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A portable, low-field-strength (0.064-T) MRI system 
has been recently studied (1,2). However, portable 

MRI has limitations that include a reduced signal-to-
noise ratio and limited spatial image resolution (1.6 × 
1.6 × 5 mm3) compared with high-field-strength MRI 
at 1.5–3 T. Therefore, a key goal is to maximize the ex-
traction of available information by transforming lower 

spatial resolution low-field-strength MRI data into high-
er spatial resolution images (1 × 1 × 1 mm3 isotropic) while 
maintaining accuracy.

Quantitative morphometry is central to many neuro-
imaging studies (3,4). Morphometry of low-field-strength 
MRI would substantially extend its use for research and 
clinical neuroimaging. Existing MRI segmentation tools 

Background: Portable, low-field-strength (0.064-T) MRI has the potential to transform neuroimaging but is limited by low spatial 
resolution and low signal-to-noise ratio.

Purpose: To implement a machine learning super-resolution algorithm that synthesizes higher spatial resolution images (1-mm 
isotropic) from lower resolution T1-weighted and T2-weighted portable brain MRI scans, making them amenable to automated 
quantitative morphometry.

Materials and Methods: An external high-field-strength MRI data set (1-mm isotropic scans from the Open Access Series of Imaging 
Studies data set) and segmentations for 39 regions of interest (ROIs) in the brain were used to train a super-resolution convolu-
tional neural network (CNN). Secondary analysis of an internal test set of 24 paired low- and high-field-strength clinical MRI 
scans in participants with neurologic symptoms was performed. These were part of a prospective observational study (August 2020 
to December 2021) at Massachusetts General Hospital (exclusion criteria: inability to lay flat, body habitus preventing low-field-
strength MRI, presence of MRI contraindications). Three well-established automated segmentation tools were applied to three sets 
of scans: high-field-strength (1.5–3 T, reference standard), low-field-strength (0.064 T), and synthetic high-field-strength images 
generated from the low-field-strength data with the CNN. Statistical significance of correlations was assessed with Student t tests. 
Correlation coefficients were compared with Steiger Z tests.

Results: Eleven participants (mean age, 50 years ± 14; seven men) had full cerebrum coverage in the images without motion arti-
facts or large stroke lesion with distortion from mass effect. Direct segmentation of low-field-strength MRI yielded nonsignificant 
correlations with volumetric measurements from high field strength for most ROIs (P > .05). Correlations largely improved when 
segmenting the synthetic images: P values were less than .05 for all ROIs (eg, for the hippocampus [r = 0.85; P < .001], thalamus 
[r = 0.84; P = .001], and whole cerebrum [r = 0.92; P < .001]). Deviations from the model (z score maps) visually correlated with 
pathologic abnormalities.

Conclusion: This work demonstrated proof-of-principle augmentation of portable MRI with a machine learning super-resolution 
algorithm, which yielded highly correlated brain morphometric measurements to real higher resolution images.
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magnetization-prepared rapid gradient-echo acquisition scans 
in 20 participants (10 men; mean age, 51.3 years ± 27.5 [SD]; 
Table 1) from the Open Access Series of Imaging Studies (11), 
a neuroimaging, clinical, cognitive, and biomarker data set for 
normal aging and Alzheimer disease. In addition to the raw 
images, we used corresponding segmentations of 39 regions of 
interest (ROIs), as follows: 36 brain ROIs, segmented manually; 
and three extracerebral ROIs, segmented automatically with a 
publicly available Bayesian algorithm that is resilient to changes 
in MRI pulse sequence and segments extracerebral tissue 
(12). The training set was also artificially augmented to better 
model pathologic tissue like stroke or hemorrhage (Appen-
dix S1).

Test data set.—Evaluation relied on secondary analysis of a data 
set of paired low- and high-field-strength scans from the same 
participants. The low-field-strength data included T1- and T2-
weighted scans acquired with a 0.064-T portable MRI scanner 
(Swoop; Hyperfine). Reference standard segmentations and 
associated ROI volumes were obtained by processing high-
field-strength MRI scans (1.5–3 T) from the same participants 
with a publicly available machine learning approach (SynthSeg; 
https://surfer.nmr.mgh.harvard.edu/fswiki/SynthSeg [13,14]). De-
tails regarding the scanning protocols, pulse sequences, and 
parameters are in Appendix S1).

Synthesis, super-resolution, and segmentation of low-field-
strength MRI.—The training data set was used to train a CNN 
(a three-dimensional U-net [15,16]) to predict 1-mm isotro-
pic magnetization-prepared rapid gradient-echo acquisition 
scans from the T1- and T2-weighted low-field-strength MRI  
examinations in each participant. The proposed method,  
LF-SynthSR, builds on our previous method, SynthSR (17). 
Like its predecessor, LF-SynthSR uses a synthetic data gen-
erator (Fig 1) to expose the CNN to images of highly varying 
appearance during training, which yields a CNN that is robust 
against domain shift.

(eg, FreeSurfer, https://surfer.nmr.mgh.harvard.edu [5]; FSL, 
https://fsl.fmrib.ox.ac.uk/fsl [6]; and SPM, https://www.fil.ion.
ucl.ac.uk/spm [7]) have prerequisites in terms of image resolu-
tion (typically 1 mm3 isotropic), MRI pulse sequence (often 
T1 weighted), and signal-to-noise ratio. These prerequisites are 
often satisfied with a magnetization-prepared rapid gradient-
echo acquisition or one of its variants, acquired with high-field-
strength MRI. Unfortunately, such requirements are not met 
by low-field-strength MRI, therefore precluding application of 
segmentation tools to these data sets.

Modern super-resolution methods use convolutional neural 
networks (CNNs) to generate a high-spatial-resolution output 
from low-spatial-resolution input or inputs (8,9). However, ap-
plication to low-field-strength MRI would require compiling a 
large data set of paired and accurately aligned low-resolution and 
high-resolution images, which is difficult because of nonlinear 
spatial distortions. One common alternative is to down-sample 
high-spatial-resolution scans to obtain paired images (8). How-
ever, this approach may fail when processing low-field-strength 
MRI because down-sampled high-field-strength MRI does not 
resemble low-field-strength MRI closely enough. This problem 
is known as domain shift (10).

Our study presents low-field SynthSR (hereafter, referred to 
as LF-SynthSR), a method to train a CNN that uses low-field-
strength (0.064-T) T1-and T2-weighted brain MRI sequences 
to generate an image with 1-mm isotropic spatial resolution and 
the appearence of a magnetization-prepared rapid gradient-echo 
acquisition. We demonstrate the potential of LF-SynthSR in 
quantitative neuroradiology by correlating brain morphometry 
measurements between the synthetic and ground truth high-
field-strength images.

Materials and Methods

MRI Data

Training data set.—To train the super-resolution CNN, we used 
a high-field-strength MRI data set composed of 1-mm isotropic 

Abbreviations
CNN = convolutional neural network, ROI = region of interest

Summary
Synthetic super-resolved images generated by a machine learning algo-
rithm from portable low-field-strength (0.064-T) brain MRI had good 
agreement with real images at high field strength (1.5–3 T).

Key Results
 ■ In 24 patients who presented with neurologic symptoms, a 

machine learning super-resolution algorithm generated 1-mm 
isotropic synthetic magnetization-prepared rapid gradient-echo 
high-spatial-resolution images from low-field-strength (0.064-T) 
brain MRI sequences.

 ■ Synthetic images had highly correlated region of interest volumes 
compared with real 1-mm isotropic high-field-strength (1.5–3-T) 
MRI scans when segmented with automated methods for individual 
regions (eg, hippocampal volume [r = 0.85], thalamus [r = 0.84], 
and whole cerebrum [r = 0.92]).

Table 1: Demographics of Training and Test Data Sets

Parameter Training Data Set Test Data Set
Mean age (y)* 51.3 ± 27.5  

(18–82)
49.5 ± 14.1  

(24–76)
No. of male participants 10 (50) 7 (64%)
Diagnosis
 Healthy volunteer 14 (70)
 Alzheimer disease 6 (30)
 Stroke 4 (36)
 Dizziness 3 (27)
 Headache 2 (18)
 Seizure 2 (18)

Note.—Data in parentheses are percentages. The training data set 
was OASIS (11) (20 participants); the test data set was internal 
(11 participants).
*Mean data are ± standard deviation and the data in parentheses 
are the range.
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CNN training minimized an intensity loss equal to the sum 
of absolute differences between the ground truth and predicted 
intensities. Compared with the original SynthSR, our method 
also includes a semantic segmentation loss in the architecture 
(Fig 1), which uses a pretrained segmentation CNN with so-
called frozen weights (ie, not updated during training). This 
loss ensures accurate synthesis in regions such as the globus 
pallidum, where subtle intensity differences may lead to large 
segmentation mistakes. Further details can be found in Ap-
pendix S1.

At test time, the low-field-strength MRI data were processed 
by co-registering the T1- and T2-weighted low-field-strength 
MRI scans with NiftyReg (18) and feeding them to the trained 
CNN to obtain the synthetic 1-mm magnetization-prepared 
rapid gradient-echo acquisition output. These synthetic mag-
netization-prepared rapid gradient-echo acquisition scans were 
subsequently segmented with SynthSeg (13,14).

The code to train and apply the CNN is available (github.
com/BBillot/SynthSR and github.com/freesurfer/freesurfer/tree/
dev/mri_synthsr). A ready-to-use implementation is also 
available as part of FreeSurfer (surfer.nmr.mgh.harvard.edu/
fswiki/SynthSR).

Experimental setup.—We compared the ability of several 
segmentation tools to generate accurate ROI volumes from the 
low-field-strength scans, relative to the reference standard volumes 
obtained from the high-field-strength MRI scans. We consid-
ered four publicly available segmentation tools (FreeSurfer [5], 
SynthSeg [13,14], FSL-FIRST [6], and SAMSEG [12]) directly 
applied to the low-field-strength MRI and to LF-SynthSR. We 
note that SAMSEG can jointly exploit T1- and T2-weighted  
information, whereas FreeSurfer and FSL-FIRST can only use the 
T1-weighted scans and SynthSeg can only use one scan at the 
time (either T1- or T2-weighted scans).

We also computed so-called abnormality maps using the tech-
nique described in Appendix S1. In short, these are z scores that 
quantify the statistical deviation of every low-field-strength MRI 
voxel from the expected image intensities while accounting for 
partial-volume effects. They provide an additional data layer 
that quantitatively highlights potential abnormalities on na-
tive low-field-strength scans.

Statistical Analysis
The agreement between ROI volumes was measured with the 
Pearson correlation coefficient and its statistical significance was 

Figure 1: Architecture of the proposed convolutional neural network (CNN). The synthetic data generator was based on our previously published 
technique, SynthSR (17). It used the training set to produce minibatches, which consisted of synthetic low-field-strength MRI and corresponding high-
field-strength MRI and high-spatial-resolution segmentations. The super-resolution CNN (a U-net [16], the most widespread segmentation CNN in medical 
imaging) predicted high-spatial-resolution intensities that were compared with the ground truth high-field-strength MRI to update the CNN weights. In addition, 
the predicted intensities were fed to a segmentation U-net pretrained to segment 1-mm3 isotropic magnetization-prepared rapid gradient-echo (MPRAGE) 
scans (with frozen weights), and the output was compared with the ground truth segmentation to inform training. The upper half of the figure (inside the red 
dotted line) corresponds to the architecture in the original SynthSR publication. The segmentation head (inside the purple dotted line) was added for improving the 
accuracy of the synthesis.
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measured with the Student t test. This agreement was further 
analyzed with Bland-Altman plots (19), including Kolmogorov-
Smirnov tests of normality of the differences. Correlations 
obtained with different methods were compared with the Steiger 
Z test for dependent correlations (20). All statistical analyses were 
performed by using software (Matlab R2020a; MathWorks).

Because the proposed method LF-SynthSR produces images 
that look similar to real magnetization-prepared rapid gradient-
echo acquisition scans, we expect the correlations to be strong  
(r > 0.70). A sample size calculation with an α value of .05 (one-
tailed test) and a β value of .20 yielded the following: 11 images, 
r value of 0.70; eight images, r value of 0.80; and six images, 
r value of 0.90.

Results

Data Set Characteristics
The test set consists of imaging data from 24 participants from 
a prospective observational study performed from August 
2020 to December 2021 at Massachusetts General Hospital. 
Participants who presented with neurologic symptoms and 
who were scheduled for standard-of-care neuroimaging  
(ie, high-field-strength MRI) were approached for participation  
in low-field-strength scanning, therefore yielding paired low-
field-strength (0.04-T) and high-field-strength (1.5–3-T) data. 
Exclusion criteria consisted of an inability to lie flat, a body 
habitus preventing low-field-strength MRI, and the presence 
of MRI contraindications. From this 24-person sample, we  
excluded individuals with incomplete coverage of the cerebrum 
in the low-field-strength images (five participants), severe motion  
artifacts (three participants), and large stroke lesion with distor-
tion from mass effect (five participants), which yielded a final 
sample of 11 participants (mean age, 49.5 years ± 14.1; seven 

men; two participants with stroke lesions; Table 1). Written 
consent was obtained from all participants with the approval of 
the local institutional review board.

Qualitative Results
Examples of super-resolution and segmentation of three rep-
resentative participants are shown in Figure 2. Direct segmen-
tation of the low-field-strength MRI scans with FSL-FIRST 
and SAMSEG led to mistakes (eg, FSL-FIRST misplaced the 
basal ganglia and undersegmented the hippocampus). Likewise, 
SAMSEG could not cope with the low resolution of the scans 
and segmented most ROIs poorly, especially the convoluted 
cerebral cortex. LF-SynthSR, however, successfully recovered the 
high-frequency information that was missing in the low-field-
strength scan (especially between axial sections, as highlighted 
at the coronal and sagittal views) and yielded an automated seg-
mentation that was much closer to the ground truth from the 
high-field-strength scan.

Quantitative Results
Table 2 shows the correlation between the reference standard 
volumes (derived from the high-field-strength MRI scans) and 
the volumes estimated by the different competing methods from 
the low-field-strength MRI data. Scatterplots for each brain 
ROI, including the root mean square errors, can be found in 
Figures 3–5; Bland-Altman plots are shown in Figures S1–S3. 
FreeSurfer and SynthSeg were unable to produce usable seg-
mentations from the low-field-strength MRI scans and did 
not yield correlated ROI volumes compared with the reference  
standard. FSL-FIRST and SAMSEG were able to generate  
usable segmentations in some ROIs, with volumes that were 
moderately correlated with the reference standard (Table 2; 
Figs 3, 4). However, LF-SynthSR was able to generate volumes 

Figure 2: Qualitative comparison of the proposed method (LF-SynthSR) with automated segmentation tools in three different participants; image sections are shown in 
both native (axial) and orthogonal reconstructed projections (coronal, sagittal). Row 1 shows an axial section (native), row 2 shows a coronal section (reconstructed),  
and row 3 shows a sagittal section (also reconstructed). The images show (A) low-field-strength T1-weighted and T2-weighted MRI scans, automated segmentations  
produced by (B) FSL-FIRST (6) and (C) SAMSEG (12), (D) the output of LF-SynthSR and its automated segmentation with SynthSeg (13,14), and (E) registered real  
high-field-strength scan and its automated segmentation with SynthSeg.
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Table 2: Pearson Correlation of Region-of-Interest Volumes Obtained with High-Field-Strength MRI and Low-Field-Strength MRI

Area

FSL-FIRST SAMSEG LF-SynthSR

r Value P Value r Value P Value r Value P Value
Cerebral cortex NA NA 0.92 <.001 0.93 <.001
White matter NA NA 0.90 <.001 0.93 <.001
Hippocampus 0.40* .23 0.2* .54 0.85 <.001
Amygdala 0.25 † .46 0.74 .009 0.66 .03
Caudate 0.62 .04 0.05 † .88 0.71 .01
Putamen 0.46 .16 0.24† .47 0.62 .04
Pallidum 0.25* .47 0.81 .002 0.71 .01
Ventricles NA NA 0.95 <.001 0.97 <.001
Thalamus 0.51* .11 0.4† .21 0.84 .001
Whole cerebrum NA NA 0.91 <.001 0.92 <.001

Note.—High-field-strength data corresponded to 1.5–3-T MRI; low-field-strength data corresponded to 0.064-T MRI. Data were 
computed directly with two publicly available segmentation methods (FSL-FIRST and SAMSEG) and with the proposed technique 
(LF-SynthSR). FSL-FIRST does not provide segmentations for some of the regions of interest (ROIs). Steiger Z tests for dependent 
correlations, assessing whether the correlation coefficients for FSL-FIRST or SAMSEG were significantly lower than those for method 
(LF-SynthSR) did not produce correlations significantly lower than SAMSEG of FSL-FIRST for any of the ROIs. P values are for two-
tailed t tests assessing whether the correlation coefficient is significantly different from zero.
* P < .05 (Steiger Z test).
† P < .01 (Steiger Z test).

Figure 3: Scatterplots for FSL-FIRST, comparing the volumes of regions of interest derived from the high-field-strength MRI scans (ground truth) and from 
the low-field-strength MRI scans using the publicly available automated segmentation method FSL-FIRST (6). The root mean square error (RMSE) and 
correlation coefficient (r value) are shown.
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Figure 4: Scatterplots for SAMSEG, comparing the volumes of regions of interest derived from the high-field-strength MRI scans (ground truth) and from 
the low-field-strength MRI scans using the publicly available automated segmentation method SAMSEG (12). The root mean square error (RMSE) and cor-
relation coefficient (r value) are shown.
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Figure 5: Scatterplots for the proposed technique (LF-SynthSR), comparing the volumes of regions of interest derived from the high-field-strength MRI 
scans (ground truth) and from the low-field-strength MRI scans using LF-SynthSR. The root mean square error (RMSE) and correlation coefficient (r value) 
are shown.
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that were more highly correlated with the ground truth: The 
correlation was very strong (r > 0.8) for hippocampus, thalamus,  
ventricles, white matter, and cortex; and moderately strong  
(r > 0.6) for amygdala, caudate, putamen, and pallidum (Table 2, 
Fig 5). The Bland-Altman plots also showed that LF-SynthSR 
exhibited reduced bias: LF-SynthSR showed minor biases in the 
pallidum, ventricles, and thalamus, whereas FSL-FIRST and 
SAMSEG showed biases for nearly every ROI.

Correlation coefficients compared by using a Steiger Z test 
(P values in Table 2) showed that our method produced  
significantly higher correlations for the amygdala and pallidum 
(compared with FSL-FIRST), caudate and putamen (compared 
with SAMSEG), and hippocampus and thalamus (compared 
with both). LF-SynthSR did not produce correlations signifi-
cantly lower than SAMSEG of FSL-FIRST for any of the ROIs.

Finally, Figure 6 shows the abnormality maps for the two 
participants with stroke lesions. These data layers visually cor-
related well with the lesions and described them voxel by voxel 
in a quantitative fashion.

Discussion
In this study, we present LF-SynthSR, a technique to train 
a convolutional neural network, which uses low-field-
strength (0.064-T) T1- and T2-weighted brain MRI se-
quences to generate synthetic images with 1-mm isotropic 
resolution and the appearance of a magnetization-prepared 
rapid gradient-echo scan. In a secondary analysis of 11 
participants who presented with neurologic symptoms, au-

tomated segmentation of the synthetic images yielded re-
gion-of-interest volumes that were highly correlated with 
those derived from real high-field-strength (1.5–3-T) MRI 
scans, as follows: r value for hippocampal volume, 0.85  
(P < .001); r value for thalamus, 0.84 (P = .001); and r value 
for the whole cerebrum, 0.92 (P < .001). Z score maps of signal 
intensities visually correlated well with pathologic findings.

Compared with LF-SynthSR, well-established segmenta-
tion techniques such as FSL-FIRST and SAMSEG struggled to 
find the boundaries of ROIs because of the poor spatial resolu-
tion of the scans, rendering their output unusable. FSL-FIRST 
produced P values greater than .05 for the correlation of every 
ROI other than the caudate, and SAMSEG produced significant  
correlations (P < .05) for some structures (amygdala and pal-
lidum, and larger structures like the cortex, white matter, and 
ventricles), but the correlations for the remaining ROIs (hip-
pocampus, caudate, putamen, and thalamus) were weak and 
not significant (P < .05).

LF-SynthSR may improve the image quality of low-field-
strength MRI scans to the point that they are usable not only 
by automated segmentation methods but potentially also 
with registration and classification algorithms. The quantita-
tive results demonstrated that the volume correlations were 
significant (P < .05) for all ROIs, with strong correlations for 
the large ROIs (cortex, white matter, ventricles, and whole 
brain: r > 0.9; hippocampus: r = 0.85; and thalamus: r = 0.84) 
and strong correlations for all other structures (r > 0.6 in all 
cases). We further leveraged LF-SynthSR to highlight areas of 

Figure 6: Stroke lesions and abnormality maps for the two participants with stroke in the test set that satisfied the inclusion criteria. (A) Axial section of a T2-weighted 
high-field-strength (3-T) MRI scan in a 51-year-old male participant, without contrast ehnancement, shows a stroke lesion. (B) Approximately corresponding section in a 
T2-weighted low-field-strength (0.064-T) MRI scan in the same participant. (C) Abnormality map (ie, absolute value of Z scores) for the same section, thresholded at  
|z| = 1.96 (ie, the 95% CI), overlaid on the low-field-strength scan. (D) Three-dimensional rendering of the main cluster of the abnormality map shows the whole stroke 
lesion. (E) Coronal section in a 63-year-old female participant, acquired with the same imaging protocol as A, also with a stroke lesion. (F) Approximately corresponding 
section in low-field-strength scan. (G) Abnormality map thresholded at the 95% CI. (H) Three-dimensional rendering.



Iglesias et al

Radiology: Volume 306: Number 3—March 2023 ■ radiology.rsna.org 9

pathologic findings by generating an additional data layer that 
quantifies the statistical deviation from the expected image  
intensities. This approach could be used to augment the de-
tection of abnormal lesions.

Our study had three main limitations. The sample size was 
small because of the limited number of participants with paired 
low-field-strength or high-field-strength MRI data. Second, the 
validation was limited to a single downstream task (segmenta-
tion), which is a quantitative proxy for the goal of detecting 
clinically relevant findings. Third, our method did not estimate 
the uncertainty in the output.

In conclusion, LF-SynthSR overcomes the limitations of pre-
vious super-resolution tools with low-field-strength MRI and 
enables quantitative morphometry of low-field-strength MRI. 
Future work will need to include the incorporation of uncer-
tainty estimates to improve the reliability of our method and 
its extension to enhance the detection of normal and abnormal 
findings on images.
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