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Rhizobium etli modifies lipopolysaccharide (LPS) structure in response to environmental signals, such as low
pH and anthocyanins. These LPS modifications result in the loss of reactivity with certain monoclonal
antibodies. The same antibodies fail to recognize previously isolated R. etli mutant strain CE367, even in the
absence of such environmental cues. Chemical analysis of the LPS in strain CE367 demonstrated that it lacked
the terminal sugar of the wild-type O antigen, 2,3,4-tri-O-methylfucose. A 3-kb stretch of DNA, designated as
lpe3, restored wild-type antigenicity when transferred into CE367. From the sequence of this DNA, five open
reading frames were postulated. Site-directed mutagenesis and complementation analysis suggested that the
genes were organized in at least two transcriptional units, both of which were required for the production of
LPS reactive with the diagnostic antibodies. Growth in anthocyanins or at low pH did not alter the specific
expression of gusA from the transposon insertion of mutant CE367, nor did the presence of multiple copies of
lpe3 situated behind a strong, constitutive promoter prevent epitope changes induced by these environmental
cues. Mutations of the lpe genes did not prevent normal nodule development on Phaseolus vulgaris and had very
little effect on the occupation of nodules in competition with the wild-type strain.

The carbohydrate backbones of lipopolysaccharides (LPSs)
of gram-negative bacteria often are highly decorated with sub-
stituent chemical groups. Striking examples can be found
among Rhizobium spp. and related bacteria (28). For instance,
the LPS O chain of Rhizobium etli CE3 (18) is heavily substi-
tuted with moieties that should confer hydrophobic character:
O-methylations, O- and N-acetylations, and esterification of a
repeating carboxyl group (Fig. 1). The hypothetical hydropho-
bicity is most pronounced at the nonreducing end, where the
O-chain repeating units are capped by a terminal deoxysugar in
which all of the hydroxyl groups are methylated.

A number of interesting questions arise from considering
these substituents. One is the mechanism of synthesis; for
instance, whether the O-methyl, methyl ester, and O-acetyl
groups are added during synthesis of the nucleotide diphos-
phosugars or after polymerization of the sugar residues. An-
other issue is the functions of these substituents. With bacteria
such as rhizobia, which are known to interact intimately with
multicellular hosts, one question is whether such decorations
influence these cell-cell interactions.

The LPS structures of R. etli and Rhizobium leguminosarum
change during the course of infection of their legume hosts and
in response to environmental cues, such as plant-released an-
thocyanins, low pH, and low oxygen concentrations (28, 33).
Whether these changes are required for successful bacterial-
host interaction remains to be determined. In the case of R. etli
CE3, detergent gel electrophoresis and sugar composition
analyses indicate that the LPS structure has been altered only

slightly after growth in these conditions (16, 34, 40), leading to
speculation that the changes involve the chemical substituents
that decorate the main carbohydrate backbone. The main tools
in tracking these induced LPS changes have been three mono-
clonal antibodies (MAbs). Depending on the particular LPS
alteration, one or more of these antibodies exhibit greatly
decreased affinity or do not bind at all to the altered LPS (16,
34, 40) (e.g., Fig. 2B).

By screening for mutants of R. etli CE3 that are not recog-
nized by one of these MAbs in the absence of such environ-
mental cues, mutant strain CE367 was isolated in a previous
study (40). The LPS of this mutant appeared to migrate nor-
mally on sodium dodecyl sulfate-polyacrylamide gel electro-
phoresis (SDS-PAGE) gels, suggesting that the overall structure
had suffered very little truncation, but it was not recognized by
any of the three antibodies after growth under any condition
(Lpe� [lipopolysaccharide epitopes] phenotype) (Fig. 2). Study-
ing the defects of CE367, therefore, should provide insight into
the process of the maturation of the R. etli LPS into the fully
realized O antigen that is presented on the bacterial surface
and insight into the function of the structural feature that the
mutant lacks. When analysis of this strain began, it also seemed
plausible that its deficiency might correlate with one of the
environmentally induced changes in LPS structure.

The present report describes the cloning and genetic analy-
ses of a gene cluster (lpe3) in which the mutation of strain
CE367 is located. The LPS structure of mutant CE367 was
analyzed in detail and found to lack the terminal tri-O-meth-
ylated fucose of the wild type. The effect of this structural defi-
ciency on symbiosis with Phaseolus vulgaris also was assessed.

MATERIALS AND METHODS

Bacterial strains, plasmids, and culture conditions. The strains and plasmids
used in this study are listed in Table 1. Rhizobium cultures were grown at 30°C
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in a rotating shaker at 150 rpm in TY liquid medium (tryptone, yeast extract, and
CaCl2), in defined YGM medium at pH 5 as described previously (16, 40), or in
YGM medium titrated to pH 7 with NaOH. Cells of Escherichia coli strains were
grown in Luria-Bertani medium at 37°C supplemented with the appropriate
antibiotic (kanamycin [50 �g/ml], gentamicin [20 �g/ml], ampicillin [100 �g/ml],
chloramphenicol [30 �g/ml]). Cyanin, delphinidin, and seed exudate prepara-
tions for induction of the LPS modification were performed as described previ-
ously (16, 34).

PAGE and analysis of LPS antigenicity. MAbs JIM26, JIM27, JIM28, and
JIM29 have been described previously (16, 34, 40) and were a generous gift from
N. J. Brewin (Norwich, United Kingdom). The routine analyses of the LPS
antigenicity of SDS-extracted LPS or rhizobial colonies, SDS-PAGE, electro-
transfer, and probing of electroblotted nitrocelluose or colony lifts with MAbs
were performed as described previously (16, 34). While the data presented here
are from assays of LPS separated by PAGE in the presence of detergents (e.g.,
see Fig. 2), the lack of antibody binding was also confirmed by performing colony
blottings and dot blottings of intact cells from liquid cultures. For analysis by
taurodeoxycholate (TDOC) PAGE, SDS extracts of the R. etli strains were
separated on an 18% polyacrylamide gel in which TDOC was substituted for SDS
at the same concentration (wt/vol) (27). Electrophoresis was at 75 V for 60 min,
followed by 110 V for 105 min, and staining was performed as described previ-
ously (8).

Analysis of LPS structure. Strains CE3 and CE367 were grown in TY medium
in 60- and 300-liter fermenter batches, washed bacterial pellets were extracted by
the hot-phenol method, and the LPS was purified by Sepharose 4B chromatog-
raphy as described previously (8, 9). Purified LPS was mild acid hydrolyzed in 1%
acetic acid at 100°C for 2 h, and lipid A was removed by centrifugation. The
O-chain polysaccharide was separated from the core oligosaccharides by size
exclusion chromatography of the supernatant by using Bio-Gel P2 equilibrated
with deionized water.

Glycosyl composition was analyzed by the combined gas chromatography-mass
spectrometry (GC-MS) of alditol acetates and trimethylsilyl methyl glycosides
(46). Glycosyl linkage analysis was performed by permethylation (Hakomori
method), conversion to partially methylated alditol acetates (PMAAs), and
GC-MS analysis (46). The uronic acid linkages were identified by sequential
permethylation reduction of the carboxymethyl groups with lithium triethylboro-
deuteride and conversion to the PMAAs (19). The location of endogenous
O-methyl ether groups was determined by methylation analysis using trideu-
teromethyliodide.

Matrix-assisted laser desorption ionization (mass spectrometry) (MALDI
[MS])) was performed using a Kratos Analytical Kompact SEQ MALDI-time-
of-flight (TOF) spectrometer system in the positive mode. Approximately 1 �l of
a 1-mg/ml LPS solution was mixed with 1 �l of the dihydroxybenzoic acid matrix

and applied to the probe for analysis. Nuclear magnetic resonance (NMR)
analysis was performed using either a Varian 300 or 600 MHz spectrometer. The
sample was dissolved in D2O and lyophilized. This step was repeated, and then
the sample was dissolved in D2O and analyzed at 29°C. Chemical shifts were
measured relative to that of the HOD signal (* 4.78) which was assigned relative
to sodium trimethylsilylpropionate (TSP).

Recombinant DNA techniques. Genomic DNA was isolated from R. etli strains
by a method employing cetyltrimethyl ammonium bromide (CTAB) (4) for use
in cloning (38) or Southern blot analyses (4). E. coli cells were transformed (23)
and plasmids were isolated from E. coli (14) as previously described. DNA was
recovered from agarose gels (6) and amplified or modified with enzymes pur-
chased from New England Biolabs (Beverly, Mass.). Custom primers were syn-
thesized by Operon Technologies (Alameda, Calif.).

Cloning of lpe3. An inverse PCR strategy was used to isolate wild-type DNA
regions adjacent to the Tn5-gus insertion in CE367. R. etli DNA flanking one side
of the Tn5gusA1 (39) of CE367 (pE1-Tn5; Fig. 3) was cloned from an EcoRI
digest of CE367 genomic DNA by virtue of conferring kanamycin resistance after
ligation into pBluescript KS(�) and transformation of E. coli DH5� cells. The R.
etli genomic portion was sequenced by use of T7 and GUS sequencing primers
(United States Biochemical, Cleveland, Ohio). By Southern blotting, the DNA
sequence hybridized to a single 3-kb fragment of CE3 genomic DNA that had
been digested with HindIII.

Total DNA from a HindIII digest of CE3 genomic DNA that had been
religated in a large volume was linearized with BamHI. The fragment of interest
(DNA locus lpe3) was isolated by an inverse PCR approach using Vent DNA
polymerase. The diverging primers used were PE1 (5�-GTGGTACCTCGAGG
AACAAACCGTAAGGCCA-3�) and PTn5 (5�-ACCTGCAGGATCCTACCT
GCTGGGTGGATTC-3�), which each anneal to sequences flanking opposite
sides of a unique BamHI site of lpe3 at nucleotide (nt) 254, with their 5� ends
proximal to the BamHI-site (Fig. 3). Sequence analysis of the resulting PCR
product cloned into pJQ200SK� (37) with a T3 sequencing primer (Promega,
Madison, Wis.) gave the nucleotide sequence proximal to both of the lpe3
HindIII sites (nt 1 and 3046; Fig. 3).

The primers Pup (5�-TCACTCGAGAAGCTTGATGCATTCATTGAACTG
CG-3�) and Pdown (5�-TCTCTAGAGCTCGAACGAACTGAATGTCGACC-
3�) were designed to these sequences to amplify the lpe3 region from
HindIII-digested CE3 genomic DNA (Fig. 3). This PCR product was ligated into
pBluescript KS(�) for analysis and manipulations.

Sequence analysis of lpe3. Sequence data was obtained by sequencing over-
lapping EcoRI-, EcoRV-, NcoI-, and XbaI-digested DNA fragments subcloned
into pBluescript KS(�) as double-stranded templates with T7 and T3 primers.
The sequence was obtained by a combination of the manual Fidelity DNA
Sequencing System (Oncor, Md.) using �-35S-labeled dATP or automated se-

FIG. 1. Structure of O chain of R. etli CE3. The methylation of fucose residues, particularly the internal fucoses, is variable, whereas the
3-O-methylation of 6-deoxytalose and the methyl esterification of glucuronic acid is invariant. The QuiNAc-Kdo disaccharide at the reducing end
is partially and variably degraded during mild acid hydrolysis. The locations of the O-acetyl groups are unknown. Abbreviations: TOM-Fuc,
2,3,4-tri-O-methylfucose; MeGlcA, glucuronyl methyl ester; Fuc, fucose; 3MdTal, 3-O-methyl-6-deoxytalose; Man, mannose; QuiNAc, 2-N-
acetamido-2,6-dideoxyglucose (2-N-acetylquinovosamine); Kdo, 3-deoxy-D-manno-2-octulonic acid.
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quencing at the University of Wisconsin—Milwaukee (ABI Prism; Perkin-Elmer,
Norwalk, Conn.). Open reading frames (ORFs) were identified with Orf Finder
(http://www.ncbi.nlm.nih.gov/gOrf/gOrf.html). Various BLAST searches of the
nonredundant sequence database and the database of unfinished microbial ge-
nomes at the National Center for Biotechnology Information (NCBI) were
performed with nucleotide and deduced amino acid sequences as query se-
quences (http://www.ncbi.nlm.nih.gov [1, 2]). Analysis of the inferred protein
structures based on the deduced amino acid sequence were performed through
the Baylor College of Medicine Search Launcher (http://www.hgsc.bcm.tmc.edu
/SearchLauncher/) and the ExPASy Molecular Biology Server (http://www
.expasy.ch/). Coil predictions were performed (http://www.isrec.isb-sib.ch) ac-
cording to methods described by Lupas et al. (30). ORFs were compared to each
other (http://bibiserv.techfak.uni-bielefeld.de/dialign/), consensus analysis was
performed (http://www.toulouse.inra.fr/multalin.html), pairwise alignments of the
identified ORFs were performed (http://www.ch.embnet.org/software/LALIGN
_form.html), and the consensus was calculated (http://pbil.univ-lyon1.fr/). Trans-

membrane prediction analyses were performed online (http://psort.nibb.ac.jp
:8800/) (32) and elsewhere (7, 24, 25, 29).

Site-directed mutagenesis and complementation analyses. Site-directed mu-
tagenesis was performed by insertional ligation of the Km cassette of pUC4K
(Pharmacia) (42) at the deletion between nt 416 and 675 (EcoRV) to obtain
mutation �lpeA430::Km, at nt 945 (SalI) for mutation lpeA445::Km, nt 1524
(EcoRI) for mutation of ORF2, lpe-431::Km, and nt 2423 (NcoI) for mutation of
ORF3, lpe-462::Km (Fig. 3). lpe3 DNA fragments containing these insertions
were subcloned into suicide plasmid pJQ200uci or pJQ200SK� (37). E. coli
DH5� was transformed with these constructs. The constructs were transferred
into R. etli CE3 cells by triparental mating (22) with mobilizing strain MT616
(17). CE3 transconjugants containing these constructs were selected on TY agar
plates supplemented with 50 �g of kanamycin/ml, 20 �g of nalidixic acid/ml, 100
�g of streptomycin/ml, and 20 �g of gentamicin/ml. Double recombinants were
selected on TY agar plates supplemented with 50 �g of kanamycin/ml, 20 �g of
nalidixic acid/ml, 100 �g of streptomycin/ml, and 8% sucrose. At least 50 putative
double recombinants were tested for their antigenicity to the MAbs by colony
blottings, and 10 were tested by probing the antigenicity of blotted LPS after
separation of SDS extracts of TY-cultured cells on SDS-PAGE, as described
above. In each case, �95% of the colonies tested had the same antigenic phe-
notype.

Strain CE432 was the result of a single recombination event that inserted a
complex cointegrate at nt 1301 (XbaI) of the lpe3 locus (Fig. 3). Included within
this insertion was pJQ200SK�, ligated to the first 30 nt of lpe3, followed by the
Km cassette and then a fragment of lpe3 from nt 945 to 1301.

For complementation analyses of these mutants, deletion fragments of lpe3
derived from various restriction digests (Fig. 3) were cloned into vector
pRK404E1. Recovery of the Lpe� phenotype was tested after introduction of the
cloned deletion fragment into an Lpe� mutant by triparental mating. At least 50
tetracycline-resistant transconjugant colonies were tested for their Lpe pheno-
type by using colony blottings. In each case, the electroblotted LPSs of three or
more purified transconjugant clones were also probed for reaction with MAb
JIM28 after SDS-PAGE separation of SDS extracts of cells cultured in liquid
TY.

Gus activity. Strains carrying gusA fusions were grown in TY liquid medium to
stationary phase. The cultures were diluted to 2% (vol/vol) in 50 ml of fresh
YGM medium (pH 5.0 or 7.0) in 150-ml Erlenmeyer flasks and shaken at 200
rpm for 0 to 5 h at 30°C. At indicated time points, the cultures were collected by
centrifugation at 12,000 � g for 10 min and snap frozen. Samples containing
equal amounts of protein were separated by SDS-PAGE (50 �g of total protein/
lane) for assessment of JIM28 antigenicity. Other aliquots of the same sample
were washed twice in 50 mM sodium phosphate, pH 7.0, resuspended in phos-
phate buffer, and lysed in SDS and chloroform. The aqueous supernatants were
resuspended at equal protein concentrations, and 	-glucuronidase (GUS) activ-
ities of aliquots of the lysed cells were assessed by colorimetric assay as described
previously (20). GUS activity was standardized to protein concentration as mea-
sured with the bicinchoninic acid assay (Pierce). Both the GUS and protein
colorimetric assays were measured on an EL340 microtiter reader (Bio-Tek
Instruments).

Nodulation assay. For competition assays, CE3 and CE367 cells were grown to
8.5 � 108 and 1.0 � 109 CFU/ml, respectively, in TY, and 102 to 104 CFU were
resuspended in 150 �l of plant nutrient solution (RBN) (36) and applied onto
seeds that were surface sterilized with ethanol and planted in RBN agar (36) in
250-ml Erlenmeyer flasks. Nodules were harvested 20 days after inoculation, and
the released bacteria were counted using the Miles and Misra drop-plate method
(44) by spotting extracts onto TY plates supplemented with streptomycin, nali-
dixic acid, and kanamycin to assess the relative abundance of mutant strain
CE367. The colonies were also tested with JIM28 to verify the Lpe� phenotype
of the recovered bacteria.

Nucleotide sequence accession number. The sequencing data has been sub-
mitted to GenBank as “lpe” under accession number AF333486.

RESULTS

SDS-PAGE, immunochemical, and structural analyses of
the LPS of strain CE367. The LPS of mutant strain CE367 did
not react with MAb JIM27, JIM28, or JIM29 after growth
under any conditions, including those that lead wild-type strain
CE3 to produce LPS that is a strong antigen for these anti-
bodies (Fig. 2). The LPS of this mutant also reacted weakly to
total rabbit antisera generated against the LPS of CE3 cells

FIG. 2. LPS antigenicity of mutant CE367 and wild-type CE3 after
various treatments. Purified LPS or LPS in cell lysates was subjected to
SDS-PAGE, electroblotted onto nitrocellulose, and probed with
MAbs. (A to C) The blot was probed with MAb JIM28 (immunoblot),
and the lower images show meta-periodate-silver staining of the resid-
ual components in the SDS-PAGE gel after blotting. Bands are labeled
LPS I (containing O chain) or LPS II (lacking the O chain) as estab-
lished in previous work (8). (A) R. etli CE3 and Tn5gus-mutant CE367
cells were grown in TY medium. Approximately equal numbers of cells
of each strain were lysed in SDS-containing buffer, and the lysates were
separated by SDS-PAGE. (B) R. etli CE3 cells were grown in TY
medium or TY supplemented with 50 �M cyanin (CE3�cyanin). The
cultured bacteria were then processed for SDS-PAGE as described
above. (C) The LPS of strain CE3 purified by Sepharose 4B chroma-
tography was incubated in SDS-PAGE buffer titrated to pH 7 or 12
with NaOH at room temperature for 1 h before analysis by SDS-PAGE
and immunoblotting. (D) The LPS I regions of four blots are shown
after being probed with MAb JIM26, JIM27, JIM28, or JIM29. Strains
CE3, CE367, and CE367, carrying plpeA234, were grown in TY me-
dium, and SDS lysates of the cells were processed as described above.
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grown in TY, indicating that the major epitopes of CE3 LPS
are missing from CE367 (data not shown). On the other hand,
the mutation had little effect on LPS migration in SDS-PAGE
gels (Fig. 2A) or binding to antibody JIM26 (Fig. 2D). Nor was
the proportion of LPS I and LPS II altered in the mutant,
indicating that the LPS population carried near-normal
amounts of O antigen. In terms of decreased reaction with
MAb JIM28, the effect of the mutation in strain CE367 is
similar to various treatments of wild-type strain CE3 and its
LPS, including growth at low pH or in anthocyanins (Fig. 2B)
and incubation of the isolated LPS at pH 12 (Fig. 2C). The
antigenic properties of the mutant LPS were stable to phenol-
water extraction, nuclease and protease treatment, and subse-
quent purification by Sepharose 4B chromatography.

The O chain of the purified CE367 LPS completely lacked
2,3,4-tri-O-methylfucose (TOM-Fuc) and its level of 2,3-di-O-
methylfucose (DOM-Fuc) was greatly decreased (Fig. 4). Oth-
erwise, the sugar composition of the mutant LPS was very
similar to that of CE3 LPS (Table 2). In the NMR spectra for
the CE3 and CE367 O chains (Fig. 5), the only obvious differ-
ence was the absence of several of the minor -OCH3 proton
resonances in the mutant spectrum. This result is consistent
with the absence of the TOM-Fuc and DOM-Fuc residues in
the mutant. Figure 6 shows the MALDI-TOF (MS) spectra for
CE3 and CE367 O-chain polysaccharides. In each spectrum,
there were two sets of peaks, corresponding to the intact O
chain and the O chain truncated by the loss of the Kdo residue
(18). Clearly, the mutant O chain was smaller and the mass
difference was consistent with the size of the TOM-Fuc resi-
due.

Figure 1 shows the structure of the CE3 O-chain polysac-
charide as reported by Forsberg et al. (18). In that structure,
the nonreducing end of the polysaccharide is capped with the

TOM-Fuc residue, which is linked directly to the glucuronyl
(GlcA) residue in the O-chain repeat unit. All of the above
data were consistent with the possibility that the CE367 O
chain lacks not only the methyl groups of TOM-Fuc but the
entire residue, in which case the O chain should end in a GlcA
residue. As a further test of this possibility, the CE367 and CE3
O chains were methylated using trideuteromethyliodide. Fig-
ure 7 shows a GC profile of the PMAAs obtained for both CE3
and CE367 O-chain polysaccharides. The glycosyl linkages ob-
served for the CE3 O chain were consistent with those previ-
ously reported (18). As expected, the CE3 O chain contained
endogenously methylated TOM-Fuc, as evidenced by the pres-
ence of 1,5-di-O-acetyl-2,3,4-tri-O-methylfucitol (Fig. 7, peak
2, with signature ions of m/z 118, 131, 162, and 175 in its mass
spectrum). Scanning for these ions confirmed that this PMAA
was completely missing in the O chain from CE367. Instead,
there was a concomitant increase in terminally linked GlcA, as
evidenced by the presence of 1,5,6-tri-O-acetyl-2,3,4-tri-O-deu-
teromethyl-6,6-dideuterioglucitol (m/z 121, 168, 194, and 241;
Fig. 7, peak 6). These data suggest that the CE367 O-chain
polysaccharide ends with a terminal GlcA residue at the non-
reducing end instead of the TOM-Fuc residue present in the
CE3 O chain.

The methylation data show that both O chains have the
same degree of variable endogenous methylation of the 3,4-
and 3-linked Fuc residues. For both O chains, the PMAA
derivatives from the 3-linked Fuc residue consisted of 92%
1,3,5-tri-O-acetyl-2,4-di-O-trideuteriomethylfucitol (m/z 121,
134, 240, and 253), and 8% 1,3,5-tri-O-acetyl-4-O-trideuterio-
methyl-2-O-methylfucitol (m/z 118, 134, 237, and 250). These
percentages were estimated from the m/z 121-to-118 ion inten-
sity ratio. In both O chains, approximately 37% of the 3,4-

TABLE 1. Bacterial strains and plasmids used in this study

Strain or plasmid Genotype or descriptiona Source

Strains
Escherichia coli

DH5� supE44 �lacU169 (
80lacZ�M15) hsdR17 recA1 endA1 gyrA96 thi-1
relA1

23

MT616 pro thi endA hsdR supE44 recA56, pRK2013Km::Tn9 17

Rhizobium etli
CE3 str-1 Lpe� Ndv� Fix� 36
CE367 str-1 lpeA367::Tn5-gusA1 Ndv� Fix� 40
CE426 str-1 mTn5SsgusA11 (inserted at unknown site) Lpe� Ndv� Fix� This work
CE430 str-1 �lpeA::Km Ndv� Fix� This work
CE431 str-1 ORF2::Km Ndv� Fix� This work
CE432 str-1 �(pJQ200::Km::�lpeA insert at XbaI site of lpe3) Lpe� Ndv� Fix� This work
CE445 str-1 lpeA::Km Ndv� Fix� This work
CE462 str-1 ORF3::Km Ndv� Fix� This work

Plasmids
pBluescript Cloning vector Stratagene
pRK404E1 incP, Tcr, with second EcoRI site of pRK404 (15) eliminated G. Roberts
pJQ200SK� Suicide plasmid, Gmr, sacB traJ lacZ� 37
pJQ200uCi Suicide plasmid, Gmr, sacB traJ lacZ� 37
pUC4K Contains Kmr cassette used for generation of lpe mutants Pharmacia
PCAM111 Smr Spr mTn5SsgusA11 (carried in pUT vector) 45
pSB504 pRK600�::Tn5-gusA7 39

a ::Km, insertion of Kanamycin resistance cassette from pUC4K; ORF2 and ORF3 are ORFs within lpe3 not shown to be required individually for Lpe�; Ndv� Fix�,
elicits normally developed nitrogen-fixing nodules on P. vulgaris.
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FIG. 3. lpe3 genetic locus. (A) Sites of mutations. Triangles represent insertions. The rectangle depicting the mutation in strain CE430 indicates
deleted lpe DNA (nt 416 to 675) as well as the site of the kanamycin resistance cassette insertion. Tn5, insertion of the Tn5gus transposon into
lpeA in strain CE367; km, insertion of a kanamycin resistance cassette at the indicated position; co, the cointegration of plasmid pJQ200SK� at
the indicated site. (B) Representation of the ORFs (large arrows) inferred from the DNA sequence of lpe3. (C) The solid bars represent the extents
of R. etli DNA cloned into broad-host-range plasmid pRK404E1 and used for complementation analyses. In the text, the name of each construct
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linked Fuc residue was found to be endogenously methylated
at O-2.

Locus of lpe. A 3,046-bp stretch of DNA designated lpe3, in
which the Tn5gus insertion of CE367 is situated, was cloned
from parent wild-type strain R. etli CE3 by using an inverse
PCR approach. Southern hybridization using lpe3 as a probe
against wild-type genomic DNA digested with HindIII, PstI, or
KpnI revealed a single 3-, 9-, or 14-kb DNA fragment, respec-
tively, indicating that lpe3 is probably present as a single-copy
locus. The 3-kb fragment, lpe3, was sufficient to restore the
reactivity of the LPS to antibodies JIM27, JIM28, and JIM29
when expressed from broad-host-range plasmid pRK404E1 in
CE367 (Fig. 2D, CE367/plpeA234).

Five hypothetical ORFs on the same DNA strand—ORF1,
lpeA, ORF2, ORF3, and ORF4—were inferred from the nu-
cleotide sequence of lpe3 (Fig. 3B). The Tn5gus insertion of
mutant CE367 was mapped to ORF lpeA by analyzing the
EcoRI fragment cloned from this mutant (Fig. 3C, fragment
E1-Tn5). Separately, two other mutations in lpeA (Fig. 3,
�lpeA430::Km and lpeA445::Km) were generated in the lpe3
DNA. Exchanging this mutated DNA with the wild-type locus
in CE3 resulted in mutants CE430 and CE445. Like CE367
LPS, CE430 and CE445 LPSs did not bind detectably to MAbs
JIM27, JIM28 and JIM29 (Fig. 3E, JIM28). Insertion of a
kanamycin resistance cassette in downstream ORF2 (lpe-431::
Km, resulting in strain CE431) also led to an LPS that was not
recognized by MAb JIM27, JIM28 (Fig. 3E), or JIM29. Mu-
tation lpe-462::Km in ORF3 (Fig. 3A) also effected loss in
antigenicity (tested only with JIM28; data not shown).

After chemical analysis indicated that the LPS of Lpe� mu-
tant strain CE367 was one residue smaller than the wild-type
LPS, the migration of the mutant LPSs on gel electrophoresis
was examined more closely. Occasionally, SDS-PAGE re-
vealed a slight difference between Lpe� mutants and wild-type
CE3 in LPS I migration after growth on TY (e.g., Fig. 3F). On
TDOC gels, also, a slight difference was noted, and after
growth at low pH, the difference in migration between mutant
and wild-type LPS I was more obvious (Fig. 8). Nevertheless,
as for the wild type (40), growth at low pH results in the mutant
LPS I migrating substantially slower, compared with its migra-
tion after growth in TY and other media at neutral pH (Fig. 8).

The sugar compositions of the phenol-water extracts (crude
LPS) of strain CE445 (lpeA::Km) and CE431 (ORF2::Km)
were essentially the same as that of strain CE367. In particular,
the crude LPS of all three mutant strains lacked both TOM-
Fuc and DOM-Fuc as revealed by alditol acetate analysis.

Complementation analysis to define genes within lpe locus.
To assess the minimal DNA sequence required for restoration
of the wild-type antigenicity in the lpe mutants, various extents

of the lpe3 DNA were cloned into expression vector
pRK404E1 and transferred into the mutants. The restoration
of wild-type antigenicity was then tested by immunoblottings of
colonies, and LPS was separated by SDS-PAGE. The results of
these experiments are tabulated on the right of Fig. 3C, with a
few examples documented in Fig. 3F.

Complementation of lpeA mutants supports the extent of the
lpeA ORF depicted in Fig. 3B. Deletion constructs that re-
moved the first 109 nt 3� of the first possible methionine start
codon for this ORF (e.g., Fig. 3, plpe�5�A2) were sufficient to
restore wild-type antigenicity to lpeA mutants CE367 and
CE430, but an in-frame deletion construct further downstream
(in plpe�A) did not (Fig. 3C and F). Thus, translation of lpeA
likely commences downstream of ORF1 from an inferred
Shine-Dalgarno site as indicated in Fig. 3, rather than within
ORF1 as predicted by the first possible start codon. The 3�
terminus of the lpeA ORF as shown in Fig. 3 also is consistent
with the complementation by these and the other deletion
constructs. Restoration of antigenicity required DNA with this
complete ORF, but not beyond the XbaI restriction site, when
the recipient carried any of the lpeA mutations (e.g., Fig. 3C

FIG. 4. GC-MS total ion chromatographs of the alditol acetates
derived from the O-chain polysaccharides from strains CE367 and
CE3. Peak 1, 2,3,4-tri-O-methylfucose; peak 2, 2,3-di-O-methylfucose;
peak 3, 2-O-methylfucose; peak 4, 3-O-methyl-6-deoxytalose; peak 5,
fucose; peak 6, mannose. The rest of the two chromatographs were
very similar, including the QuiNAc peak, which emerged at a much
later retention time (not shown). The very small signal at the position
of peak 1 in the case of CE367 did not have the MS of TOM-Fuc, and
by ion scanning of the chromatogram, TOM-Fuc was undetectable.

has the prefix plpe, which was omitted in this figure. The lac promoter of pRK404E1 is on the left unless indicated otherwise with an open arrow
on the right (on the plasmids with suffix “i”). To the right of each construct are tabulated the phenotypes conferred when this DNA was transferred
into CE430, CE445, or CE431. (�, �/�, and � indicate strong, weak, and no binding, respectively, with MAb JIM28. See panel F for examples.
Where there is no entry, complementation was not tested.) The solid arrowheads in the lower portion of the panel indicate the relative genomic
position of the PCR primers used to clone the genomic sequence from R. etli CE3. E1-Tn5 depicts the EcoRI fragment cloned from strain CE367
in the first step of cloning the lpe3 DNA. (D) Positions within the lpe3 sequence of restriction sites referred to in the text. (E) The effects of
mutations in lpeA (CE430, CE367, and CE445), the region between lpeA and ORF2 (CE432), or ORF2 (CE431). After growth of the strains in
TY medium, the LPS was extracted, separated by SDS-PAGE (below), blotted, and reacted with MAb JIM28 (above) as described in Fig 2. (F)
Examples of the complementation results tabulated in panel C. The LPS of strain CE3, strain CE367 (lane 2), or transconjugants of CE367 carrying
the indicated lpe3 deletion constructs was analyzed as described for panel E.
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and F, compare the effects of plpe�A234, plpeA234�1, plpeA,
plpe�A, plpeA�1, and plpe�A2).

The restoration of the wild-type antigenicity in Lpe� mutant
CE431 (ORF2::Km) required not only ORF2 but also DNA
that was 3� of ORF2. For example, plpeA234 complemented
lpe-431, whereas plpeA2 did not (Fig. 3C). As all complement-
ing sequences included ORF4 as well as ORF3, one or both of
these ORFs apparently were required for the production of the
wild-type antigenicity. This inference was supported by the
subsequent isolation of mutation lpe-462::Km in ORF3 (Fig.
3A) and the Lpe� phenotype conferred by this mutation.
Moreover, the complementation of CE431 by the larger
XbaI-HindIII fragment of lpe3 DNA was diminished by the
presence of mutation lpe-462::Km (data not shown).

Complete complementation of strains CE445 (mutated in
the 3� third of lpeA) or CE431 (mutated in ORF2) did not
depend on the orientation of the lpe3 genes relative to Plac of
pRK404E1. However, only sense-constructs with respect to
Plac yielded complete complementation of lpeA mutants
CE367 and CE430, which are mutated in the 5� third of lpeA.
This inference follows from comparing the extents of MAb
binding in lpeA mutant recipients after transfer of inverse con-
structs, such as plpeAi, with the results yielded by correspond-
ing sense constructs, such as plpeA (Fig. 3C and F).

Previously cloned R. etli CE3 lps regions � (pCOS109.11)
(10, 11), 	 (pCOS126) (10, 21), and � (pCOS309.1, pCOS309.2,
pCOS309.3, pCOS309.7, pCOS309.8) (10) did not complement
the lpe mutations of CE367 or CE431. Nor did lpe3 (plpeA234)
complement LPS mutant CE166, which carries a mutation
defining another lps region (35).

Sequence comparisons with previously identified ORFs. The
predicted polypeptide sequence of LpeA exhibits greatest sim-
ilarity to hypothetical, undefined proteins from Streptomyces
coelicolor, Mesorhizobium loti, Mycobacterium tuberculosis, and
Caulobacter crescentus, with the best match yielding 25% iden-
tity and 45% similarity over a stretch of 229 amino acids. The

closest matches to proteins of known function were with
FkbM, a 31-O-methyltransferase in Streptomyces spp. (31), and
NoeI (23% identity and 39% similarity over a stretch of 143
amino acids), which is required for 2-O-methylation of the
fucose residue of a lipooligosaccharide Nod factor of Rhizo-
bium sp. strain NGR234 (26). The N-terminal 13 amino acids
of LpeA are predicted to be periplasmic, followed by one
�-helical span through the inner membrane, and the remain-
der are predicted to be cytoplasmic.

ORF2, ORF3, and ORF4 have only very weak matches with
short stretches of proteins in the database. ORF2 may code for
an inner membrane protein with weak similarity to a rat car-
boxyl methyltransferase. In a stretch of 39 amino acids, 13 are
identical and 23 are similar. ORF3 most resembles a protein of
Xylella fastidiosa that is described as a member of a family of
S-adenosyl methionine-dependent methyltransferases involved
in cell division. In a stretch of 75 amino acids, 23 are identical
and 39 are similar. ORF3 and LpeA group to clusters of pu-
tative and demonstrated orthologous S-adenosyl methionine-
dependent methyltransferases by similarity analysis of ORFs
from all of the presently known complete genome sequences
(41).

Expression of lpeA::gusA fusion in CE367 after environmen-
tal cues that induce LPS modifications. Various growth con-
ditions affect the formation of the epitopes of antibodies
JIM27, JIM28, and JIM29. These include low pH (Fig. 9A),
the presence of anthocyanins (Fig. 2B), and the bacteroid state
(34, 40). Unlike an lpeA mutation, these conditions do not
affect the binding of all three antibodies equally. However, it
was conceivable that one or more environmental cues lead to

FIG. 5. Proton NMR spectra of O chains from strains CE3 and
CE367. The resonances were assigned as indicated.

TABLE 2. Sugar composition of CE367 lipopolysaccharide

Sugarb
Mole ratios found in straina

CE367 CE3

TOM-Fuc NDc 0.7d

DOM-Fuc Trace 0.1d

QuiN 0.8 0.8
2OMeFuc 0.9 0.9
3OMe6dTal 3.3 2.9
Fuc 3.4 3.1
GlcA 3.2 3.1
Man 1.8 1.7
Gal 1.0 1.0
GalA 2.8 2.8
Kdo 1.8 1.7
GlcN 0.9 0.9

a Entries are the molar ratios of the sugars normalized to 1.0 galactose.
b Underlined sugars are found only in the portion of the LPS operationally

designated as the O antigen (Fig. 1). QuiN, quinovosamine; 2OMeFuc, 2-O-
methylfucose; 3OMe6dTal, 3-O-methyl-6-deoxytalose; Fuc, fucose; GlcA, glucu-
ronic acid; Man, mannose; Gal, galactose; GalA, galacturonic acid; Kdo, 3-de-
oxy-D-manno-2-octulonic acid; GlcN, glucosamine.

c ND, none detected (0.01).
d The relative proportions of TOM-Fuc and DOM-Fuc varied among cell

batches, with DOM-Fuc often predominating. The values shown are from the
LPS preparations analyzed in Fig. 4 to 7.
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a weaker LPS antigen by reducing the transcriptional activity
across lpeA. One test of this hypothesis made use of the gusA
fusion of mutant CE367 (lpeA::Tn5gusA). Growth of CE367
under conditions that led to greatly decreased wild-type LPS
antigenicity to MAbs JIM28 and JIM29—including low pH
(YGM medium) or the presence of seed exudate or delphini-
din—did not affect transcription across lpeA, as monitored by
GUS activity (Fig. 9B and data not shown). The GUS activity
of CE367 was high in nodules, whereas binding of R. etli CE3
bacteroid LPS to MAb JIM28 and JIM29 is relatively low (40).
Thus, these data provide no support for the idea that the loss
of antigenicity triggered by the above environmental cues oc-
curs by transcriptional repression of lpeA. This conclusion is
supported by other experiments, in which the strong, constitu-

tive promoter Paph was cloned in a sense orientation at the 5�
end of lpe3 in plpeA234. When CE3 carried this construct and
was grown in the presence of seed exudate, delphinidin, or
YGM at pH 5, the LPS modifications still occurred (data not
shown).

Although these experiments demonstrated no repression of
lpeA under conditions known to induce loss of the JIM28
epitope, the data of Fig. 9B suggest that this gene may be
regulated in response to other factors. At both pH 7 and pH 5,
as the bacteria emerged from lag phase, the lpeA::Tn5gusA was
differentially induced relative to total protein and the consti-
tutive gusA of control strain CE426.

Minimal effect of lpeA on symbiosis with P. vulgaris. No
obvious difference in the abundance, location, and time of
emergence of nodules or bacteroid abundance was observed
when P. vulgaris was inoculated with strain CE3, CE367,
CE430, CE431, or CE432 alone. In experiments to test the
ability of CE367 to compete for nodule occupancy with the
wild type, no significant difference in the ratio of CFU inocu-

FIG. 6. Positive-mode MALDI-TOF (MS) spectra of O chains
from strains CE3 and CE367. The masses are as indicated. The ex-
pected mass difference conferred by the absence of the TOM-Fuc
residue is 188. The spacing between the two sets of peaks in each
spectrum (202 to 206 and 208 to 213) is consistent with the loss of a
Kdo residue (anhydro Kdo, 202 amu; Kdo, 220 amu). The range in
mass differences is likely due to the heterogeneity introduced due to
the presence of a mixture of molecules with Kdo, anhydro-Kdo, and no
Kdo. The spacing indicated by �14 may represent heterogeneity in
O-methylation (the difference between a hydroxyl and -OCH3 being 14
amu).

FIG. 7. GC-MS total ion chromatographs of the PMAAs derived
from the trideuteriomethyliodide methylation of the CE3 and CE367
O-chain polysaccharides. The PMAAs of the glycosyl residues are as
follows. Peak 1, terminally linked 3-O-methyl-6-deoxytalose; peak 2,
2,3,4-tri-O-methylfucose; peak 3, 3-linked fucose (and 3-linked 2-O-
methylfucose); peak 4, 3,4-linked fucose (and 3,4-linked 2-O-methyl-
fucose); peak 5, 3-linked mannose; peak 6, terminally linked glucu-
ronic acid; peak 6*, a small amount of terminally linked glucuronic
acid mixed in with some non-carbohydrate material; peak 7, 4-linked
glucuronic acid; peaks a, undermethylated 3-O-methyl-6-deoxytalosyl
residues; peaks b, undermethylated fucosyl residues; peak c, a small
amount of galacturonic acid presumably due to slight contamination of
the O antigen with core oligosaccharides; peaks �, non-carbohydrate
contaminants from the derivatization process.
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lated per CFU recovered from nodules was observed when
roots were inoculated with total CFU that varied from 102 to
greater than 104 and CE367-to-CE3 CFU ratios of 1:5, 1:1, and
5:1. When seeds were inoculated directly, only when the total
inoculum was below 103 CFU was any reproducible difference
observed. In a representative experiment, the CFU ratios of
CE3 to CE367 in the inocula were 20/80, 47/53, and 76/24, and
the CFU ratios of CE3 to CE367 recovered from the nodules
were 24/76, 63/37, and 84/16, respectively. The mean enrich-
ment in CE3 from inoculum to nodule occupant was 9% of the
total population. If the lpe genes had a beneficial effect on
nodulation efficiency of P. vulgaris, it was barely perceptible in
these experiments.

DISCUSSION

Sugar composition, methylation, NMR, and MALDI-TOF
(MS) analysis support the conclusion that the CE367 O-chain
polysaccharide differs from that of CE3 in one primary feature.
It is missing the TOM-Fuc residue and instead is terminated by
a GlcA residue. All other known structural features of the
wild-type LPS—including the sugars, their linkages, the vari-
able methylation at O-2 of the 3- and 3,4-linked Fuc residues,
the methyl esterification of GlcA, and the O-acetyl content—
appear to be identical in mutant CE367. It has been speculated
that the addition of the terminal TOM-Fuc residue might be an
essential part of the regulation of O-chain length because it
necessarily prevents the addition of further repeating units
(18). However, this appears not to be the case. The mutant has
the same remarkable uniformity in the number of repeating
units as that exhibited by the wild type. With regard to LPS
synthesis, it is also interesting that the absence of TOM-Fuc
and DOM-Fuc does not seem to decrease the relative number
of LPS molecules carrying the O chain (LPS I), whereas the
absence of 2-O-methylation of the internal Fuc residues in
strain CE395 leads to a 50% decrease in the relative amount of
LPS I (35).

One possible function of this residue might be as a structural
feature involved in liganding to another biological molecule.
An artificial illustration is in the binding of antibodies to the
LPS. The lpe3 locus, which is required for the presence of

TOM-Fuc in the O chain, is required also for maturation of the
R. etli CE3 O chain into a structure that is recognized by three
rat MAbs and the majority of the antibodies of polyclonal sera
developed in rabbits against the wild-type LPS. Previous stud-
ies have indicated that the epitopes recognized by MAbs
JIM27, JIM28, and JIM29 probably overlap but are not iden-
tical (40). Mutations in the lpe3 locus are unique in eliminating
the binding of all three of these antibodies. The TOM-Fuc
residue may be shared spatially among the epitopes, or it may
affect the structure of one or more of the epitopes by a con-
formation effect at a distance.

Of these three antibodies, JIM28 and its requirements for
binding have been studied the most extensively. The absence of
TOM-Fuc in CE367 is the third documented change in the O
chain that is correlated with decreased binding of this antibody.
Loss of reactivity after growth in anthocyanins and at low pH
is correlated with increased 2-O-methylation of the internal
fucose residues (5; J. Box and K. D. Noel, unpublished data),
and conversely, the absence of this 2-O-methylation of internal

FIG. 8. lpe locus and LPS I migration on TDOC PAGE at low pH.
Wild-type CE3, lpeA mutants CE367, CE430, and CE445, and Lpe
mutant CE431 (mutated in ORF2) cells were grown in YGM at pH 5.
CE3 and lpeA mutant CE430 cells also were grown in TY medium at
neutral pH for comparison. The cells were lysed in SDS buffer and
separated by TDOC PAGE. The portion of the stained gel containing
the LPS I bands is shown.

FIG. 9. Lack of effect of growth medium pH on expression of the
lpeA::Tn5gusA fusion of CE367. Cells of Tn5gus-mutant CE367 and
CE426, an Lpe� derivative of CE3 that constitutively expresses GUS,
were grown in YGM buffered at pH 5 or pH 7. (A) CE426 cells
growing at pH 5 were lysed in SDS at hourly intervals, and the ex-
tracted LPS was probed with JIM28 as described for Fig. 2. The time
at which each sample was harvested corresponds to the scale shown on
the x axis of panel B. (B) Chloroform extracts of the SDS lysates were
assayed for specific GUS activity. The unit on the y axis is nanomoles
of p-nitrophenol (min)�1 (milligrams of total protein)�1.
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fucoses in mutant strain CE395 (35) is correlated with in-
creased binding of the antibody (J. Box, V. J. Neumann, and
K. D. Noel, unpublished data). Treatment of the LPS at pH 12,
which should have eliminated both O-acetylation and the
methyl esterified to GlcA in the O chain (18), also eliminated
JIM28 binding (Fig. 2C). If this base-sensitive feature, the
TOM-Fuc residue, and the 2-hydroxyl of an internal fucose
residue were all in contact with the antibody, the binding site
would have spanned at least the last three residues of the O
chain (Fig. 1). X-ray crystallographic studies have documented
two types of structural interactions of antibodies with LPS
oligosaccharides (13, 43), burying of the terminal sugar residue
in a hydrophobic cavity at the antibody binding site (43), and
an extended “groove” in the antibody that interacts by hydro-
phobic stacking and hydrogen bonding with at least three sugar
residues in a branched repeating unit (12, 13). The hypothet-
ical interaction of the R. etli CE3 O chain might have features
in common with both of these models, with TOM-Fuc fitting
into a hydrophobic pocket of an extended groove on the anti-
body.

Although the sequences of the putative lpe3 ORFs did not
provide strong matches with sequences of known function in
the database, the weak matches were consistent with hypothet-
ical roles in the methylation of fucose. In concert with this role,
preliminary sequencing of DNA upstream of lpe3 has revealed
that ORF1 has greater sequence similarity than LpeA to NoeI
(the 2-O-methylase of fucose in Nod factors [26]). It also has
uncovered an ORF with great similarity to fucose synthetases
and another with sequence similarity to putative glycosyltrans-
ferases (J. Box, D. M. Duelli, and K. D. Noel, unpublished
data). Hence, lpe3 may be part of a larger locus that specifies
both the methylation of fucose and its addition to the end of
the O antigen. In regard to the specific biochemistry involved,
two findings from the LPS structural analysis should be noted.
One, not only the methyl groups of TOM-Fuc but also the
fucose itself are missing from CE367 LPS. Two, other fucose
residues and their variable 2-O-methylations are not affected.
If this locus is only involved in the 2,3,4-tri-O-methylation, the
absence of unmethylated terminal fucose would favor the idea
that methylation occurs at the level of GDP-Fuc, before trans-
fer to the O chain.

Genetic analysis suggests that the lpe3 genes are expressed in
at least two separate transcriptional units, one ending in lpeA
and the other including ORF2. At least one downstream gene
was required for complementation of the insertion mutation in
ORF2, perhaps because this insertion has polar effects on
expression of ORF3 or ORF4. Indeed, a kanamycin resistance
cassette that is believed to be very similar to the one used in
this study has strongly polar effects, regardless of the orienta-
tion of the insertion (3). Similarly, the insertion in ORF3
(lpe-462::Km) may be affecting the expression of ORF4. In any
case, it also remains to be seen whether the lpe genes are
expressed in R. etli as the polypeptides inferred from ORF
analysis. Hence, a conservative interpretation of the genetic
data is that at least two lpe genes are required for epitope
synthesis: lpeA and a gene downstream of ORF2.

The results of this study provide no support for the possi-
bility that CE3 responds to low pH or the presence of antho-
cyanins by repressing lpeA transcription. Such results do not
rule out the regulation of the lpe gene products in response to

such conditions, but structural analysis of the LPS produced
during growth at low pH lends no support to that idea either.
Although TOM-Fuc is absent, DOM-Fuc is present (5). On the
other hand, recent results indicate that one effect of growth in
seed exudate is the absence of TOM-Fuc and DOM-Fuc from
the synthesized O antigen (J. Box and K. D. Noel, unpublished
data). In that case, another gene responsible for adding the
terminal residue, such as the gene for the glycosyltransferase,
may be repressed or the effect may be posttranscriptional.

The biological functions of the TOM-Fuc residue and the
lpe3 locus remain obscure. Recent work in progress indicates
that another decoration of the R. etli CE3 LPS, the variable
2-O-methylation of the internal fucose residues of the O chain,
is relatively unimportant when the bacteria are inoculated on
roots but becomes important when the bacteria are inoculated
directly onto P. vulgaris seeds (J. Box and K. D. Noel, unpub-
lished data). The benefit in this latter case may derive from
coping with toxic compounds released from the seed. In this
connection, it may be significant that all of the known antigenic
modifications of the LPS in R. leguminosarum and R. etli are
induced by what could be considered stress conditions. The
results of this study indicate that the terminal residue of the O
antigen and its three O-methyl groups have little effect, if any,
on the symbiotic proficiency of this bacterium, even when the
bacteria are inoculated directly on the host seed. Indeed, if loss
of this structure is one of the LPS changes induced by the
plant, this result is as expected. The benefit of having the
TOM-Fuc residue under other conditions may be related to
surviving or thriving under conditions that have been common
during the evolution of this species but which thus far have not
been tested in the laboratory.
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