
tions from patient R incubated with various combinations of rabbit 
or mouse (CIGB, Sancti Spíritus) antibodies against NC and host 
proteins, followed by Alexa 647 (A647)- and fluorescein/FITC-
conjugated anti-mouse/rabbit IgGs, either alone or in different com-
binations. DAPI was used to stain the nucleus (blue channel). Bars: 
50  µm. (A) Renal cortex section showing detection of NC (A647) 
in tubule epithelial cells (arrows) and peritubular interstitial cells 
(arrowhead) (20X magnification). (B) Renal medullary section show-

ing that NC (A647) localized to the endothelium of CD34+ vessels 
and interstitial cells (arrowheads) (40X magnification). C–E) Renal 
cortex sections showing localization of NC (FITC) to Fib+ peritubu-
lar interstitial cells (A647) (arrows) (40X magnification). Note the 
negative control of a section incubated only with secondary fluores-
cent-probe-conjugated antibodies without primary antibodies (Merge, 
No Fib, No NC) (20X magnification). (C) NC (A647 or FITC) local-
ized to VMT+ (VIM) cells (FITC) (arrows) (D) and colocalized with 
PGC1α (arrows) (E) (40X magnification)
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as a potential target against SARS-CoV-2-related lung 
pathology.

VMT, on the other hand, has been implicated in IPF 
and the invasive properties of fibroblasts in IPF, EMT dur-
ing pulmonary fibrosis, non-alcoholic steatohepatitis, and 
hepatocellular carcinoma [47, 53, 76, 94, 107, 117]. The 
results from this study are in accordance with a recent report 
describing colocalization of VMT and the SARS-CoV-2 M 
protein in fibrotic lungs from COVID 19 patients [101]. 
However, although the role of VMT in lung WHR has not 
been completely elucidated, it has been shown to be required 
for remodeling of the alveolar epithelium and increased 
wound repair [47, 76]. Thus, usurping key VMT functions 
by SARS-CoV-2 in alveolar epithelial cells may contribute 
to impaired epithelial regeneration and WHR. Conversely, as 
VMT is involved in the life cycle of several viruses, includ-
ing HIV, SARS-CoV, and SARS-CoV-2, it is considered 

to be an important antiviral target [28, 69, 115]. VMT has 
been shown to be required for SARS-CoV-2 replication and 
entry [3, 17, 93]. Accordingly, an interesting possibility is 
that EMT and increased VMT expression may render cells 
more susceptible to SARS-CoV-2 infection, particularly by 
facilitating viral entry and replication. Notably, a therapeutic 
peptide that modifies the supramolecular structure of VMT 
intermediate filaments has been shown to inhibit infection 
with betacoronaviruses, including SARS-CoV-2, in cell cul-
ture [28, 29]. Additionally, VMT is involved in inflamma-
tory and fibrosis responses in the lung through activation of 
the NLRP3 inflammasome and induction of IL1β [24]. In 
this work, we found evidence of the possible involvement 
of VMT-expressing and LDs-containing cells in NLRP3 
responses. Thus, in addition to MLCs, other cell types 
(including FLCs and epithelial cells with features of EMT) 
might contribute to inflammasome-mediated inflammatory 

Fig. 6   Representative confocal microscopy images of kidney sec-
tions from patient R incubated with various combinations of rabbit 
and mouse (CIGB, Sancti Spíritus) antibodies against NC and host 
proteins, followed by Alexa 647 (A647)- and fluorescein/FITC-con-
jugated anti-mouse/rabbit IgG, either alone or in different combina-
tions, or stained with Oil Red O (ORO, Tx Red channel). DAPI was 

used to stain the nucleus (blue channel). Bars: 50 µm. (A) Renal med-
ullary section showing that NC (A647) localized to NG2+ cells dis-
playing LDs (ORO) (arrows). (B) Renal cortex section showing colo-
calization between NC (FITC) and LC3B (A647). G, glomerulus. (C) 
Colocalization between DDX3X (FITC) and NC (A647) in a renal 
medullary section (40X magnification)
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Fig. 7   Representative confocal microscopy images of liver sec-
tions from patient R incubated with various combinations of rabbit 
and mouse (CIGB, Sancti Spíritus) antibodies against NC and host 
proteins, followed by Alexa 647 (A647)- and fluorescein/FITC-
conjugated anti-mouse/rabbit IgG, either alone or in different com-
binations. DAPI was used to stain the nucleus (blue channel). Bars: 

50 µm. (A–E) Illustrative ROIs of liver sections from patient R show-
ing and colocalization between NC (FITC) and LC3B (A647) (A), 
LDs (ORO, TxRed) (C), VMT (A647) (arrows) (E); localization 
of NC (A647) in CD34+ cells (FITC) (arrows) (B); colocalization 
between NC (A647) and DDX3X (FITC) (arrows) (D) (40X magni-
fication)
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responses. Taking into account that IL1β has been shown to 
play a role in lung injury and pulmonary fibrosis [44, 48], 
detection of NC in VMT-positive cells (including FLCs) 
indicates the involvement of VMT not only in the viral life 
cycle but also the pathogenesis induced by SARS-CoV-2 
infection.

Previous studies have shown that chronic inflammation 
driven by IL6 and macrophage-derived IL1β is associated 
with impaired alveolar regeneration through induction of 
damage-associated transient progenitors (DATPs) from AT2 
cells that are unable to make a full transition to AT1 cells 
during pulmonary fibrosis in both humans and mice [18, 19]. 
Notably, lung fibrotic fibroblasts and immunosuppressive 
PD1+ macrophages have been linked to pulmonary fibrosis 
and an impaired adaptive T-cell immune response in both 
humans and mice [18, 36]. Similarly, increased macrophages 

expressing IL1β and lung fibrotic fibroblasts have been asso-
ciated with DATPs in impaired alveolar regeneration dur-
ing SARS-CoV-2 infection [21, 59]. Interestingly, increased 
proximity and interactions between MLCs and FLCs have 
been observed in late COVID-19 disease associated with 
expansion of mesenchymal cells and fibroblasts [74]. By 
upregulating CD47 and PDL-1, fibrotic fibroblasts enhance 
their survival, avoiding phagocytosis by PD-1+ macrophages 
while contributing, with IL6, to inflammation. Notably, com-
bined immunotherapy with CD47- and IL-6-blocking agents 
has been shown to reverse fibrotic conditions in mice, sug-
gesting new therapeutic alternatives for treating pulmonary 
fibrosis [18, 54]. Our work provides additional evidence that 
SARS-CoV-2 may directly influence this immunoregulatory 
route, thus contributing to the development of fibrosis and 

Fig. 8   Representative images from confocal microscopy analysis of 
liver sections of patient R incubated with various combinations of 
rabbit and mouse antibodies against NC, PHB, VMT (VIM), LC3B, 
or NLRP3, followed by fluorescein- (FITC) and Alexa 647 (A647)-
conjugated anti-rabbit/mouse IgG or stained with Oil Red O (ORO, 
Tx Red channel). DAPI was used to stain the nucleus (blue channel). 
Colocalization was quantified using calculated intensity correlation 

quotients (ICQ) and Pearson’s (PC) and Manders’ (M1, M2) coeffi-
cients (see Supplementary Fig. S13). Bars: 50 µm. (A–C) Illustrative 
ROIs of lung sections from patient R showing NC colocalized with 
PHB (arrows) (A), LC3B (A647) detected in VMT+ (FITC) cells 
showing LDs (ORO) (arrows) (B); and NLRP3 (A647) detected in 
VMT+ (FITC) cells showing LDs (ORO) (arrows) (C) (40X magni-
fication)
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failure of the compensatory alveolar epithelial regeneration 
response.

The localization of NC to LDs indicates a link between 
SARS-CoV-2 and lipid metabolism and LD biogenesis. An 
association between SARS-CoV-2 infection and lipid metab-
olism and LDs has been demonstrated in cell culture and ani-
mal models as well as in virus-infected patients [22, 35, 65]. 
NC has been shown to induce expression of diacylglycerol 
acyltransferase (DGAT) and LD formation [22, 116]. Fur-
ther association of NC with adipocyte differentiation-related 
protein (ADRP) on the surface of LDs promotes the viral 
replication cycle. Interestingly, interfering with LD synthe-
sis inhibits SARS-CoV-2 replication and associated cell and 
pulmonary inflammation in cell culture and animal mod-
els of viral infection, implicating LDs not only in the viral 
life cycle but also in lung pathogenesis [22, 116]. Another 
interesting finding of the current work was the simultaneous 
localization of NC with LC3B and DDX3X, which were also 
detected on LDs. This suggests the possible involvement of 
these host factors in the viral life cycle, pointing to LDs as 
a platform involved not only in inflammation, viral replica-
tion, and morphogenesis but also in the regulation of cellular 
functions and processes associated with these proteins (see 
Supplementary Discussion).

Findings in postmortem kidney and liver

The results of this work pointed to the ability of SARS-
CoV-2 to infect various cell types from kidney and liver. 
This supports previous reports of SARS-CoV-2 in several 
organs, including kidney and liver [11, 68, 108]. Lung-kid-
ney interactions during SARS-CoV-2 infection are common 
and associated with significant morbidity and mortality [63]. 
Importantly, the presence of SARS-CoV-2 in the kidney 
has been associated with older age, an increased number 
of coexisting conditions, acute kidney injury, and increased 
risk of premature death within the first 3 weeks of disease 
[12]. These features were present in the cases examined in 
this work. We recognize that pathological features observed 
in the studied cases, particularly interstitial fibrosis and fre-
quent occurrence of LDs, could be related to the combina-
tion of age and co-morbidities in these patients (Table 1) 
[43, 60, 96]. However, SARS-CoV-2 infection and direct 
viral injury could also contribute to renal tissue damage. 
SARS-CoV-2 infection of tubular epithelial cells has been 
shown previously to be associated with acute tubular renal 
injury [1].

The detection of SARS-CoV-2 in a variety of renal cell 
types such as epithelial tubular cells, endothelial cells, glo-
merular podocytes, and mesangial cells is consistent with 
the previously reported wide cellular tropism of SARS-
CoV-2 in kidney [68]. Another interesting finding was the 
presence of NC in both cortical peritubular and medullary 

fibronectin+ interstitial cells. In accordance with the findings 
in lung and liver (see below), NC was co-detected with LDs 
that also co-stained with VMT, LC3B, and DDX3X. FLCs 
form the major mass of interstitial cells and perform a vari-
ety of endocrine functions in different intrarenal zones [52]. 
It is interesting to note that localization of NC in interstitial 
cells was associated with detection of collagen-like fibers in 
the renal interstitium. Interstitial cells from the peritubular 
capillary bed of the renal cortex have been involved in sens-
ing the arterial oxygen content, which is related to alveolar 
oxygen tension and alveolar gas exchange [31, 46]. This pro-
cess regulates the production of erythropoietin (EPO) and 
erythropoiesis by renal interstitial cells [52]. Consequently, 
hypoxemia due to SARS-CoV-2-infection-associated lung 
disease is a key trigger of EPO production. Thus, the pres-
ence of SARS-CoV-2 in peritubular cells of the renal cortex 
may also contribute to disturbance of the normal regulation 
of oxygen homeostasis, thus contributing to the pathogenesis 
of COVID-19.

Notably, in some glomerular regions, NC localized 
predominantly to the juxtaglomerular apparatus, includ-
ing epithelial cells of the macula densa, juxtaglomerular/
perivascular interstitial cells, and extraglomerular mesangial 
cells. This finding raises the possibility that SARS-CoV-2 
may affect and deregulate critical functions of these cells 
such as regulation of the renin-angiotensin-aldosterone sys-
tem (RAAS), which is involved in blood pressure regula-
tion and electrolyte homeostasis [80]. Importantly, the tis-
sue balance between ACE and ACE2 activity regulates the 
effector functions of RAAS, including inflammatory and 
fibrotic responses [33]. It has been proposed that SARS-
CoV-2 infection may diminish the effects of ACE2, favoring 
ACE-related functions [86]. We would like to propose that 
SARS-CoV-2 interactions with FLCs and the juxtaglomeru-
lar apparatus directly promote pro-inflammatory and pro-
fibrotic responses in the lungs and kidneys, thus contributing 
to RAAS imbalance. We propose that this scenario is par-
ticularly relevant in individuals who have various concomi-
tant co-morbidities and, consequently, are at increased risk 
of infection of the kidney by SARS-CoV-2, contributing to 
premature death [12]. Further studies are needed to under-
stand the functional implications of SARS-CoV-2 infection 
of these cells for regulation of RAAS and oxygen homeo-
stasis and viral pathogenesis.

COVID-19 severity has been associated with acute liver 
injury and elevated liver enzymes [85, 108], and various 
mechanisms have been proposed [32]. On the other hand, 
SARS-CoV-2 has been detected in postmortem liver samples 
[8, 68, 70, 108]. In this work, we identified NC in hepato-
cytes and CD34+ cells, possibly representing SLECs. CD34 
may be expressed at low levels in SLECs in the normal liver, 
depending on zonation, which increases under pathological 
conditions [66, 91]. Accordingly, CD34 has been associated 
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with capillarization of LSECs in a mouse model of cirrho-
sis [91]. Therefore, the presence of SARS-CoV-2 in liver 
CD34+ cells may be associated with viral pathogenesis and/
or pre-existing conditions in the patient, such as hepato-
steatosis (which was the main pathological finding in liver 
samples). Interestingly, NC co-localized with VMT showing 
a characteristic granulated pattern, suggesting altered VMT 
localization and its involvement in viral life cycle. The abun-
dance of LDs in the liver samples made it easier to study the 
recruitment of NC, VMT, DDX3X, LC3B, and NLRP3 to 
or near LDs. VMT has been shown to play a critical role in 
LD biogenesis [40], regulation of autophagy [9, 106], and 
NLRP3 inflammasome activation [24]. Concomitant detec-
tion of SARS-CoV-2, VMT, LDs, LC3B, and NLRP3 sup-
ports the role of VMT and LDs in the viral life cycle and 
pathogenesis involving autophagy and inflammasome func-
tions. This is also particularly relevant because VMT has 
been observed in injured hepatocytes and may be associated 
with the pathogenesis of liver diseases [53, 112, 117] and 
de-regulated inflammatory responses [24]. In particular, it 
has been shown that an EMT-like phenotype and expression 
of EMT markers such as VMT are induced under various 
pathological conditions in the liver, including steatohepatitis 
and fibrosis in humans and mice [53, 92, 119]. It is therefore 
possible that previous pathological conditions and/or injury 
of the liver caused by viral infection may promote VMT 
expression and infection of hepatocytes by SARS-CoV-2.

Conclusions

We have identified potential cellular and molecular targets 
that may be related to and affected by SARS-CoV-2 infec-
tion, with implications for virus-induced pathogenesis and 
therapeutics. This study provides evidence for the presence 
of SARS-CoV-2 in lung epithelium, MLCs, FLCs, and LPFs 
at advanced stages of DAD development, suggesting sus-
tained viral injury and deregulation of tissue repair func-
tions; NC colocalization with mitochondrial proteins and 
frequent mitochondrial damage in analyzed samples, point-
ing to mitochondrial involvement in the viral life cycle and 
pathogenesis; SARS-CoV-2-associated NLRP3 and IL1β 
responses related to VMT and LDs, not only in MLCs but 
also in FLCs, possibly associated with mitochondrial dys-
function; the presence of NC in regulatory cells express-
ing immune-checkpoint proteins involved in tissue repair 
responses and contributing to inflammatory responses in 
the lung; key host proteins localizing with NC and/or LDs 
that have been implicated in WHR and/or the SARS-CoV-2 
life cycle (VMT, NLRP3, LC3B, DDX3X, fibronectin, and 
PPARγ); the presence of SARS-CoV-2 in endothelial cells 
from lungs, kidney, and liver, which is probably involved 
in endothelial damage and tissue injury; the presence of 

SARS-CoV-2 in hepatocytes expressing vimentin, renal 
interstitial cells, and the juxtaglomerular apparatus, suggest-
ing possible virus-mediated deregulation of critical hepatic 
and renal functions involved in RAAS, oxygen tension regu-
lation, and COVID-19 pathogenesis.
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