Skip to main content
. 2023 Feb 26;13(2):e9770. doi: 10.1002/ece3.9770

TABLE A1.

Results of the random forest classifier evaluation, both for training data and when the classifier predicted to test data.

Metric Calculation Mean (training) SD (training) Mean (test) SD (test)
Misclassification rate 1 − (TP + TN/total calls) 0.111 0.00023 0.107 0.00052
False negative rate FN/FN + TP 0.100 0.00026 0.098 0.00063
True positive rate TP/TP + FN 0.899 0.00026 0.901 0.00063
False positive rate FP/FP + TN 0.126 0.00041 0.121 0.00095
True negative rate TN/TN + FP 0.873 0.00041 0.878 0.00095

Note: Each bootstrap iteration trained the model on a randomly selected 75% of the data, and predicted to the withheld 25%, and this process was repeated over 100 runs.