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1  |  INTRODUC TION

Variable environmental conditions create a patchy distribution of 
food resources that animals must effectively navigate for survival 
(MacArthur & Pianka, 1966). The distribution and behavior of an-
imals therefore reflects fluctuations in their environment and the 
availability of their prey. If an animal is unable to obtain adequate 
energy stores through foraging, their ability to successfully produce 

offspring will also be diminished, potentially impacting population 
viability (Hirshfield & Tinkle, 1975; McNamara & Houston, 1986). 
The marine environment is especially dynamic, and mobile predators 
must therefore respond to shifting prey availability across spatial 
and temporal scales (Hyrenbach et al., 2000). These mobile marine 
animals are now faced with additional challenges as rising tempera-
tures due to global climate change are impacting marine ecosystems 
and organisms worldwide (Hazen et al., 2013; Hoegh- Guldberg & 
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Abstract
Animal behavior is motivated by the fundamental need to feed and reproduce, and 
these behaviors can be inferred from spatiotemporal variations in biological signals 
such as vocalizations. Yet, linking foraging and reproductive effort to environmental 
drivers can be challenging for wide- ranging predator species. Blue whales are acousti-
cally active marine predators that produce two distinct vocalizations: song and D calls. 
We	examined	environmental	correlates	of	 these	vocalizations	using	continuous	 re-
cordings from five hydrophones in the South Taranaki Bight region of Aotearoa New 
Zealand to investigate call behavior relative to ocean conditions and infer life history 
patterns. D calls were strongly correlated with oceanographic drivers of upwelling 
in spring and summer, indicating associations with foraging effort. In contrast, song 
displayed a highly seasonal pattern with peak intensity in fall, which aligned with the 
timing of conception inferred from whaling records. Finally, during a marine heatwave, 
reduced foraging (inferred from D calls) was followed by lower reproductive effort 
(inferred from song intensity).
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Bruno, 2010; Poloczanska et al., 2013; Silber et al., 2017; Sydeman 
et al., 2015). As global ocean temperatures increase, the frequency 
and intensity of anomalous warm water events known as marine 
heatwaves are on the rise as well (Frölicher et al., 2018; Oliver 
et al., 2018). Marine heatwaves can cause a range of ecological con-
sequences, including changes in water column structure, primary 
production, species composition, marine life distribution and health, 
and fisheries management such as closures and quota changes 
(Oliver et al., 2018). The effects of these environmental changes on 
marine species' ability to successfully feed and reproduce therefore 
have critical consequences for their survival.

The distribution and habitat use patterns of marine predators 
often reflect dynamic ecological processes by integrating multi-
ple trophic levels, and therefore their response to changing ocean 
conditions is tightly linked to shifts in their prey (Cotte et al., 2011; 
Croll et al., 1998; Nicol et al., 2000; Silber et al., 2017). Marine heat-
waves can reduce foraging success in marine predators, which can 
in turn decrease reproduction and population health. During the 
North Pacific marine heatwave in 2013– 2016, common murres died 
in record numbers and many breeding colonies of this fish- eating 
seabird	experienced	complete	reproductive	failure,	presumably	due	
to an ecosystem- wide scarcity of high- quality forage species (Piatt 
et al., 2020).

For far- ranging marine predators such as whales, measuring 
such changes is challenging. Yet a handful of recent studies have 
correlated decreased reproductive output with reduced foraging, 
by either measuring or modeling population demographic parame-
ters. Recent diminishing prey resources appear to be insufficient to 
support reproduction for North Atlantic right whales, likely contrib-
uting to low calving rates (Gavrilchuk et al., 2021). Southern right 
whale reproductive success is correlated with global climate indices 
and the density of their prey (Seyboth et al., 2016). Reduced calving 
rates of gray whales are associated with decreased sea ice cover on 
their Arctic foraging grounds (Perryman et al., 2021). Blue whales 
in the North Pacific faced with reduced foraging opportunities 
due to changing environmental conditions are predicted to suffer 
population- level consequences in terms of reproductive success 
(Pirotta et al., 2019).

While	evidence	exists	that	foraging	and	reproductive	success	are	
inextricably	linked	in	marine	predators	including	baleen	whales,	ex-
amining relationships between environmental variation and repro-
ductive output in terms of calf counts in subsequent years misses 
a key step: the more immediate influence of foraging success on 
subsequent reproductive effort within the same year. Monitoring 
biological signals can be an effective tool for overcoming this hur-
dle, particularly for sparsely distributed, wide- ranging species for 
which consistent observation across their range is difficult. Indeed, 
animals	 across	 taxonomic	 groups	 send	 and	 receive	 key	 informa-
tion via biological signals (Dall et al., 2005), including social, alarm, 
or food- associated signals (Clay et al., 2012; Torney et al., 2011). 
In the marine environment where light attenuates quickly, low- 
frequency sound propagates efficiently over long distances (Au & 
Hastings, 2008). Therefore, many marine species including baleen 

whales rely on sound as a primary sensory modality, and communi-
cation via acoustic signaling is central to behaviors related to forag-
ing and reproduction (Tyack & Clark, 2000).

Blue whales (Balaenoptera musculus) are a globally distributed, 
vocally active species. Here we focus on the pygmy blue whale 
(B. m. brevicauda) population that utilizes the South Taranaki Bight 
(STB) region between the North and South Islands of Aotearoa New 
Zealand (Barlow et al., 2018; Torres, 2013). This population is genet-
ically distinct, with an estimated population size of 718 individuals 
(95% CI = 279– 1926; Barlow et al., 2018). Unlike other blue whale 
populations with stereotypical migrations between low latitude 
breeding grounds and higher latitude feeding grounds, New Zealand 
blue whales rely on the same habitat in the STB throughout the year 
for multiple critical life history processes, including foraging, nurs-
ing and raising calves, and potentially breeding (Barlow et al., 2018, 
2022). Therefore, the STB region is an ideal study system for year- 
round monitoring of multiple life history processes in a single loca-
tion, uniquely enabling us to address challenging questions about 
the biology, ecology, and life history of a large marine vertebrate.

The STB region is home to a productive coastal upwelling sys-
tem, whereby a plume of cold water originating off the northwest 
of the South Island (Shirtcliffe et al., 1990) supports enhanced pri-
mary productivity (Chiswell et al., 2017) and dense aggregations of 
krill (Nyctiphanes australis; Bradford & Chapman, 1988; Bradford- 
Grieve et al., 1993) that sustain an important blue whale foraging 
ground (Barlow et al., 2020, 2021).	While	blue	whale	habitat	use	and	
distribution patterns have been well described for the STB region 
during spring and summer months (Barlow et al., 2020, 2021; Barlow 
& Torres, 2021; Torres et al., 2020), the annual and seasonal pat-
terns of blue whale occurrence in the area remain undescribed. The 
year- round presence of upwelling (Chiswell et al., 2017) indicates 
that blue whales may be able to forage in the STB in all seasons. 
The region was impacted by well- documented, severe regional ma-
rine heatwave conditions in the summers of 2016 and 2018, with 
anomalously high temperatures leading to reduced primary produc-
tivity and ecosystem- scale consequences (Chiswell & Sutton, 2020). 
During the summer 2016 marine heatwave, krill aggregation den-
sity was dramatically reduced compared to more typical upwelling 
conditions, the distribution of krill aggregations shifted further 
offshore, and blue whale distribution was similarly shifted (Barlow 
et al., 2020). However, the impact of these marine heatwaves on 
blue whale foraging and reproductive effort remains unknown.

Blue whales produce two main call types, each with different 
temporal occurrence patterns and hypothesized biological function. 
Song is composed of a limited number of sounds that are repeated 
to form a recognizable pattern (McDonald et al., 2006). These songs 
are	presumed	to	be	signals	produced	exclusively	by	males,	used	to	
mediate social interactions and maintain associations, and likely play 
a role in reproduction (Lewis et al., 2018; McDonald et al., 2006; 
Oleson, Calambokidis, et al., 2007). Across the global oceans, the 
occurrence patterns of blue whale songs vary seasonally (Barlow 
et al., 2022; Burtenshaw et al., 2004; Leroy et al., 2018, 2021; 
Letsheleha et al., 2022; McCauley et al., 2018; Samaran et al., 2013; 
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Stafford et al., 2001; Szesciorka et al., 2020). However, these songs 
are stereotyped and relatively stable, with characteristics that are 
distinct between acoustic populations (Leroy et al., 2021; McDonald 
et al., 2006). The second type of calls are downswept vocalizations 
known	as	D	calls,	which	are	produced	by	all	sexes	and	age	classes	
(Lewis et al., 2018; Oleson, Calambokidis, et al., 2007) and common 
across populations. The function of D calls is less precisely under-
stood, but they are a hypothesized social call, often produced in con-
junction with foraging behavior (Cade et al., 2021; Lewis et al., 2018; 
Oleson, Calambokidis, et al., 2007). Further support for D calls as 
a signal of foraging comes from their relationship with upwelling- 
driven productivity that supports krill availability, the primary prey 
of blue whales (Barlow et al., 2021; Cade et al., 2021; Szesciorka 
et al., 2020). Studying the spatial and temporal patterns in calling rel-
ative to environmental conditions can foster insight into blue whale 
ecology and important life history functions (Cade et al., 2021; 
Oestreich et al., 2022; Szesciorka et al., 2020).

In this study, we analyze the annual cycles and environmental 
correlates of both blue whale call types detected in continuous re-
cordings	in	the	STB	region	to	examine	call	function	and	gain	insight	
into underlying life history patterns (i.e., timing of foraging and re-
productive	effort).	We	anticipate	different	seasonal	patterns	in	song	
and D calls, with song showing a clear seasonal cycle in intensity 
that is less correlated with environmental conditions and more tem-
porally	stable.	We	expect	D	calls	to	occur	more	often	in	the	spring	
and summer during periods of enhanced productivity that support 
prey	aggregations.	If	D	calls	indeed	indicate	foraging	effort,	we	ex-
pect lower D call activity during marine heatwaves when upwelling 
is reduced. Finally, we predict a positive correlation between the 
number of D call detections and subsequent song intensity, under 

the premise that more foraging enables more reproductive effort. 
Therefore, we anticipate that song will be reduced following ma-
rine heatwave events when blue whales were not able to obtain 
adequate	 energetic	 stores	 from	 feeding.	 In	 summary,	we	 examine	
acoustic signals of blue whales in the STB to describe year- round oc-
currence and behavioral patterns, assess correlations with variable 
ocean	conditions,	explore	relationships	between	foraging	and	repro-
ductive effort, and ultimately shed light on potential consequences 
of climate change for the viability of blue whale populations.

2  |  METHODS

2.1  |  Detection and classification of blue whale 
calls

Acoustic data were recorded using five marine autonomous record-
ing units (MARUs; Calupca et al., 2000) deployed in the STB region 
at	depths	ranging	from	66	to	278 m	(Figure 1). The hydrophones had 
a flat frequency response (±2	dB)	in	the	15–	585 Hz	frequency	band,	
a	total	sensitivity	of	−145.5	dB,	and	recorded	continuously	at	a	2	kHz	
sampling rate with a high- pass filter at 10 Hz and a low- pass filter at 
800 Hz.	Acoustic	data	were	collected	continuously	from	23	January	
2016	to	3	February	2018,	with	brief	gaps	in	recording	approximately	
every	six	months	for	data	retrieval	and	hydrophone	refurbishment	
(Figure 2).

Blue whale vocalizations were identified based on their unique 
spectral characteristics (Figure 1). All recordings were analyzed 
using Raven Pro, versions 1.6 and 2.0 (Center for Conservation 
Bioacoustics, 2019). Spectrogram template correlation detectors 

F I G U R E  1 Study	area	map	and	blue	whale	call	spectrograms.	Left	panel:	map	of	the	study	area	in	the	South	Taranaki	Bight	region,	with	
hydrophone	(marine	autonomous	recording	unit;	MARU)	locations	denoted	by	the	stars.	Gray	lines	show	bathymetry	contours	at	50 m	
depth	increments,	from	0	to	500 m.	Location	of	the	study	area	within	New	Zealand	is	indicated	by	the	inset	map.	Right	panels:	example	
spectrograms	of	the	two	blue	whale	call	types	examined:	the	New	Zealand	song	recorded	on	31	May	2016	(top)	and	D	calls	recorded	20	
September 2016 (bottom). Spectrograms are configured with a 3072 point fast Fourier transform, Hann window, 50% overlap.
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(Mellinger & Clark, 2000) were implemented to automatically iden-
tify putative instances of the New Zealand song and D calls in the 
recordings. Five templates were selected for song, and 13 templates 
were used for D calls to adequately capture the greater variability 
among calls. Putative call detections were compared against the 
template with the highest spectrogram correlation score, and de-
tection thresholds of 0.75 for song and 0.80 for D calls were ap-
plied after testing a range of possible threshold values. Detector 
performance	was	evaluated	by	comparison	 to	a	subset	of	26 days,	
representing one randomly selected day per month across the full 
recording period. This ground- truth data set was reviewed sepa-
rately for each call type, and vocalizations were manually annotated. 
For song, recordings were reviewed in consecutive 15- min spectro-
grams	within	the	0–	50 Hz	frequency	bandwidth	(3000	sample	Hann	
window; 50% overlap). For D calls, recordings were reviewed in 5- 
min	 spectrograms	 in	 the	0–	150 Hz	bandwidth	 (2048	 sample	Hann	
Window,	50%	overlap).	Automatic	detections	were	considered	true	
positives if they overlapped with a manually annotated call in the 
ground- truth data set by at least 50% in time and frequency. Three 
evaluation metrics were calculated using custom MATLAB scripts: 
precision represents the proportion of detections that were true pos-
itives, recall is the proportion of true calls that were detected, and 
the false alarm rate is computed as the number of false positives per 
hour (Mellinger et al., 2016).

After running the song detector on the full data set, detection 
events were manually reviewed by an analyst at an hourly resolu-
tion, ensuring that false positives were not included in the analysis. 
In addition to the hourly presence or absence of the New Zealand 
song, a separate metric was computed to measure the intensity of 
song	activity.	The	song	intensity	 index	 is	calculated	as	the	ratio	of	
the	energy	in	the	call	frequency	bandwidth	(23–	24 Hz)	relative	to	the	
energy	in	selected	background	frequencies	(11,	39 Hz),	and	a	similar	
approach has been effectively used to describe behavior and phe-
nology of blue whales from changes in this acoustic signal (Oestreich 
et al., 2020;	Širović	et	al.,	2009).	Song	intensity	index	was	summa-
rized on a daily scale for further analysis. To illustrate the annual 
cycle	of	song	in	the	region,	the	mean	song	intensity	index	per	day	of	
the year was taken across all five hydrophone locations and the full 
recording period.

The spectrogram template correlation detector for D calls prior-
itized minimizing missed detections, which meant many false posi-
tives were retained by the detector and needed to be removed from 
the	data	set	prior	to	further	analysis.	We	therefore	created	an	auto-
matic classification algorithm to classify putative D call detections 
as either true D calls or false positives. Putative D call detections 
for	the	period	between	January	2016	and	March	2017	were	man-
ually reviewed, and false positives were identified. Subsequently, 
a	 suite	 of	 spectral	 measurements	 (Appendix	A)	 was	 extracted	 in	
Raven for all call detections identified by the detector and manu-
ally classified as true D calls or false positives and used as a training 
library to develop the automatic classification algorithm. A random 
forest model was fitted to the data using the “ranger” package in R 
(Wright	&	Ziegler,	2017), with the classification as either true D calls 

or false positives as the response variable and the spectral features 
extracted	in	Raven	as	the	predictors.	The	number	of	trees	used	to	
grow the random forest model (ntree) was set to 100, and the num-
ber of variables sampled as candidates at each split (mtry) was set 
to 7. The training library was used to develop and evaluate whether 
the random forest model could reliably be used for automated clas-
sification by training the random forest model on a subset of 75% of 
the data and predicting to the withheld 25%. The misclassification 
rate, false- negative rate, true- positive rate, false- positive rate, and 
true- negative rate were calculated (Table A1); this process was re-
peated over 100 bootstrap iterations, and the mean and standard 
deviation were calculated for the evaluation metrics across all boot-
strap runs. To assess whether using the automatic classifier would 
impact ecological inference from blue whale calling patterns, tem-
poral occurrence patterns were compared between calls identified 
via the manual validation and automated classification methods for 
the	period	between	January	2016	and	March	2017.	This	comparison	
was evaluated visually and using Pearson's correlation coefficient. 
Subsequently, the automatic classifier was run on the full data set, 
and the number of hours per day with D calls present and total D 
calls per day were computed for the entire recording period. To il-
lustrate the annual cycle of D calls in the region, the mean D call 
detections per day of the year were taken across all five hydrophone 
locations and the full recording period.

2.2  |  Call detection range estimation

Sound propagation models were generated to estimate the listening 
range of each hydrophone unit using the range- dependent acous-
tic model (RAM; Collins, 1993). RAM is well suited for calculating 
detection areas in low- frequency soundscapes and shallow water 
environments like the STB and does so by simulating call propaga-
tion from a whale to a hydrophone under the conditions at the time. 
The model incorporates numerous soundscape features that impact 
the detection range for calling blue whales, including sound speed 
profile through the water column, depth of the hydrophone receiver, 
seafloor substrate characteristics, depth of the calling whale, the 
source level and frequency of the vocalizations of interest, and am-
bient noise.

Sound	 speed	 profiles	 were	 based	 on	 the	 World	 Ocean	 Atlas	
(WOA2009),	 bathymetry	 was	 extracted	 at	 a	 1-	arc	 minute	 res-
olution from the ETOPO1 data set (Amante & Eakins, 2009), 
and geo- acoustic parameters for fine sand (Bostock et al., 2019; 
Wentworth,	1922; grain size phi = 3) were used in the propagation 
model.	The	depth	of	the	calling	whale	was	set	to	25 m.	The	source	
levels and dominant frequency band differ between song and D 
calls,	and	therefore	can	influence	detection	area.	While	source	levels	
have not empirically been estimated for blue whales in New Zealand, 
we obtained these parameters from the literature for application in 
the	models.	For	song,	the	source	level	of	179 dB	re	1	μPa at 1 m es-
timated for pygmy blue whales from the Australian population was 
used	as	a	proxy	(Gavrilov	et	al.,	2011), and the dominant frequency 
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band	 used	was	 17–	50 Hz.	 For	D	 calls,	 the	 source	 level	was	 set	 to	
174 dB	re	1	μPa at 1 m (Samaran et al., 2010), and the frequency band 
was	20–	100 Hz.	Hourly	ambient	noise	levels	were	considered	the	1st	
percentile levels of the dominant frequency band for each call type. 
Calls were simulated across a grid of points at 1- arc minute resolu-
tion (~2.25 km2) at varying distances surrounding each hydrophone, 
and detection area was estimated given the ambient noise recorded 
at the hydrophone. To summarize the modeled detection distances, 
we calculated the mean daily detection area for each call type at 
each hydrophone across the entire recording period.

2.3  |  Environmental data

Environmental variables were chosen based on prior investigations 
into the oceanographic properties of regional upwelling processes 
and functional drivers of blue whale foraging opportunities in the STB 
(Barlow et al., 2020, 2021; Barlow & Torres, 2021). Daily SST and SST 
anomaly measurements were acquired from the multiscale ultrahigh 
resolution (MUR) satellite at a 0.01- degree spatial resolution and daily 
temporal scale. Net primary productivity of carbon (NPP) was obtained 
from the Moderate Resolution Imaging Spectroradiometer (MODIS) 
satellite at a 0.0125- degree spatial resolution and 8- day composite to 
minimize the impact of cloud cover. All satellite data were accessed via 
the ERDDAP server (https://coast watch.pfeg.noaa.gov/erddap) using 
the R package “rerddapXtracto” (Mendelssohn, 2019). For each day 
with	acoustic	recordings,	SST,	SST	anomaly,	and	NPP	were	extracted	
within the calculated detection radius surrounding each hydrophone, 
separately for song and D calls. The mean values were then computed 
within the detection area to summarize the environmental conditions 
within the possible range of detection for vocalizing blue whales over 
the full data set. NPP measurements were log- transformed for all sub-
sequent analyses to minimize skew.

2.4  |  Whaling data

Whaling	 records	 were	 accessed	 from	 the	 International	 Whaling	
Commission individual catch database (Allison, 2020).	 Extracted	
data (where available) included lengths of fetuses from pregnant 
blue whales that were killed, along with the date and location of 
the catch. Based on length frequencies at different positions, data 
were separated between Antarctic blue whales (B. m. intermedia) and 
pygmy blue whales (B. m. brevicauda). Catches north of the follow-
ing latitudes and south of the equator were assumed to be pygmy 
blue	whales:	20–	30° E	(46°S),	30–	70°E	(52°S),	70–	80°E	(53°S),	and	
80°E– 180° (52°S). All catches longer than 24.2 m were assigned 
to Antarctic blue whales and catches south of this pygmy region 
but specifically recorded as “pygmy” were assigned to pygmy blue 
whales. Catches in the Atlantic Ocean (west of 20°E) were classi-
fied as Antarctic, while those off the west coast of South America 
were	excluded	as	they	belong	to	the	Chilean	blue	whale	population	
(Branch et al., 2021; Figure A6).

For Antarctic blue whales, a wide variety of recording methods 
were used by different nations, and most lengths were recorded in 
feet and rounded to the nearest foot. For pygmy blue whales, nearly 
all	pygmy	blue	whale	catches	were	taken	either	by	Japan	(1959/60–	
1963/64) or the Soviet Union (1962/63– 1971/72), and lengths were 
recorded in metric units, mostly to the nearest cm. Note that for the 
Soviet data, information has been reconstructed from original log-
books	for	nearly	all	expeditions	and	replaces	the	original	falsified	re-
cords	that	were	submitted	to	the	International	Whaling	Commission	
from 1949/50 (Yablokov, 1994; Zemsky et al., 1995).

The pygmy data in the New Zealand region (145°E– 180°, 32– 
50°S) were assessed to determine whether these blue whales fol-
lowed similar seasonal patterns of fetal growth as other blue whales 
in the Southern Hemisphere. All catches in this region come from 
Soviet	expeditions	and	were	caught	while	the	Soviet	fleets	were	re-
turning from the Antarctic during February– May in the years 1964– 
1968 and 1973. The Soviet fleets in the database are listed under 
the following codes: 6300 (Slava), 6442 and 6445 (both Sovetskaya 
Ukraina), and 6490 (Sovetskaya Rossia).

The fetal length measurements throughout the year were then 
used to infer the timing of births, based on the time at which fetal 
length	measurements	reach	their	maximum.	Subsequently,	timing	of	
births was used to infer timing of conception, based on prior analy-
ses of the catch records that concluded a gestation period of about 
11 months	 for	 Antarctic	 blue	 whales	 (Laws,	 1959; Mackintosh & 
Wheeler,	1929).

2.5  |  Statistical analyses

We	 constructed	models	 to	 examine	 the	 functional	 relationships	
between calling activity and environmental correlates, for both 
song and D calls across the full recording period. Boosted regres-
sion trees (BRT) are a machine learning multivariate modeling 
approach that combines decision tree methods with a boosting 
algorithm that iteratively optimizes model performance by com-
bining a large number of decision trees (Elith et al., 2008). This 
approach is well suited for predicting distribution patterns, de-
scribing	nonlinear	 relationships	and	can	handle	complex	 interac-
tions between predictors. Furthermore, BRTs minimize the effect 
of temporal autocorrelation by randomly selecting a proportion 
of the data (called the bag fraction) at each iteration, and data 
are further split during cross- validation to evaluate model perfor-
mance. Therefore, the probability of a contiguous timeseries being 
maintained is quite small. Models were fitted separately for each 
of the five hydrophones, for two reasons: first, the detection areas 
between hydrophones occasionally overlap which could lead to 
overrepresentation of call activity if combined, and second, a main 
objective	was	to	examine	how	relationships	between	calling	and	
environmental drivers varies between locations, therefore com-
bining all hydrophones into a single model would mask any spatial 
heterogeneity in the functional relationships among hydrophone 
locations.

https://coastwatch.pfeg.noaa.gov/erddap
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All BRT models were implemented using the “gbm” (Greenwell 
et al., 2019) and “dismo” (Hijmans et al., 2017) packages in R. For 
song,	 the	 response	 variable	 is	 the	 daily	 song	 intensity	 index,	 fit	
with a Gaussian distribution. For D calls, the response variable is 
number of D calls per day, fit with a Poisson distribution, which is 
suitable for count data. Full models were first fit for each call type 
across all seasons at each hydrophone, and subsequently models 
were fit for within- season peaks for each call type, at each hydro-
phone. Dynamic predictor variables included SST, SST anomaly, and 
log(NPP).	Additionally,	month	was	included	to	examine	seasonal	ef-
fects, and detection area was included to account for variation in the 
distance over which calls could be detected. All models were fit with 
a	learning	rate	of	0.005,	a	bag	fraction	of	0.75,	and	a	tree	complexity	
of 2. Performance was assessed with two metrics, the cross vali-
dated	percent	 deviance	 explained	 (cv.dev)	 and	 the	 cross-	validated	
correlation (cv.cor). The influence of predictor variables on calling 
activity was assessed in two ways, through the percent contribution 
in the BRT model and using partial dependence plots to visualize 
each functional relationship between predictor and response while 
all other predictors are held at their mean value, implemented using 
the “pdp” package in R (Greenwell, 2017).

The summers of 2016 and 2018 were characterized by well- 
documented marine heatwaves leading to dramatically increased 
temperatures and reduced primary productivity throughout the STB 
region, whereas summer 2017 consisted of more typical upwelling 
conditions (Barlow et al., 2020; Chiswell & Sutton, 2020). Therefore, 
key upwelling- related metrics and D calls were compared for just 
the	 summer	months	 (January–	February)	between	 the	 three	years.	
Linear	mixed	models	were	used	to	estimate	the	effect	of	year	while	
accounting for differences between hydrophone locations, with 
separate models for each of the three metrics of interest as the re-
sponse variable: SST, NPP, and D call detections. Subsequently, post 
hoc	tests	with	a	Tukey	correction	were	run	to	examine	pairwise	com-
parisons between years for each metric.

Finally,	we	fit	a	linear	mixed	model	to	examine	the	relationship	
between D call activity during the summer and song intensity in the 
subsequent fall, accounting for differences between hydrophone 
locations as a random factor. Calling was averaged by hydrophone, 
for each season in each year. This analysis covered two years, the 
marine heatwave year 2016 and the more typical upwelling year in 
2017.

3  |  RESULTS

3.1  |  Call detection and classification

Spectrogram correlation detectors implemented for automatic call 
detection showed higher performance for the more stereotyped 
song than for the more variable D call vocalizations. The detectors 
yielded a precision score of 0.81 for song and 0.51 for D calls, a re-
call score of 0.96 for song and 0.81 for D calls, and a false alarm rate 
of 8.18 false positives per hour for song and 13.22 false positives 

per hour for D calls. For D calls, the detector identified 2.57 mil-
lion putative calls in the full recording data set. Manual validation 
of	 1.33	million	 detection	 events	 during	 the	 period	 of	 January	 23,	
2016– March 31, 2017 contained 51.5% true D calls and 49.5% 
false positives. The automatic classifier calibrated using this manual 
validation data set successfully minimized false negatives and false 
positives	while	maximizing	 true	 negatives	 and	 true	 positives	 from	
the putative D call detections (Table A1). Cross- correlation analysis 
revealed a highly significant relationship between the number of D 
calls from the manual validation and automatic classifier (Pearson's 
correlation coefficient = .991, p < 2.2 × 10−16; Figure A1). The tem-
poral occurrence patterns visualized using the D calls identified by 
the automatic classifier were nearly indistinguishable from the pat-
terns revealed by the manually validated calls (Figures A2 and A3). 
These comparisons indicate that the fully automated methods for 
detection and classification of D calls provide a robust approach to 
examine	blue	whale	occurrence	patterns	 and	ecological	 drivers	of	
calling behavior (Figure 2).

3.2  |  Spatial and temporal calling patterns

Both blue whale song and D calls were present across the entire re-
cording period, with blue whale vocalizations detected nearly every 
single day (Figure 2).	While	 the	hourly	presence	of	both	song	and	
D calls reveals year- round presence in the region, the seasonal pat-
terns in the intensity of calling throughout the year differ by call 
type.	Song	intensity	generally	peaked	between	April	and	June,	with	
slightly more song activity at the two offshore hydrophone loca-
tions (MARU1 and MARU5) where the peak in song intensity begins 
earlier	 and	extends	 later	 than	 at	 the	hydrophones	within	 the	STB	
(MARU2, MARU3, and MARU4). The period between September 
and December represents the lowest song intensity across all hy-
drophones, although song is still present on most days during that 
time (Figure 2).

D calls occurred in high numbers throughout the year, with high 
hourly presence and over 3000 calls detected per day at multiple 
hydrophones in some instances (Figure 2). The offshore hydro-
phones (MARU1 and MARU5) showed a peak in D calls in the spring 
through	early	summer,	between	October	2016	and	January	2017.	A	
similar springtime peak was evident across all five hydrophones in 
2017– 2018. A secondary fall peak in detections occurred between 
April and May across all five hydrophones but was stronger in 2017 
than	in	2016.	While	song	showed	a	more	cyclical	pattern	in	intensity	
throughout the year, D call detections showed multiple large and 
small peaks within each year.

The average annual cycle of blue whale vocalizations revealed 
three seasonal peaks in calling activity, representing both con-
cordance and divergence between the two call types (Figure 3). 
Song	has	a	single	annual	peak	 in	 the	 fall,	between	April	and	June.	
D	 calls	 have	 a	 strong	 spring	peak,	 between	October	 and	 January.	
Subsequently, D calls have a second peak in fall that overlaps with 
the fall song peak, though in a narrower temporal window between 
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F I G U R E  3 Annual	cycle	of	calling	
activity. Average annual cycle in the song 
intensity	index	(dark	blue)	and	D	calls	
per day of the year, computed across 
all hydrophone locations and the entire 
recording period.

F I G U R E  2 Occurrence	patterns	of	song	and	D	calls.	Left	panels:	number	of	hours	per	day	with	song	detected	(light	blue	bars)	and	daily	
song	intensity	index	(dark	blue	lines)	for	each	hydrophone	(MARU	1–	5)	over	the	entire	recording	period.	Right	panels:	number	of	hours	per	
day with D calls detected (light green bars) and number of D call detections per day (dark green lines) for each hydrophone over the entire 
recording period. The hydrophone is listed at the top of each panel, corresponding to map locations in Figure 1. Periods with light gray 
shading indicate gaps in recording due to hydrophone refurbishment.
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April	and	May.	These	periods	of	elevated	calling	activity	were	exam-
ined in the within- peak models.

3.3  |  Environmental correlates of calling

Boosted regression tree (BRT) models performed well overall, with 
some variability among models fit to different call types, seasons, 
and hydrophones (Table 1). The models with the greatest perfor-
mance	measured	by	cross-	validated	percent	deviance	explained	(cv.
dev) and cross- validated correlation (cv.cor) were those fit to the full 
recording	 period,	 for	 song	 and	D	 calls.	Within-	peak	models	 were	
fitted for each period with the highest calling activity of each call 
type and showed more nuanced differences among environmental 
drivers at different times of the year (Table 2, Figure 4). Across all 
within- peak models for each hydrophone location, model perfor-
mance dropped with the removal of month as a predictor (Table 1), 
but the patterns revealed by functional relationships within the dif-
ferent peaks yield insight into the importance of different environ-
mental correlates seasonally.

Song intensity showed the strongest relationship with month, 
which	 contributed	59%–	77%	of	 the	 explained	deviance	 in	 the	 full	
models (Table 2). As was revealed by the seasonal calling plots 
(Figure 3), the functional relationship between song intensity and 
month in the BRT models shows a peak in song intensity between 
April–	June	(Figure	A4). In contrast, all environmental predictors had 
relatively low contributions in the full models for song (Table 2). 
Within	the	fall	peak,	song	intensity	corresponds	to	an	optimal	SST	
range of 16– 18°C, lower SST anomalies, and shows an inconsistent 
relationship with log(NPP) between the hydrophones (Figure 4). 
There was an increase in song intensity with increased song detec-
tion area across all hydrophones.

Environmental correlates had stronger contribution to the full 
models for D calls than song (Table 2). Month still had a strong influ-
ence in the full models, with D call detections at their highest in the 
spring and fall. The number of D call detections increased with the 
detection area for all hydrophones (Table 2; Figure A5). Model per-
formance was higher for D calls in spring than in fall, and functional 
relationships differed between the two seasons (Table 1, Figure 4). 
In spring, increased D calls are associated with lower SST, positive 
SST anomalies, and increase with increasing log(NPP) before level-
ing off or even decreasing at very high values. In the fall, increased 
D calls are associated with higher log(NPP) values and lower SST 
anomalies. Furthermore, functional relationships differed more 
strongly	between	hydrophone	locations	in	fall	than	in	spring.	For	ex-
ample, D calls in the fall showed a negative relationship with increas-
ing SST at the offshore hydrophones (MARU1 and MARU5), whereas 
MARU2, MARU3, and MARU4 showed an optimal SST range of 16– 
18°C, much like what was observed for the fall peak in song. Overall, 
the functional response curves for D calls in the fall more closely 
resemble the functional relationships for song in fall than they do D 
calls in spring (Figure 4).

3.4  |  Call function and life history patterns

Song	 intensity	 was	 at	 its	 highest	 between	 April	 July,	 with	 the	
peak	taking	place	in	May–	June	(Figure 5).	Examination	of	whaling	
catch records from the New Zealand region revealed alignment 
with the overall pattern of fetal length measurements for pygmy 

TA B L E  1 Boosted	regression	tree	model	performance.

Hydrophone n trees cv.Dev cv.Cor

Song (full)

MARU1 3300 0.794 0.893

MARU2 5850 0.852 0.923

MARU3 5900 0.789 0.885

MARU4 3050 0.831 0.914

MARU5 4650 0.779 0.883

D calls (full)

MARU1 6200 0.708 0.837

MARU2 4450 0.701 0.827

MARU3 6100 0.733 0.847

MARU4 4300 0.666 0.807

MARU5 5500 0.697 0.850

D calls (spring)

MARU1 3750 0.726 0.850

MARU2 2600 0.236 0.467

MARU3 4050 0.708 0.836

MARU4 2150 0.605 0.832

MARU5 4100 0.673 0.809

D calls (fall)

MARU1 1000 0.466 0.630

MARU2 1800 0.623 0.806

MARU3 2700 0.509 0.734

MARU4 1250 0.363 0.572

MARU5 2150 0.359 0.634

Song (fall)

MARU1 2750 0.522 0.733

MARU2 2550 0.679 0.803

MARU3 2350 0.679 0.822

MARU4 2150 0.481 0.672

MARU5 2850 0.266 0.537

Note: Evaluation of the boosted regression tree models fitted for each 
call type and hydrophone location. All models were fit with a learning 
rate	of	0.005,	a	bag	fraction	of	0.75,	and	a	tree	complexity	of	2.	For	
song,	the	response	variable	is	the	daily	song	intensity	index,	fit	with	a	
Gaussian distribution. For D calls, the response variable is number of D 
calls per day, fit with a Poisson distribution, which is suitable for count 
data. Full models were first fit for each call type across all seasons at 
each hydrophone, and subsequently models were fit for within- season 
peaks for each call type, at each hydrophone. Performance is assessed 
with	two	metrics,	the	cross	validated	percent	deviance	explained	(cv.
dev) and the cross- validated correlation (cv.cor).
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and Antarctic blue whales caught in the Southern Hemisphere 
(Figure 5). Calving presumably takes place around, or shortly 
after,	 the	time	when	fetal	 lengths	are	at	 their	maximum,	 indicat-
ing that births occur in April– May. Based on this timing, we infer 
that	mating	 likely	 happens	 in	May–	June	 (assuming	 an	 11-	month	
gestation [Laws, 1959;	Mackintosh	&	Wheeler,	1929]), which co-
incides with the peak song intensity. Therefore, the mean peak in 
recorded song intensity aligns closely with the estimated timing 
of conception.

In 2016 and 2018 when documented marine heatwaves took 
place (Chiswell & Sutton, 2020), SST was higher, log(NPP) was lower, 
and mean daily D call detections were lower within the detection 
range surrounding each of the hydrophone locations (Figure 6). 
Linear	 mixed	 models	 accounting	 for	 differences	 among	 hydro-
phone locations revealed significant interannual differences for SST 
(χ2 = 2131.2, p < 2.0 × 10−16), NPP (χ2 = 3462.7, p < 2.0 × 10−16), and 
D calls (χ2 = 69.6, p =	7.6 × 10−16). Furthermore, pairwise post hoc 

comparisons showed significant differences between 2016– 2017 
and 2017– 2018, but not 2016– 2018 (Figure 6).

A	 linear	 mixed	 model	 determined	 a	 significant	 positive	 rela-
tionship between mean daily D call detections in the summer and 
mean song intensity in the subsequent fall peak (χ2 = 4.15, p = .04; 
Figure 7). Lower summertime D call activity during the 2016 ma-
rine heatwave was followed by reduced song intensity during the 
inferred breeding period later in the same year, whereas more D call 
activity in 2017 was followed by higher fall song intensity. The no-
table	 exception	 to	 this	 pattern	occurs	 at	 the	MARU5	hydrophone	
location (Figure 7).

4  |  DISCUSSION

Our analyses of spatial and temporal calling patterns and en-
vironmental correlates from two years of acoustic monitoring 

Predictor MARU1 MARU2 MARU3 MARU4 MARU5

Song (full)

logNPP 11.24 8.50 11.28 6.39 8.19

Month 66.63 59.62 58.08 77.28 70.78

SST 6.16 13.59 15.73 9.20 7.79

SST anomaly 4.13 6.68 7.38 3.04 8.41

Detection area 11.53 11.60 7.50 4.07 4.81

D calls (full)

logNPP 46.39 40.35 21.18 12.74 11.37

Month 33.82 45.78 47.55 44.83 64.26

SST 3.55 5.11 9.69 9.76 5.76

SST anomaly 3.75 5.71 15.42 13.69 7.23

Detection area 12.46 3.02 6.13 18.95 11.36

D calls (spring)

logNPP 38.26 85.15 18.67 11.29 16.87

SST 13.43 5.42 35.78 26.21 44.08

SST anomaly 8.98 4.74 33.58 21.13 7.60

Detection area 39.31 4.67 11.95 41.35 31.43

D calls (fall)

logNPP 48.34 37.66 37.53 16.88 25.94

SST 29.05 11.94 29.12 22.69 26.92

SST anomaly 13.90 38.71 21.05 36.34 32.68

Detection area 8.69 11.66 12.28 24.07 14.44

Song (fall)

logNPP 24.10 39.11 29.79 29.73 73.00

SST 25.92 15.50 44.58 44.44 11.48

SST anomaly 19.78 15.13 13.14 13.83 5.11

Detection area 30.18 30.24 12.47 11.98 10.39

Note: Variable contribution for the boosted regression tree models for song and D calls at each of 
the hydrophones. The percent contribution in the model is listed for each predictor. The full models 
with all seasons included are reported first for both call types, followed by the within- season peaks 
for each call type.

TA B L E  2 Boosted	regression	tree	
model predictor variable contributions.
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data demonstrate how ocean conditions that drive prey avail-
ability for blue whales influence their D call activity during 
the primary foraging season, yet song intensity was primarily 
related to the temporal variable month. These results support 
the previously hypothesized life history functions of song and D 
calls for blue whales (Lewis et al., 2018; Oleson, Calambokidis, 
et al., 2007). Moreover, we link the peak song intensity to the 
time of mating inferred from fetal growth patterns (Figure 5), 
demonstrating that New Zealand blue whales likely use the STB 
as a breeding ground and song intensity reflects their reproduc-
tive cycle. D calls were reduced during marine heatwaves when 
upwelling conditions (i.e., low SST, high NPP) were reduced or 
absent (Figures 4 and 6). These periods also corresponded with 
a documented reduction in both the number of krill aggregations 
and krill aggregation density in the region, indicating poor blue 
whale foraging conditions (Barlow et al., 2020). Interestingly, D 
calls during the summertime are correlated with song intensity 
during the following fall reproductive peak (Figure 7), with lower 
D call rates followed by lower song intensity. Thus, our find-
ings suggest a negative impact of marine heatwave conditions 

on multiple life history functions at the population scale (forag-
ing and breeding effort) and demonstrate how climate change 
may impact blue whale populations through reduced feeding op-
portunities, with potential consequences for reproduction and 
population viability.

4.1  |  Ecological patterns of calling

Using prior research on physical and biological drivers of blue 
whale foraging opportunities in the region (Barlow et al., 2020, 
2021; Barlow & Torres, 2021; Torres et al., 2020),	models	exam-
ining calling activity as a function of season and environmental 
predictors performed well (Table 1) and illustrated how different 
environmental features play different roles throughout the year. 
For	 example,	 the	 performance	of	 the	D	 call	within-	peak	models	
is higher in the spring than in the fall, indicating that the relation-
ships between environmental drivers and D call activity are more 
pronounced in the spring and early summer during the predomi-
nant upwelling season (Barlow et al., 2021; Chiswell et al., 2017). 

F I G U R E  4 Functional	response	curves	for	environmental	correlates	of	calling	activity.	Partial	dependence	plots	derived	from	the	boosted	
regression tree fitted for each within- season peak in calls, showing the smoothed functional relationships between calling (either song 
intensity	index	or	D	call	detections)	and	each	predictor	variable	while	fixing	all	other	variables	at	their	mean	value.	Color	is	indicative	of	the	
hydrophone, with locations shown on the map in upper right panel. Rug plots show distribution of the values for each predictor.
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Notably, environmental correlates of D calls in the fall bear more 
similarities to song during the fall than to D calls in the spring 
(Figure 4).	For	example,	 in	 the	springtime,	D	calls	 show	a	strong	
negative relationship with SST. In the fall, both song and D calls 
display a mid- range SST optimum between 16 and 18°C (Figure 4). 
This finding may be a function of different available environmental 
conditions during these periods, with different drivers of foraging 
conditions than indicated by prior studies conducted in the spring 
and summer (Barlow et al., 2020, 2021; Barlow & Torres, 2021), or 
a different function of D calls between the spring and fall peaks. 
The double- peak pattern of D calls (Figure 3) is also observed in 
the California Current system (Lewis et al., 2018;	Oleson,	Wiggins,	
& Hildebrand, 2007) and in the Corcovado Gulf of Chile (Buchan 
et al., 2021). In all three regions, it seems the fall peak in D calls 
could represent late- season foraging associated with a fall bloom 
in productivity, a transition into more social behaviors relating to 
reproductive activity, or both.

While	 the	 environmental	 correlates	 of	 the	 spring	 D	 call	 peak	
are strongly indicative of upwelling and conditions suitable for blue 
whale foraging (Barlow et al., 2020, 2021; Barlow & Torres, 2021), 
the driving patterns behind the fall calling peaks are less evident from 

environmental correlates alone. Song is hypothesized to serve a re-
productive function (McDonald et al., 2006; Oleson, Calambokidis, 
et al., 2007), and while mating has never been directly observed for 
blue whales, the paradigm for baleen whales is a temporally defined 
breeding season each year. Therefore, the phenology of the fall peak 
in song may be driven more predominantly by the breeding season 
defined by their life history timing rather than environmental cues. 
While	 the	hypothesized	 foraging	 function	of	D	 calls	 aligns	 closely	
with our observations during the spring and summer, the fall peak 
in D calls aligns more closely with song, both in terms of timing and 
environmental correlates (Figures 3 and 4). Although song is only 
produced by males, other demographic groups engage in social ac-
tivities,	and	D	calls	are	produced	by	all	sexes	and	age	classes	(Lewis	
et al., 2018; Oleson, Calambokidis, et al., 2007). The coincident fall 
peak of both call types may represent a period of social behavior 
across demographic groups during the likely breeding season for this 
blue whale population. This potential use of D calls as social calls 
more broadly is corroborated by increased D call detections coin-
cident with blue whale super- aggregations (Cade et al., 2021) and 
triads engaged in social behaviors potentially related to reproductive 
activity (Schall et al., 2019).

F I G U R E  5 Annual	song	intensity	and	the	breeding	cycle.	Top	panel:	average	yearly	cycle	in	song	intensity	index,	computed	across	the	five	
hydrophone locations and the entire recording period; dark blue line represents a loess smoothed fit. Bottom panel: fetal length measurements 
from whaling catch records for Antarctic blue whales (gray, measurements rounded to the nearest foot), pygmy blue whales in the southern 
hemisphere (blue, measurements rounded to the nearest centimeter). Measurements from blue whales caught within the established range of 
the New Zealand population are denoted by the dark red triangles. Calving presumably takes place around or shortly after fetal lengths are at 
their	maximum	(April–	May),	which	implies	that	mating	likely	occurs	around	May–	June,	coincident	with	the	peak	song	intensity.	Note: Many small 
fetuses were missed in the Antarctic blue whale data, whereas sampling was more thorough for pygmy blue whale data.
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By including detection area in the models, we accounted for the 
potential of increased call detections with larger detection ranges 
while evaluating the ecological impacts of environmental predictor 
variables. Model results revealed that the role of environmental fea-
tures differs among hydrophone locations in the STB. The presence 
and strength of the upwelling plume presents a distinct tempera-
ture signal closer to the source, where cold water is brought to the 
surface near the MARU5 location (Barlow et al., 2021; Shirtcliffe 
et al., 1990). Further downstream along the plume's trajectory, there 
is a stronger signal in surface productivity (Chiswell et al., 2017). 
This pattern is evident in the model results for D calls in spring, il-
lustrated by the high contribution of SST and low contribution of 
NPP for MARU5 compared to low contribution of SST and high con-
tribution of NPP for MARU1 (Table 2). Many patterns are summa-
rized in Figure 4, including nuanced spatial and seasonal differences 
among functional response curves. For D calls in fall, the functional 
relationships with SST present an interesting spatial split between 
inshore and offshore locations: the response curves for MARU1 and 
MARU5 mirror the patterns of D calls in spring, whereas MARU2, 
MARU3, and MARU4 show the same optimal temperature range as 
song in fall. This distinction of functional response curves between 
the offshore and inshore hydrophones is evident for all environmen-
tal predictors of D calls in fall (Figure 4, center panels). These spatial 
patterns in the relationships between calling and oceanographic fea-
tures reflect the heterogenous patterning of environmental gradi-
ents and upwelling dynamics across the STB region.

Due to the inability to localize calling whales and paucity of in-
formation on cue rates for blue whales in this population, it was 
not possible to obtain any estimates of actual whale density in 
the area. This limitation makes it challenging to separate changes 
in calling activity from changes in whale density. Indeed, photo- 
identification records have shown that blue whales that feed in the 
STB region during the summers are resighted elsewhere around 
New Zealand (Barlow et al., 2018), and acoustic recordings indi-
cate occasional presence of the New Zealand song off the coast of 
eastern Australia and as far north as Tonga (Balcazar et al., 2015; 
McCauley et al., 2018). However, given the near- constant presence 
of blue whale calls in the STB (Figure 2), the differences in occur-
rence	patterns	between	song	and	D	calls,	and	near-	equal	sex	ratios	
of blue whales throughout their range (Branch & Monnahan, 2021), 
changes in calling activity likely do reflect underlying patterns in 
ecology and life history rather than solely changes in distribution 
or density.

4.2  |  Reproductive cycle inferred from song and 
whaling records

While	seasonal	cycles	in	song	activity	are	evident	for	blue	whale	pop-
ulations around the world (Barlow et al., 2022; Buchan et al., 2020; 
Lewis et al., 2018; McCauley et al., 2018; Samaran et al., 2013; 
Stafford et al., 2001, 2004), it is often challenging to disentan-
gle changes in song detection from movement of blue whales into 

and out of an area. In the STB, blue whales are present year round 
(Barlow et al., 2022;	Warren	et	al.,	2021), minimizing the confound-
ing variable of animals moving out of the area (Figures 2 and 3). The 
whales forage (Barlow et al., 2020; Torres et al., 2020) in the same 
area where they sing, indicating they use the same place for mul-
tiple critical life history functions (Barlow et al., 2022).	While	 the	
reproductive function of song has been postulated based on behav-
ioral observations over short time scales (Lewis et al., 2018; Oleson, 

F I G U R E  6 Environmental	conditions	and	D	calls	in	summer	
months. Mean sea surface temperature (top), net primary 
productivity (middle), and daily D call detections (bottom) for the 
period	of	1	January	through	28	February	in	each	of	the	three	
years with recording coverage, with each of the five hydrophone 
recording locations indicated by colors. The number of recording 
days for each hydrophone in each year are indicated in the bottom 
panel.	January	and	February	were	characterized	by	regional	marine	
heatwaves	in	2016	and	2018,	while	2017	exhibited	more	typical	
summer upwelling conditions. Pairwise comparisons resulting 
from	a	linear	mixed	model	for	each	variable	by	year	(accounting	
for differences among hydrophone locations) are indicated above 
each	set	of	boxplots.	In	all	cases,	the	linear	mixed	models	were	
significant, with the two marine heatwave years characterized by 
comparable SST, log(NPP), and D call values that were significantly 
different from those measured in the more typical upwelling year.
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Calambokidis, et al., 2007), we make the link via the timing of re-
production inferred from biological data on the timing of concep-
tion, fetal growth, and births over a broad spatial and temporal scale. 
Therefore, the cycle of song intensity in this region is likely indicative 
of the annual breeding cycle for this blue whale population.

Temporal patterns of blue whale fetal length measurements 
from whaling records (Allison, 2020) indicate that mating for this 
population	 may	 occur	 in	 May–	June,	 after	 maximum	 fetal	 length	
measurements in April– May that indicate birth. This proposed mat-
ing coincides with our recorded peak song intensity, supporting the 
hypothesis that song is used in reproductive efforts and that blue 
whales	mate	during	May–	June	in	the	STB	(Figure 5).	While	the	sam-
ple size of blue whale catches with fetal length measurements from 
the New Zealand region is small (n = 15), they reflect the pattern 
in measurements from all other pygmy blue whales taken in the 
Southern Hemisphere, and Antarctic blue whale catches, both of 
which are far more numerous (pygmy n = 716, Antarctic n = 29,883; 
Figure 5, Figure A6).

4.3  |  Potential marine heatwave impacts on 
foraging and reproduction

Reduced upwelling during the 2016 and 2018 marine heat-
waves (Chiswell & Sutton, 2020; Oliver et al., 2017; Sutton & 
Bowen, 2019) coincided with a significant reduction in D calls 
across all five hydrophone locations (Figure 6). The decrease 
in D calls during these periods further emphasizes their role as 
a foraging- related call in the spring and summer, indicating de-
creased feeding during anomalously warm periods. The marine 
heatwave conditions and impacts on blue whale foraging may 
serve as a harbinger of what is to come, as ocean temperatures are 
expected	to	warm	and	marine	heatwaves	are	expected	to	increase	
in both frequency and intensity with climate change (Frölicher 
et al., 2018; Holbrook et al., 2019; Oliver et al., 2018), including in 
the STB region (Behrens et al., 2022).

Reduced foraging opportunities may have ramifications for popu-
lation viability if blue whales are not able to obtain sufficient energetic 
stores to support reproduction (Pirotta et al., 2019). Furthermore, there 
are potential carryover effects into subsequent years if enough energy 
is not obtained in a foraging season (Soledade Lemos et al., 2020). This 
consequence of reduced foraging was indicated by the significant re-
lationship between summertime D call activity and song intensity in 
the subsequent breeding season. The timing of the fall peak in song 
did not differ between 2016 and 2017, but the mean song intensity 
index	was	lower	during	the	2016	fall	peak	(Figure	A7). The reduction 
in foraging during the 2016 marine heatwave may have led to reduced 
reproductive activity or animals moving away from this region in the 
peak breeding period (Figure 7).	The	clear	exception	in	this	pattern	is	
the MARU5 hydrophone, which is the furthest southwest recording 
location. Visual surveys during the 2016 heatwave found that blue 
whales were absent from the central STB; sightings were concentrated 
offshore, where concurrent prey mapping identified the only location 

with high krill density in summer 2016 (Barlow et al., 2020). During 
this heatwave, the western region of the STB may have served as a 
refuge for krill, and blue whales may have altered their distribution in 
response to shifting prey availability, as reflected in both the sightings 
data (Barlow et al., 2020)	and	higher	than	expected	D	call	detections.	
The increased song intensity at the furthest offshore hydrophone in 
2016	does	not	follow	the	expected	pattern	(Figure 7), perhaps due to 
concentration of blue whales further offshore following the summer 
2016 marine heatwave (Barlow et al., 2020).

The impacts of marine heatwaves are wide reaching. The 2014– 
2016 marine heatwave in the California Current led to widespread 
changes in the biological structure and composition of pelagic and 
coastal ecosystems (Cavole et al., 2016), including anomalously low 
primary productivity (Kahru et al., 2018), reductions in krill abundance 
by up to 95% (Lavaniegos et al., 2019), shifts in the timing and location 
of spawning of pelagic fish stocks (Auth et al., 2018), and compression 
of humpback whale habitat leading to higher recorded entanglements 
in fishing gear (Santora et al., 2020). The 2015– 2016 Tasman Sea heat-
wave reduced primary productivity (Chiswell & Sutton, 2020), altered 
zooplankton community composition (Evans et al., 2020), severely im-
pacted the aquaculture industry (Oliver et al., 2017), and shifted blue 
whale distribution in the STB region during the summer foraging sea-
son (Barlow et al., 2020).	While	 these	 impacts	of	marine	heatwaves	
have been documented across ecosystems and regions, the link to 
reproductive success in baleen whales has remained a gap in knowl-
edge. Environmental fluctuations and reduced foraging are known to 
impact population health in multiple baleen whale species, including 
blue (Pirotta et al., 2019), gray (Lemos et al., 2021; Soledade Lemos 
et al., 2020), and right (Gavrilchuk et al., 2021; Seyboth et al., 2016) 
whales.	While	we	 could	 not	 investigate	 population	 vital	 rates	with	
the data at- hand, the information on blue whale call function gained 
through this study enabled us to postulate a connection between 

F I G U R E  7 Relationship	between	summer	D	call	detections	and	
fall song intensity. Relationship between the mean number of D 
call	detections	between	1	January	through	28	February	and	the	
mean	song	intensity	index	in	the	subsequent	fall	peak	between	1	
April	and	31	June.	Points	are	symbolized	by	year	and	hydrophone	
recording location.
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reduced foraging during marine heatwaves and subsequent reduced 
reproductive activity by monitoring acoustic signals. Based on region-
ally resolved model projections, marine heatwaves in the Tasman Sea 
are	expected	 to	 increase	 in	 intensity	 and	duration,	 including	poten-
tially annually persistent marine heatwave conditions by the end of 
the century under some greenhouse gas emissions scenarios (Behrens 
et al., 2022). Therefore, the implications of our findings will become 
increasingly pertinent for the future of the New Zealand blue whale 
population.

Our analyses of blue whale vocalizations shed light on call func-
tion, associations with variable environmental conditions including 
reduced foraging during marine heatwaves, and a potential relation-
ship between foraging and reproductive effort. Looking forward, 
extension	of	 this	work	over	 longer	 time	scales	 to	assess	 the	 influ-
ence of environmental variability on blue whale calling, behavior, 
and reproduction is prudent, particularly considering the anticipated 
impacts of climate change and the likelihood of nonanalogous condi-
tions in the future (Frölicher et al., 2018).
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APPENDIX A
The	following	features	were	extracted	for	all	call	detections	identified	by	the	D	call	spectrogram	correlation	template	detector	and	manually	
classified as true D calls or false positives in Raven:

• delta time
• low frequency (Hz)
• high frequency (Hz)
• hour of day
• aggregate entropy (bits)
• average entropy (bits)
• average power density (dB FS)
• bandwidth 50% (Hz)
• bandwidth 90% (Hz)
• center frequency (Hz)
• center time (s)
• relative center time
• delta frequency (Hz)
• duration 50% (s)
• duration 90% (s)
• energy (dB)
• frequency 5% (Hz)
• relative frequency 5%
• frequency 25% (Hz)
• relative frequency 25%

• frequency 75% (Hz)
• relative frequency 75%
• frequency 95% (Hz)
• relative frequency 95%
• inband power (dB FS)
• length (frames)
•	 max	entropy	(bits)
•	 max	frequency	(Hz)
•	 max	time	(s)
• min entropy (bits)
• peak frequency (Hz)
•	 peak	frequency	contour	average	slope	(dB ms)
•	 peak	frequency	contour	max	frequency	(Hz)
•	 peak	frequency	contour	max	slope	(dB ms)
• peak frequency contour min frequency (Hz)
•	 peak	frequency	contour	min	slope	(dB ms)

• peak frequency contour number of 
infinite points

• peak power density (dB FS)
• peak tie (s)
• relative peak time
• SNR (dB)
• sample length (samples)
• time 5% (Hz)
• relative time 5%
• time 25% (Hz)
• relative time 25%
• time 75% (Hz)
• relative time 75%
• time 95% (Hz)
• relative time 95%
• template ID
• template detector correlation score

TA B L E  A 1 Results	of	the	random	forest	classifier	evaluation,	both	for	training	data	and	when	the	classifier	predicted	to	test	data.

Metric Calculation Mean (training) SD (training) Mean (test) SD (test)

Misclassification rate 1 − (TP + TN/total	calls) 0.111 0.00023 0.107 0.00052

False negative rate FN/FN + TP 0.100 0.00026 0.098 0.00063

True positive rate TP/TP + FN 0.899 0.00026 0.901 0.00063

False positive rate FP/FP + TN 0.126 0.00041 0.121 0.00095

True negative rate TN/TN + FP 0.873 0.00041 0.878 0.00095

Note: Each bootstrap iteration trained the model on a randomly selected 75% of the data, and predicted to the withheld 25%, and this process was 
repeated over 100 runs.

F I G U R E  A 1 Correlation	between	the	daily	number	of	D	calls	identified	from	the	manual	validation	vs.	D	calls	identified	by	the	automatic	
classifier,	for	the	period	23	January	2016–	31	March	2017.
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F I G U R E  A 2 Spatiotemporal	detection	patterns	of	blue	whale	D	call	occurrence	and	intensity	visualized	using	D	call	detections	that	were	
manually validated. Hours with D calls detected per day (light green bars) and the daily number of D call detections (dark green lines) are 
shown	between	23	January	2016	and	31	March	2016,	at	each	hydrophone	recording	location.
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F I G U R E  A 3 Spatiotemporal	detection	patterns	of	blue	whale	D	call	occurrence	and	intensity	visualized	using	D	call	detections	that	were	
automatically classified using the random forest model. Hours with D calls detected per day (light green bars) and the daily number of D 
call	detections	(dark	green	lines)	are	shown	between	23	January	2016	and	31	March	2016,	at	each	hydrophone	recording	location.	Note	no	
noticeable difference in occurrence patterns from Figure A2.
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F I G U R E  A 4 Partial	dependence	plots	
derived from the boosted regression tree 
models for song, showing the smoothed 
functional relationships between song 
intensity and each predictor variable 
while	fixing	all	other	variables	at	their	
mean value. Color is indicative of the 
hydrophone. Rug plots show distribution 
of the values for each predictor, and color 
corresponds to the hydrophone.
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F I G U R E  A 5 Partial	dependence	plots	
derived from the boosted regression tree 
models for D calls, showing the smoothed 
functional relationships between D call 
detections and each predictor variable 
while	fixing	all	other	variables	at	their	
mean value. Color is indicative of the 
hydrophone. Rug plots show distribution 
of the values for each predictor, and color 
corresponds to the hydrophone.

F I G U R E  A 6 Whaling	catches	of	Antarctic	blue	whales	(blue)	and	pygmy	blue	whales	(red)	in	the	southern	hemisphere,	with	assumed	
boundaries in black between each. Acronyms denote each of the currently assumed blue whale populations: central Indian ocean (CIO, 
Sri	Lanka),	south-	west	Indian	Ocean	(SWIO,	Madagascar),	south-	east	Indian	Ocean	(SEIO,	Australia/Indonesia),	south-	west	Pacific	Ocean	
(SWPO,	New	Zealand).	Key	land	stations	in	and	near	the	pygmy	blue	whale	region	are	labeled.



    |  23 of 23BARLOW et al.

F I G U R E  A 7 Average	annual	cycle	
in	song	intensity	index	across	all	five	
hydrophone locations by year. Dark solid 
lines represent a loess smoothed fit. Note 
the alignment of the fall peak in song 
intensity in both years, but the lower 
average song intensity in 2016 than in 
2017.
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