
ARTICLE OPEN

Cross-tissue correlations of genome-wide DNA methylation in
Japanese live human brain and blood, saliva, and buccal
epithelial tissues
Shota Nishitani 1,2,3✉, Makoto Isozaki4, Akiko Yao1,2, Yoshifumi Higashino4, Takahiro Yamauchi4, Masamune Kidoguchi4,
Satoshi Kawajiri4, Kenzo Tsunetoshi4, Hiroyuki Neish4,5, Hirochika Imoto6, Hidetaka Arishima4, Toshiaki Kodera4, Takashi X. Fujisawa1,2,3,
Sadahiro Nomura6, Kenichiro Kikuta4, Gen Shinozaki7 and Akemi Tomoda 1,2,3,8✉

© The Author(s) 2023

Neuroepigenetics considers genetic sequences and the interplay with environmental influences to elucidate vulnerability risk for
various neurological and psychiatric disorders. However, evaluating DNA methylation of brain tissue is challenging owing to the
issue of tissue specificity. Consequently, peripheral surrogate tissues were used, resulting in limited progress compared with other
epigenetic studies, such as cancer research. Therefore, we developed databases to establish correlations between the brain and
peripheral tissues in the same individuals. Four tissues, resected brain tissue, blood, saliva, and buccal mucosa (buccal), were
collected from 19 patients (aged 13–73 years) who underwent neurosurgery. Moreover, their genome-wide DNA methylation was
assessed using the Infinium HumanMethylationEPIC BeadChip arrays to determine the cross-tissue correlation of each combination.
These correlation analyses were conducted with all methylation sites and with variable CpGs, and with when these were adjusted
for cellular proportions. For the averaged data for each CpG across individuals, the saliva–brain correlation (r= 0.90) was higher
than that for blood–brain (r= 0.87) and buccal–brain (r= 0.88) comparisons. Among individual CpGs, blood had the highest
proportion of CpGs correlated to the brain at nominally significant levels (19.0%), followed by saliva (14.4%) and buccal (9.8%).
These results were similar to the previous IMAGE-CpG results; however, cross-database correlations of the correlation coefficients
revealed a relatively low (brain vs. blood: r= 0.27, saliva: r= 0.18, and buccal: r= 0.24). To the best of our knowledge, this is the fifth
study in the literature initiating the development of databases for correlations between the brain and peripheral tissues in the same
individuals. We present the first database developed from an Asian population, specifically Japanese samples (AMAZE-CpG), which
would contribute to interpreting individual epigenetic study results from various Asian populations.
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INTRODUCTION
The International Psychiatric Genomics Consortium conducted
the world’s largest genome-wide association meta-analysis
consisting of 37 000 patients with schizophrenia and 113 000
controls and identified 108 genome-wide significant genes [1].
Although discovering genetic factors that contribute to disease
pathophysiology was useful, the effect size of each genotype
turned out to be diminutive. This made it unlikely that
schizophrenia and other psychiatric disorders could be revealed
solely based on genetic variations. Hence, the molecular genetic
vulnerability of psychiatric disorders based on nature and
nurture is being explored which has accelerated the investiga-
tion of epigenetics in psychiatric disorders. However, the central
issue with epigenetics research on psychiatric disorders is the
inability to directly handle the target organ—the brain tissue

[2–4]. Because identical genetic sequences can be obtained
from peripheral tissues (with exceptions), identifying genetic
polymorphisms, such as SNPs, as risk genes for psychiatric
disorders using peripheral tissues has not posed a problem.
However, because epigenetic signatures such as DNA methyla-
tion are tissue-specific [5], brain tissue is ideally required for
epigenetics analysis in psychiatric disorders. As brain tissue
cannot be obtained from living humans in most circumstances,
post-mortem brain research in which brain tissue can be
handled has been conducted as an alternative; however,
analyses using retrospective data and the sample size are
limited [6]. Contrarily, progress has been made in elucidating the
cancer epigenome as a result of the direct analysis of resected
pathological tissues [7]. This dilemma has slowed the advance-
ment of epigenetics research into psychiatric disorders.
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Despite this dilemma, previous studies, which attempted to
determine the epigenome of psychiatric disorders, used blood or
saliva as surrogate tissues for empirical reasons [3, 8]. These
peripheral epigenomes are biologically relevant since they have
been used not only as a surrogate of brain tissue, but also for
studying epigenetic changes occurring in peripheral tissues
themselves, such as in the immune system [9, 10]. However, the
interpretation would be tantalizing when using peripheral tissue
as a surrogate for the brain because they both have distinct DNA
methylation patterns; therefore, an association between periph-
eral tissue DNA methylation levels and certain phenotypes does
not necessarily reflect the effect of DNA methylation status in the
brain. Owing to the difficulty in concluding that the epigenetic
mechanisms directly responsible for the susceptibility of the
psychiatric disorders of interest have been identified, the
biomarker aspect must be emphasized in many cases [11]. In
such instances, animal studies should typically be conducted for
tasks that cannot be performed on humans. However, only a few
studies had been conducted on epigenetics in psychiatric
disorders in animal models when the research focus is limited to
genome-wide study because of the absence of microarray
platform for major experimental animals (a microarray chip for
mice just recently became available in early 2021). With the new
array designed for mice, the epigenome of the mouse brain can
be studied directly. However, the human brain epigenome will
need to be elucidated to translate the results obtained from mice
to humans and determine how they can be extrapolated to
humans.
The most promising approach to addressing this issue in

human epigenetics research would be to confirm the correla-
tion level with the brain epigenome based on genome-wide
methylation correlation databases between peripheral tissues
and the brain from the same individuals. Thus, the databases
enable users (individual researchers) to determine whether the
methylation sites identified in their own studies involving
peripheral tissues are reliably correlated with brain methylation
level. To date, four such databases have been developed. The
first database (https://epigenetics.essex.ac.uk/bloodbrain/) is
based on the study conducted by Hannon et al. [12] on 71–75
individuals whose brain tissue was obtained from a brain bank
and blood samples were collected prior to their death. This
database contains extensive information for each of the four
brain regions: the prefrontal cortex (PFC), entorhinal cortex (EC),
superior temporal gyrus (STG), and cerebellum (CER). For the
first time, this study showed the genome-wide DNA methyla-
tion differences and similarities between brain and blood
tissues in the same individuals using Illumina 450 K array. This
study relied on post-mortem brain samples, which have various
limitations, such as limited sample size and a lack of premortem
phenotype information [6]. The second database is that of
Edgar et al. [13], who published a similar article on the post-
mortem brain (BA7, 10, and 20) and blood DNA methylation in
16 individuals using the Illumina 450 K array. They made their
database, Blood–Brain Epigenetic Concordance (BECon), pub-
licly available (https://redgar598.shinyapps.io/BECon/). As time
progressed and data cleaning methods, which improve the
quality of DNA methylation array data became more readily
available, their greatest advancement was performing this data
cleaning with greater precision than Hannon et al. [12].
Specifically, they eliminated batch effects and accounted for
tissue cell proportions [14, 15]. For the third database, Braun
et al. [4] examined DNA methylation correlations between living
human brains and multiple tissues, such as blood, saliva, and
buccal epithelial samples, and created a database, Iowa
Methylation Array Graphing for Experimental Comparison of
Peripheral tissue & Gray matter (IMAGE-CpG) (http://han-
lab.org/methylation/default/imageCpG). Although the brain
tissues were limited to surgically resected regions from patients

with intractable epilepsy that were not necessarily intact, the
use of living human brains distinguishes this study from others
that relied on post-mortem brain tissues. Edgar et al. [13]
corrected the dataset for the proportions of neurons and non-
neuronal cells in the brain tissues using a bioinformatics
approach. Meanwhile, Braun et al. [4] fractionated neurons
and non-neuronal cells using FACS, although the differences
between the neuronal and non-neuronal fractions of the brain
appeared to be negligible in comparison to the differences
between tissues. Finally, the fourth database was recently
published with the freely available analysis results (http://
www.liga.uni-luebeck.de/buccal_brain_correlation_results/).
Sommerer et al. [16] examined the correlations of 120
individuals whose prefrontal cortex tissue was obtained from
a brain bank and their buccal samples. Another limitation of
these previous databases is that genetic variants, particularly
methylation quantitative trait loci (mQTL), exert a strong
influence on DNA methylation [17, 18]. This implies that DNA
methylation levels regulated by mQTLs may vary greatly among
ancestral groups, as genetic variants depend on ancestry.
Research institutes in the United Kingdom, Canada, the United
States, and Germany developed the four databases that are
currently available. Although the information regarding ances-
try in the first two and the fourth databases was unclear, the
majority of the third dataset’s samples are of Caucasian
descent. If a researcher discovers an association between a
phenotype and DNA methylation in peripheral samples from
the Japanese population, for example, and wishes to examine
the correlation with the DNA methylation level in brain tissues,
the reliability of correlation results for the interpretation of data
from a different ancestral group (in this case, Caucasian) would
be questionable. However, it will be challenging to eliminate
the entire mQTLs. To address this gap in knowledge, we have
developed the fifth database based on Japanese subjects with
living human brain samples using the same concept as that of
the previous studies, and for the first time as the database for
the Asian ancestry, namely, Asia Methylation Array apprizing for
Experimental Comparison of Peripheral tissue & Gray matter
(AMAZE-CpG) (https://snishit-amaze-cpg.web.app/). In the pre-
sent study, after a preliminary evaluation of the results obtained
from our dataset, we compared the effects of adjusting for cell-
type proportion and the differences between IMAGE-CpG and
the other first two databases derived from different ancestry.

MATERIALS AND METHODS
Ethics statement
The study protocol was approved by the Ethics Committee of the
University of Fukui, Japan (Assurance no. 20200028), Yamaguchi University
School of Medicine, Japan (Assurance no. 2020–202), and Sugita Genpaku
Memorial Obama Municipal Hospital (Assurance no. 2–7). Moreover, this
study was carried out in accordance with the Declaration of Helsinki and
the Ethical Guidelines for Clinical Studies of the Ministry of Health, Labour
and Welfare of Japan. All participants provided either written informed
consent or both informed consent and assent.

Participants and sample collection
Twenty subjects undergoing neurosurgery for their clinical purposes,
including intractable epilepsy, meningioma, and cerebrovascular diseases,
were recruited for this study at the University of Fukui Hospital, Yamaguchi
University Hospital, and Sugita Genpaku Memorial Obama Municipal
Hospital (Table 1). Subjects were excluded if they had other serious
concurrent genetic or physical diseases, but a patient no. 4 was included
since the researchers noticed it later and the brain tissue was classified as
normal tissue (Supplementary Table S1). A portion of each resected brain
tissue was immediately cut into several pieces less than 5 mm3 and
preserved in RNAlater® (Thermo Fisher Scientific, Inc., MA, US) for RNA and
DNA stability and long-term storage. All Montreal Neurological Institute
(MNI) coordinates corresponding to the regions of brain tissue resected
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were recorded by the primary surgeons for each case by clicking on the
standard online brain image (https://neurosynth.org/locations/) (Table 1
and Fig. 1 created by the Python library, Nilearn [19]). We also used the
novel online classification tool to confirm DNA methylation-based
classification of central nervous system tumors (https://
www.molecularneuropathology.org/mnp/) [7] (Supplementary Table S1)
because the brain tissues used in the present study were not on a single
disease, but across multiple diseases, and we intended to make explicit the
potential impact of it. This tool classified 15 brain tissues as “Control
tissues,” which means normal tissues. During the surgery, whole blood
samples were collected in EDTA tubes and immediately preserved in
RNAlater® (whole blood: RNAlater® = 5: 13). They were immediately stored
overnight at 4 °C, then at −20 °C for long-term storage. Saliva samples
were collected using the Oragene DISCOVERTM kit (DNA Genotek Inc.,
Ottawa, CA, OGR-500) and stored at room temperature (RT) until DNA
extraction at a later time. Buccal epithelial tissues (buccal) were collected
using individually packaged commercial cotton swabs (four swabs/subject)
and used for DNA extraction after air-drying at RT for a few days. The saliva
and buccal swabs were collected 11.0 and 12.2 days after the operation, on
average, respectively. For each sample, the date of acquisition in relation to
the date of surgery was recorded.

DNA extraction
Brain DNA was extracted using AllPrep DNA/RNA/miRNA Universal Kit
(QIAGEN, Hilden, Germany) after disrupting and homogenizing 10 mg
RNAlater® preserved brain tissues by a rotor–stator (speed: 6.5 m/sec,
running time: 45 s, FastPrep FP120J-100, Savant Instruments, Inc.) with
tissue homogenization beads (Lysing Matrix D, 2 mL, MP biomedicals,
LLC, CA, US). Although this preprocessing was originally for RNA
extraction, we followed the instructions in the RiboPureTM RNA
Purification Kit (Thermo Fisher Scientific, Inc., MA, US) for preprocessing
for DNA extraction using RNAlater® preserved blood samples. In brief,

the RNAlater® preserved blood samples (720 μL) were centrifuged for
1 min at 16 000 ×g, and the supernatant was removed. Then, 200 μL of
PBS was pipetted in and mixed, and centrifugation and supernatant
removal were repeated. Finally, 200 μL of PBS was added and pipetted
together before being used for DNA extraction. QIAamp DNA Mini kit
(QIAGEN, Hilden, Germany) was used to extract DNA from blood and
buccal, and the protocols for each tissue type were followed. Meanwhile,
the prepIT®•L2P reagent (DNA Genotek Inc., Ottawa, CA) was used to
extract DNA from saliva. The DNA yield was determined using the
QubitTM dsDNA High Sensitivity Assay Kit (Thermo Fisher Scientific, Inc.,
MA, US) [8].

DNA methylation array and pre-processing
For each sample, 500 ng of DNA was bisulfite converted with the EZ DNA
MethylationTM Kit (Zymo Research, D5002). Meanwhile, the Infinium
HumanMethylationEPIC BeadChip Kit (Illumina, WG-317-1002) array was
used to assess genome-wide DNA methylation. Samples were grouped by
individuals and randomized onto the chips. The arrays were scanned with
the Illumina iScan platform.
To allow for fair comparison with the previous study [4], the DNA

methylation dataset was pre-processed using the R packages Minfi [20, 21]
and RnBeads [22]. Background correction was performed with the Noob
method in Minfi. Probes were filtered out using RnBeads if they: (1)
overlapped within 5 bp of an SNP (21 361 probes); (2) had a detection P-
value > 0.01 or were deemed unreliable measures based on RnBeads’s
greedy-cut algorithm (16 367 probes); or (3) were context-specific sites
(probes other than those for CpG methylation; 2 873 probes). Probes
excluded with overlapping SNPs were assigned by RnBeads using the
version of dbSNP derived from Genome Reference Consortium Human
Build 37 patch release 10 (GRCh37.p10). These SNPs could disrupt the
probe binding at the target sites and artificially lower the intensity signals
that may make results inconsistent [23]. With the application of these

Fig. 1 Location of each resected brain tissue according to the recorded Montreal Neurological Institute (MNI) coordinates. (A) front, (B)
top, and (C) left-side views. Each sample is represented by a colored circle.
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filters, 825 637 probes were included in the dataset. Beta mixture quantile
dilation (BMIQ) was used to normalize the samples.

IMAGE-CpG dataset (GSE111165) pre-processing
The GSE111165 dataset was similarly pre-processed. This dataset has both
450 K and EPIC data, but we used only the EPIC data. Minfi’s Noob method
was used to correct the background. Using RnBeads, we filtered out probes
if they: (1) overlapped within 5 bp of an SNP (21 358 probes); (2) had a
detection P-value > 0.01 or were deemed unreliable measures based on
RnBeads’s greedy-cut algorithm (10 053 probes); or (3) were context-
specific sites (2 894 probes). After filtering, we obtained 831 786 probes for
the dataset. BMIQ was used to normalize the samples.

Pre-processing for GSE59685 [12] and GSE95049 [13] datasets
The pre-processing was similar to those of the original studies [12, 13]. The
total number of probes and samples for GSE59685 and GSE95049 was 437
649 and 67 for brain tissues (PFC, EC, STG, and CER) and blood, and 444
283 and 15 samples of brain tissues (BA10, BA20, and BA7) and blood,
respectively. The R code is available as Supplementary Material.

Estimation of ancestral data
To confirm the ancestral differences between the datasets, we generated
ancestry principal components (PCs) from blood DNA methylation using
the method of Barfield et al. [24].

Cellular composition adjustment
Given that cellular heterogeneity affects methylation, the AMAZE-CpG and
IMAGE-CpG datasets were pre-processed with the adjustment (Adj) in
parallel, as Edgar et al. [13] did, in addition to the raw dataset (Raw). Cellular
heterogeneity was predicted using CETS [25] and EpiDISH [15] for the brain
and other peripheral tissues, respectively (Supplementary Table S2). Brain
tissue methylation was adjusted by the proportion of neurons. Only five cell
type values (B, NK, CD4T, CD8T, and Mono, without Neutro) were used to
adjust blood methylation [26], because they lie in the [0,1] range and are
constrained to sum to 1 within a sample; including all six values as covariates
would induce multicollinearity [27]. Saliva and buccal tissue methylations
were adjusted by the proportion of epithelial cells. We processed both Raw
and Adj datasets in each analysis to compare their performance.

Statistical analysis
All statistical analyses were performed in R [28]. Two approaches to cross-
tissue correlation were used. First, Pearson’s correlation was used to
calculate overall levels of DNA methylation correlation from the average
methylation across subjects for each tissue. For the overall correlation, all

825 637 (AMAZE-CpG) and 831 786 (IMAGE-CpG) CpGs were used in the
calculation. Second, a within-subject method was employed. Because of
the small sample size and the possible inappropriate influence of outliners
on the correlation coefficient, a correlation coefficient (rho) and its
significance level were calculated for each individual CpG using a non-
parametric Spearman’s rank correlation test. Variable CpGs were classified
as Hannon et al. [12] previously defined. This method involved excluding
DNA methylation values in the upper and lower 10th percentile for each
CpG, then classifying as variables those CpGs with a remaining range
difference of at least 5%. Because the number of these variable CpGs varies
from tissue to tissue, the correlation analyses between tissues were limited
to the CpGs found to be variable in all four tissues (AMAZE-CpG: 287 033
CpGs [Raw] and 189 704 CpGs [Adj], and IMAGE-CpG: 280 302 CpGs [Raw] and
194 310 CpGs [Adj]). Furthermore, cross-database correlation analyses were
conducted to demonstrate the potential similarities and differences in the
correlation coefficients of each dataset. In this case, 815 541 for the entire
dataset and 233 904 [Raw] and 136 929 [Adj] for CpGs found to be variable in
both datasets were included in the analysis. CpG sites with an absolute
difference in rho between AMAZE-CpG and IMAGE-CpG lesser (greater)
than 0.2 were defined as less (more) dependent on the differences
between the datasets which include the differences of ancestry, age, brain
regions, or cellular composition.

Assessment of potential SNP confounding effect
As described in Supplementary Methods, we developed filtering para-
meters based on our dataset to identify probes that may be affected
by SNPs.

mQTL classification
A list of mQTL (http://www.mqtldb.org/) with Gaunt et al.’s original P-value
cutoff of P < 1 × 10−14 [29], yielding 27 623 and 27 748 CpGs under genetic
influence, which overlapped with the AMAZE-CpG and IMAGE-CpG
datasets, respectively.

RESULTS
The degree of similarity in genome-wide DNA methylation
between the brain and peripheral tissues was determined using
a multidimensional scaling (MDS) plot (Fig. 2A). Our data’s MDS
plot revealed a similar pattern to that of the previous study [4].
The MDS plot revealed the brain samples clustering separately
from all peripheral tissues, whereas the peripheral tissues
clustering is as predicted by their cellular compositions. One
sample of brain tissue was plotted at intermediate region between

Fig. 2 Tissue specificity and ancestral differences in genome-wide DNA methylation between the AMAZE-CpG and IMAGE-CpG datasets.
A Multidimensional scaling (MDS) of genome-wide DNA methylation levels from brain, blood, saliva, and buccal samples using a Euclidian
distance plot. B Principal components (PCs) for population stratification based on DNA methylation. Top: First and second PC from PC0bp.
Bottom: Second and third PC from PC0bp. Solid circles represent the AMAZE-CpG dataset, whereas open circles represent the IMAGE-CpG
dataset.
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the brain and blood clusters, and contamination was suspected.
Upon visual inspection, the specific brain tissue appeared as if
both the brain and blood had been burned with an electrocautery
scalpel. Consequently, the subject was eliminated from further
analysis. An analysis of DNA methylation-based principal compo-
nents for population stratification revealed objectively that our
dataset’s population was ancestrally distinct from the IMAGE-CpG
dataset’s population (Fig. 2B).
As previously reported [4], we evaluated cross-tissue DNA

methylation correlations in two different ways. The first method
averaged DNA methylation across subjects, whereas the second
focused on a within-subject analysis of individual CpGs. The
former is a global representation of all CpGs present on the array.
For each tissue, the methylation values were averaged across all
subjects, following which, the correlation of all CpGs between two
tissues was calculated. The latter is an individual CpG-centric
strategy. The correlation was calculated separately for each CpG
using distinct data points from each subject.

Across-subject correlations
Overall levels of genome-wide DNA methylation correlation were
calculated from the average methylation across all CpGs between
each peripheral tissue and brain using Pearson’s correlation (Full:
Fig. 3, and Variable CpGs: Supplementary Figure S1). Blood and
saliva showed the highest correlation for DNA methylation
(r= 0.97 [Raw] and r= 1.00 [Adj]), followed by saliva and buccal
(r= 0.95 [Raw] and r= 1.00 [Adj]), and finally blood and buccal
(r= 0.87 [Raw] and r= 0.99 [Adj]). When peripheral tissues were
compared to brain, relatively high levels of correlation were
observed (blood–brain: r= 0.87 [Raw] and r= 0.84 [Adj]; saliva–brain:
r= 0.90 [Raw] and r= 0.84 [Adj]; and buccal–brain r= 0.88 [Raw] and
r= 0.84 [Adj]).

Within-subject correlations at each CpG
A within-subject comparison at the individual CpG level revealed
only a fraction of CpGs having significant correlations between the

peripheral tissues and the brain. Of the 825 637 CpGs, 19.0% (156
999 CpGs) [Raw] and 14.7% (121 321 CpGs) [Adj] were correlated at a
nominal level of significance (P < 0.05, uncorrected) in blood;
14.4% (119 294 CpGs) [Raw] and 14.5% (119 748 CpGs) [Adj] in saliva;
and 9.8% (80 580 CpGs) [Raw] and 11.1% (91 625 CpGs) [Adj] in
buccal, each with an r >± 0.46. Meanwhile, moderately strong
correlations (r > 0.5) were seen in 14.7% [Raw] and 10.6% [Adj] of the
CpGs in blood, 10.5% [Raw] and 10.5% [Adj] in saliva, and 6.8% [Raw]

and 7.4% [Adj] in buccal. The mean and median correlations for
blood were rmean= 0.18 [Raw] and rmean= 0.16 [Adj], and rmedian=
0.17 [Raw] and rmedian= 0.15 [Adj], respectively; for saliva, rmean=
0.14 [Raw] and rmean= 0.15 [Adj], and rmedian= 0.13 [Raw] and
rmedian= 0.15 [Adj]; and for buccal, rmean= 0.10 [Raw] and rmean=
0.10 [Adj], and rmedian= 0.09 [Raw] and rmedian= 0.10 [Adj]. Figure 4
shows the distribution of correlations for each peripheral tissue’s
correlation to the brain across all CpGs. The variable CpGs for each
peripheral tissue is as follows: blood = 365 648 [Raw] and 237
715 [Adj]; saliva = 456 453 [Raw] and 335 478 [Adj]; and buccal = 453
651 [Raw] and 349 680 [Adj]. Of the variable CpGs, with variability
calculated as described by Hannon et al. [12], 19.6% [Raw] and
20.0% [Adj] of the variable CpGs in blood, 15.5% [Raw] and 21.9%
[Adj] in saliva, and 13.1% [Raw] and 29.4% [Adj] in buccal were
nominally correlated. Additionally, 15.4% [Raw] and 16.0% [Adj] of
the variable CpGs in blood, 12.1% [Raw] and 17.6% [Adj] in saliva,
and 10.5% [Raw] and 15.8% [Adj] in buccal were moderately
correlated (r > 0.5). These within-subject comparisons contrast
with the correlations seen across the average methylation values
for all CpGs, where blood had the greatest correlation. A portion of
the individual CpGs survived the Benjamini–Hochberg correction
for multiple testing. This included 53 482 CpGs [Raw] and 13 064
CpGs [Adj] for blood, 26 576 CpGs [Raw] and 19 584 CpGs [Adj] for
saliva, and 14 764 CpGs [Raw] and 14 214 CpGs [Adj] for buccal, with
corresponding rho values greater than 0.65 (Supplementary Table
S4). We choose the Benjamini–Hochberg correction instead of the
Bonferroni correction since only the P= 0 probe (The P-values of
the Spearman correlation analysis were calculated as 0 if less than

Fig. 3 Density scatter plots of cross-tissue correlation for each tissue combination. (A) Raw, and (B) cell proportion adjusted datasets. AMZ:
AMAZE-CpG dataset, and IMG: IMAGE-CpG dataset. Red line: regression line.
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7.57e-08. See Supplementary Table S4, column F.) were listed if
the Bonferroni correction was used.

Correlations by subject
We evaluated the consistency of the correlations among individuals.
For all but seven of the 19 subjects, the saliva–brain correlation
(rmean= 0.86 [Raw]) was greater than the blood–brain correlation
(rmean= 0.85 [Raw]). The buccal–brain correlation (rmean= 0.84 [Raw])
was the lowest in every individual, except for nine individuals for
whom it was higher than blood–brain and seven individuals for
whom it was higher than saliva–brain (Supplementary Fig. S2). As
Braun et al. [4] discovered, our data also replicated such
phenomenon that when the buccal–brain correlation increased
within subjects, their buccal–blood correlations also increased
(r= 0.81, P= 2.9e− 05 [Raw]) (Supplementary Fig. S3). This was not
the case for the remaining correlational combinations.

Cross-database correlations of the correlation coefficients
with IMAGE-CpG
Comparing peripheral tissues across datasets, saliva and buccal had
the highest correlation coefficients (r= 0.41 [Raw] and r= 0.29 [Adj]),
followed by blood and buccal (r= 0.30 [Raw] and r= 0.23 [Adj]), and
finally blood and saliva (r= 0.22 [Raw] and r= 0.33 [Adj]) (Full: Fig. 5,
and Variable CpGs: Supplementary Fig. S4). When comparing
peripheral tissues to the brain, we determine relatively lower

levels of correlation between the datasets (blood–brain r= 0.27
[Raw] and r= 0.21 [Adj], buccal–brain r= 0.24 [Raw] and r= 0.21 [Adj],
and saliva–brain r= 0.18 [Raw] and r= 0.20 [Adj]). We tentatively
defined the methylation sites for which the difference in
correlation coefficients was less than 0.2, as relatively common
probes regardless of database differences. This means that they
are stable and relatively less dependent on the differences
between datasets. The number of sites varied by tissue type, with
87 189 [Raw] and 82 985 [Adj] sites being shared by all three types.

Correlation coefficients across databases for the GSE59685
[12] and GSE95049 [13] datasets
Both GSE59685 and GSE95049 datasets exhibited correlations
across subjects (Supplementary Fig. S5). In each case, the
correlation coefficients between AMAZE-CpG and the two
previous databases were relatively lower (Supplementary Fig. S6).

Evaluation of the potential SNP confounding effect
The results obtained from gap statistics and K-means method
parameters are summarized in Supplementary Table S3. Based on
the criteria, SNPs were likely to affect 6 662 in blood, 27 487 in
saliva, 19 280 in buccal, and 4 780 in all three common samples.
Supplementary Fig. S7 shows that the cluster number in each case
was 1, 2, and 3. The numbers 2 and 3 are examples of CpG sites
that were affected by SNPs.

Fig. 4 Histograms depicting the distribution of correlations (rho) of the individual CpGs between the brain and blood (left), saliva
(center), and buccal (right). (red) Datasets in raw and (blue) cell proportion adjusted form. AMZ AMAZE-CpG dataset, and IMG IMAGE-CpG
dataset.
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Correlation of psychiatric-associated genes
As reported by Braun et al. [4], the brain–peripheral correlations of
candidate psychiatric genes were investigated (Supplementary
Fig. S8). Variable levels of correlation among the peripheral tissues
were revealed for each gene, with across-subject correlations
ranging rho= 0.79–0.99 and within-subject correlations ranging
rho= 0.01–0.36 for the individual CpGs, with the highest
peripheral correlations varying by gene (Supplementary Table S5).

AMAZE-CpG
A website for AMAZE-CpG has been created that enables
researchers to examine DNA methylation levels and the degree
of correlation between individual CpGs and genes from the
Illumina EPIC platform (19 Japanese subjects; brain, blood, saliva,
and buccal). It can be accessed at https://snishit-amaze-
cpg.web.app/.

DISCUSSION
The results of cross-tissue correlations in AMAZE-CpG and IMAGE-
CpG were quite similar. However, cross-database correlations of
the correlation coefficients with IMAGE-CpG when comparing
peripheral tissues to the brain were relatively low (r= 0.18–0.27
[Raw]). This could be attributed to ancestral differences, but it was
also likely influenced by population differences (e.g., age and
individual differences) and differences in brain regions and
disease types. It may be helpful to examine whether a correlation
exists with the brain using either of the two databases for
relatively common probes where the difference in correlation
coefficients is less than 0.2, as we tentatively defined. When
interpreting data from Japanese and Asians, AMAZE-CpG would
be more appropriate for probes greater than 0.2. The output
results of the AMAZE-CpG also include whether the difference in
correlation coefficient with the IMAGE-CpG is less than 0.2. The
correlation coefficients between AMAZE-CpG and the two
preceding databases, Hannon et al. [12] and Edgar et al. [13],

were lower than those between AMAZE-CpG and IMAGE-CpG. This
could be due to the different microarray formats (450 K) and the
use of post-mortem brains. When the case was compared to the
IMAGE-CpG dataset, relatively similar trends were observed,
indicating that those influences were more significant than
differences in ancestry or other factors. Therefore, when
interpreting the results of individual studies using these data-
bases, deciding which to use will be crucial for more accurate
interpretation.
We examined correlations restricted to variable CpGs using

Hannon et al.’s [12] definitions and found that the correlation
coefficients dropped significantly, similar to those in Braun et al.
[4]. This is most likely due to the effect of non-variable CpGs or
static methylation sites, many of which are expected to be
dependent on genetic sequences, and are based on removing the
correlation that appeared quasi-strong between the tissues.
Furthermore, even when variables were limited to variable CpGs,
the methylation correlation between brain and peripheral tissues
was not significantly improved. According to the current data, the
majority of methylation in the brain is most likely not
synchronized with methylation in the periphery. Despite this,
variable CpGs that correlate in the brain and periphery, although
in small numbers, may have biological relevance and could be
useful for inferring brain methylation from peripheral tissues.
Previously, Edgar et al. [13] constructed a dataset that was

adjusted for cell proportion and examined the methylation
correlation between brain and blood. We followed suit and
examined both raw and adjusted datasets, but the correlation
coefficients between brain and peripheral methylation did not
differ dramatically regardless of cell proportion adjustment. This
effect was especially noticeable for the correlation coefficients
between blood and saliva methylation and between saliva and
buccal methylation. Saliva DNA originates from a mixture of
neutrophils and buccal epithelial cells [8]. Therefore, adjusting for
these influences would most likely bring it closer to one of these
properties. Individual methylation studies may benefit from this

Fig. 5 Comparison of correlation coefficients between the datasets. Correlation density scatter plots of the Spearman’s rho between the
datasets for each tissue combination for (A) raw and (B) cell proportion adjusted datasets. Venn diagrams summarizing the number of
correlations between the brain and each peripheral tissue that did not differ within Δrho < 0.2 between the datasets for (C) Raw and (D) cell
proportion adjusted datasets. AMZ AMAZE-CpG dataset, and IMG IMAGE-CpG dataset. The regression line is in red. The dashed line represents
the boundary line within Δrho < 0.2 between the datasets.
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cell proportion adjustment to unify their disparate use of blood,
saliva, or buccal. For example, when the study subjects are not
clinical populations or children, many studies use saliva or buccal,
rather than blood, as the source of DNA [8]. More studies will use
the buccal if the subjects are even younger children, such as
neonates or infants [30]. This means that the tissues analyzed for
methylation differ from study to study, making comparison of
study results difficult. Given that adjusting for cell proportion can
result in such a high correlation between peripheral tissues, there
may be a way to account for minor tissue differences in blood,
saliva, and buccal.
In a recent study, we found that the promoter region of the OXT

gene methylation in saliva DNA was more common in children
who experienced maltreatment than in controls [31]. Given the
tissue specificity issue in this study, we used IMAGE-CpG to
demonstrate that correlation with the brain was not found.
However, when the same locations were tested with AMAZE-CpG,
these saliva methylations were positively correlated with brain
methylation in multiple locations (Supplementary Table S6). This
difference may or may not have been the result of using an
ancestry-matched database, but it is an example of how an
ancestry-matched database can be more reliable.
This study has six major limitations. First, the sample size is still

smaller than three of the previously published four datasets,
which may make the dataset underpowered for tissue correlations
of DNA methylation patterns. We will further increase the sample
size to eliminate the impact of individual differences. Because we
have the MNI coordinates for all of the brain tissues used in this
study, we may be able to perform correlation analysis focusing on
each exact brain region if the sample size is increased. The CER
had a significantly different methylation pattern than other brain
regions in the dataset of Hannon et al. [12]; thus, it is preferable to
analyze the data by brain region. However, because this was a
post-mortem brain study, the rough brain regions (frontal and
temporal cortexes, etc.) can be chosen from the listed biobanks.
While the present study has the strength of being able to handle
living samples, it has the weakness of not being able to choose
the region. Second, the subjects of the database underwent
neurosurgery for multiple purposes. We did not address the
potential disease-driven differences, although most of the brain
tissues were classified as “Control tissues (normal tissues)” by the
online classification tool for DNA methylation-based classification
of central nervous system tumors. This also overlaps with the
limitations of the sample size, however, as more sample numbers
are accumulated, the potential differences driven by each disease
should also be clarified. Third, although brain tissues contain
neurons and various types of glial cells, we did not fractionate
them using FACS, as Braun et al. [4] did. After cell sorting, it would
be useful to profile the methylation of each brain cell type. Forth,
even though the influence of SNPs was eliminated using methods
based on gap statistics and k-means clustering, not everything
was accurately captured. Our correlation analysis should be less
susceptible than parametric correlation analysis, even if a few
samples are outliners, because of the nonparametric Spearman’s
analysis. The parameters we used to filter the potential CpG sites
influenced by the SNPs are included in the database search results
output. Therefore, even if the correlation coefficient appears to be
high, it should be interpreted appropriately by referring to these
parameters to determine whether it is due to SNP influences or
not. Fifth, population stratification was needed to precisely
determine by genotyped data to clarify the ancestral background,
although at least we have estimated it based on DNA methylation.
Indirectly, it also links to the analysis of mQTLs. It will be an
important approach for future investigations. Finally, the methyla-
tion targeted by this study accounts for only about 3% of whole
genome methylation (28 million). Future studies must transition
from microarray-based analysis to whole genome sequencing.

In conclusion, this study has developed the first Asian
population genome-wide DNA methylation dataset as a
brain–peripheral tissues correlation database. This database would
be especially useful in interpreting individual epigenetic study
results from various Asian populations, including those from
Japan. Although peripheral methylation status does not always
reflect that of the brain, it cannot be applied universally, and some
may reflect brain methylation. If we can narrow in on such
methylation, neuroepigenetics will be accelerated, and the current
database will contribute to them.
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