Skip to main content
. 2023 Feb 27;22(1):249–280. doi: 10.1007/s11157-023-09644-5

Table 4.

A summary of active biofiltration studies that detail the removal of various VOCs from static chambers

Study Year Pollutants Starting concentrations Plant species Substrate information Chamber volume Removal rate/efficiency Removal mechanism
(Wang and Zhang) 2011 Formaldehyde and toluene

17 ppb formaldehyde

and 2 ppb toluene

E.aureum 1.08 m2 54,400 L 50.1–98.7% Activated carbon and porous shale pebbles
(Wang et al.) 2014 Formaldehyde 7.5–10 ppm; and 250 ppm E.aureum 1.08 m2 5,100 L 39.5% (biofilter) Activated carbon pellets and pebbles
(Lee et al.) 2015 PM, formaldehyde, o – xylene, xylene, ethylbenzene, toluene, benzene Undisclosed D. amoena N/A Undisclosed

40% (PM10)

4% (PM2.5)

72% (xylene, ethylbenzene, toluene, and TVOC)

 ≥ 39% (benzene and HCHO)

Soil
(Irga, Paull, et al.) 2017 Particulate matter  ~ 700; g.m−3 (TSP) C. comosum 0.25 m2 216 L

53.5% (TSP)

53.51% (PM10)

48.21% (PM2.5)

Coconut husk
(Pettit et al.) 2017 PM

19.86 µg/m3

(PM0.3–0.5)

8.09 µg/m3 (PM5-10)

142.23 µg/m3 (TSP)

C. orchidastrum, N. glabra, F. lyrata, N.bostoniensis, N.duffii, S.amate, S.arboricola 0.25 m2 216 L

Max removal;

45.78% (PM0.3 – 0.5)

92.46% (PM5-10)

Coconut husk
(Ibrahim et al.) 2018 PM2.5, PM10 Undisclosed E. aureum 0.14 m2 216 L

Removal efficiency:

85% (TSP), 75.2% (PM2.5) and

71.9% PM10

CADR:

123 L.s−1 (TSP),

112.80 L. s−1 (PM2.5),

107.88 L. s−1 (PM10)

Kenaf fibre
(Torpy et al.) 2018 Methyl ethyl ketone 30 ppbv

P.scandens, P.’brazil’ scandens,

A.antiquum, and S.podophyllum

1.5 m2 30,000 L 56.60% Inorganic growing media
(Pettit et al.) 2018a PM, VOCs

 ~ 500 – 600 ppb (VOCs)

N/A (PM)

N.bostoniensis 0.25 m2 216 L

25.66% higher removal than soil treatment for benzene

 ~ 78% SPRE (ethyl acetate)

50:50 (coconut husk to granular activated carbon)
(Hung et al.) 2019 CO2, formaldehyde, PM10 Undisclosed N. exaltata 0.38 m2 1400 L

Removal capacity:

88.2% (PM10), 62.2% (PM2.5),

13.9% (CO2),

60.4% (formaldehyde)

Undisclosed
(Paull et al.) 2019 PM, VOCs, CO2 Undisclosed 6 Australian native species 0.25 m2 216 L

SPRE:

59.04% (Benzene),

Australian native plants are less effective for PM and CO2 removal, compared to common ornamental indoor plants

Coconut fibre-based substrate
(T Pettit et al.) 2019 PM, VOCs (from lavender oil)

300 ppbv (TVOC)

101.18 µg m−3 (TSP)

N.exaltata, P.obtusifolia, S.arborcola, S.wallisii 9m2 120,200 L

 ~ 28% over 20 min

(TVOC)

42.6% over 20 min (TSP)

Coconut husk
(Thomas Pettit et al.) 2019 Nitrogen dioxide, ozone

6.656 ppm (NO2)

7.280 ppm (O3)

S.wallisii

S.podophyllum

1.06 cm2

0.901 cm3

900 L

(flow reactor internal volume)

CADR (m3 ·h −1 ·m−3 of biofilter substrate)

661.32 and 95.04 (S.wallisii)

550 and 23

(S.podophyllum) for NO2 and O3

Coconut husk
(Elkamhawy and Jang) 2020 PM10, PM2.5 undisclosed Vegetation (grass or moss), engineering soil and porous material 7 m in height

In-situ

outdoor

78.5% reduction for PM2.5,

47% reduction for PM10

Vegetation soil, engineered soil, porous material
(Pettit et al.) 2020 NO2, O3 and PM2.5 5-min ambient averages of 178.6 ppb, 59.4 ppb and 774.7 µg/m3 (NO2, O3, and PM2.5

W.fruticosa,

M.parvifolium, S.anisophyllus

and N.domestica

5 × 20 m2 in-situ outdoor

SPRE (average);

63.17%, 38.79% and 24.84% (for NO2, O3, PM2.5

Coconut husk
(Siswanto et al.) 2020 Formaldehyde, acetone, benzene and xylene

120–150 ppm (formaldehyde)

127–145 ppm (acetone)

15–35 ppb

S.trifasciata

C.comosum

500 cm2 24 m3 80–90% (TVOC) 1:1 mix of soil (40:50% clay, 25–30% silt and 25–30% sand) and coconut coir
(Ibrahim et al.) 2021 PM2.5, PM10 and TVOC  ~ 18–25 mg.m−3 E.aureum 0.05 m3 240 L

Removal efficiencies:

54.5 ± 6.04% (PM2.5)

65.42 ± 9.27% (PM10)

46 ± 4.02% (VOC)

Kenaf fibre
(Suárez-Cáceres et al.) 2021 TVOC and n- hexane 5.69–7.51 mg.m−3 N.exaltata L 2 X 0.18 m2 128 L

Reduction rate:

0.17 and 0.1 mg.m−3 h

Mixture of coconut fibre

and peat

(Pettit et al.) 2021 NO2, O3 and PM2.5 N/A M.parvifolium, S.anisophyllus and N.domestica 5 × 20 m2 in-situ outdoor

SPRE (average);

71.5%, 28.1%, 22.1% (NO2, O3, PM2.5)

Coconut husk
(Abedi et al.) 2022 Formaldehyde 0.3 – 2 ppm

Epipremnum aureum (4 per modules), Syngonium

podophyllum (4 per modules), Chlorophytum comosum (4 per modules),

Peperomia obtusifolia (2 per modules), Pilea cadierei (1 per modules), and

Aglaonema treubii (1 per modules)

0.25 m2 50 L

SPRE range 47.05—99.99% in all systems

CADR 17.6 m3/h

Granular activated carbon, leca and commercial pot soil
(Morgan et al.) 2022 Environmental tobacco smoke (ETS), all size fractions of PM Full cigarette over 8 min (35 mL puff volume with 1 puff per min) S.wallisii 0.25 m2 216 L

SPRE; 43.26% TVOC

34.37% TSP

Coconut husk
(Permana et al.) 2022 PM1, PM2.5, PM10, formaldehyde and acetone from tobacco smoke

2.9–3.0 mg.m−3

(PM1 and PM2.5)

3.6–3.7 mg.m−3

(PM10)

123–148 mg.m−3

(Formaldehyde)

9.5–12 mg.m−3

(acetone)

S. trifasciata 0.05 cm3

24,000 L

(Testing room)

Removal of PMx over 8 h;

140–250 µg m−3 (PM1)

147–257 µg m−3 (PM2.5)

212–455 µg m−3 (PM10)

Removal efficiency over 24 h;

45–69% (formaldehyde)

31–61% (acetone)

40–65% (TVOC)

1:1 mix of soil and coconut coir

Table includes pollutant type, starting concentration, plant species used, size of the active botanical biofilter, room or chamber volume study was conducted in, the efficiency of the system for each pollutant and substrate information

TVOC total volatile organic compounds; CADR clean air delivery rate; SPRE single pass removal efficiency