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Abstract 

Background  Asthma is a heterogeneous disease with high morbidity. Advancement in high-throughput multi-omics 
approaches has enabled the collection of molecular assessments at different layers, providing a complementary per‑
spective of complex diseases. Numerous computational methods have been developed for the omics-based patient 
classification or disease outcome prediction. Yet, a systematic benchmarking of those methods using various combi‑
nations of omics data for the prediction of asthma development is still lacking.

Objective  We aimed to investigate the computational methods in disease status prediction using multi-omics data.

Method  We systematically benchmarked 18 computational methods using all the 63 combinations of six omics data 
(GWAS, miRNA, mRNA, microbiome, metabolome, DNA methylation) collected in The Vitamin D Antenatal Asthma 
Reduction Trial (VDAART) cohort. We evaluated each method using standard performance metrics for each of the 63 
omics combinations.

Results  Our results indicate that overall Logistic Regression, Multi-Layer Perceptron, and MOGONET display superior 
performance, and the combination of transcriptional, genomic and microbiome data achieves the best prediction. 
Moreover, we find that including the clinical data can further improve the prediction performance for some but not 
all the omics combinations.

Conclusions  Specific omics combinations can reach the optimal prediction of asthma development in children. And 
certain computational methods showed superior performance than other methods.
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Background
Asthma is a chronic condition characterized by wheez-
ing, coughing and reversible airflow obstruction [1]. The 
global prevalence, morbidity, mortality, and economic 
burden associated with asthma have been increasing 
in the past decades [2]. Advances in high-throughput 
sequencing technologies enable the availability of molec-
ular assessments at the genome, epigenome, transcrip-
tome, proteome, metabolome, and microbiome levels, 
providing the potential for a comprehensive understand-
ing of human health and diseases [3–6]. Prediction of 
disease status, including asthma, is critical for under-
standing the etiology of the disease, discovering the 
molecular biomarkers and subsequentially identifying 
suitable interventions. Integrated approaches through 
combining multi-omics data from different biological 
layers might improve our ability to bridge the gap from 
genotype to phenotype [7–10].

Numerous computational methods have been devel-
oped to classify patients using their single- or multi-
omics data. For example, ensemble-based methods, 
random forest, and gradient boost decision trees have 
shown superior performance over only using single-
omics data or by directly concatenating the features from 
different omics data types for multi-omics classification 
tasks [11–13]. Moreover, several deep learning-based 
methods have been proposed for the classification in 
biomedical applications, generating higher performance 
than existing supervised multi-omics integration meth-
ods in various classification tasks [14, 15]. However, 
benchmarking those computational methods using vari-
ous combinations of omics data for the disease status 
prediction has not been studied before. Note that for the 
disease status prediction, the omics data were collected 

before the disease onset, which is fundamentally different 
from the patient classification problem where the omics 
data were collected after the disease onset.

Here, we compared different disease status prediction 
methods (using standard performance metrics) on six 
different types of omics data collected in The Vitamin D 
Antenatal Asthma Reduction Trial (VDAART) cohort 
[16]. Our aim is to identify the best prediction method 
and the best combination of omics data for the prediction 
of asthma development (see Fig. 1). Our results indicate 
that Logistic Regression, Multi-Layer Perceptron, and 
Graph Neural Network-based method MOGONET dis-
play superior performance and the combinations of tran-
scriptional, genomic and microbiome data can yield the 
best prediction of asthma development. Moreover, we 
found that including the clinical covariates can further 
improve the prediction performance for some (but not 
all) omics combinations.

Methods
VDAART cohort
VDAART is a clinical trial to examine the hypothesis 
that vitamin D supplementation in pregnant women 
will prevent the development of asthma and allergies 
in their children [17, 18]. Pregnant women between 18 
and 40  years of age and at an estimated gestational age 
between 10 and 18 weeks were recruited at three clinical 
centers: Boston Medical Center, Washington University 
at Saint Louis, and Kaiser Permanente Southern Cali-
fornia Region. In the VDAART study, six types of omics 
data of the children have been collected: (1) GWAS: 
genome-wide SNP genotyping data and genome-wide 
association study analysis results. Genotyping of children 
in VDAART was performed on the Illumina Infinium 

Fig. 1  Workflow of the asthma development prediction. We collected six types of omics data taken at/before year 1 in the VDAART cohort: (1) 
GWAS: genome-wide SNP genotyping data and genome-wide association study analysis results; (2) Child miRNA (cord blood); (3) Child mRNA 
transcriptomics (cord blood); (4) Child microbiome 3–6 months; (5) Child metabolomics at 1 year; (6) Child DNA methylation data (cord blood). We 
split the subjects into two parts for hold-out validation and cross-validation, respectively. Then, we applied different classifiers to predict the asthma 
status at year 3 using the omics data. Each method was evaluated using Accuracy, F1 score, AUROC and AUPRC
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HumanOmniExpressExome BeadChip, and SNP geno-
types are called using the Illumina GenCall software. (2) 
child miRNA (cord blood); (3) child mRNA transcrip-
tomics (cord blood). Total RNA was isolated from sam-
ples by the Qiagen miRNAeasy Serum/Plasma extraction 
kit and QIAcube automation. Small RNA sequencing 
libraries were prepared using the Norgen Biotek Small 
RNA Library Prep Kit and then sequenced on the Illu-
mina NextSeq 500 platform at 51  bp single-end reads. 
(4) child microbiome at 3–6  months. DNA extractions 
were performed on stool samples, and the bacterial 16S 
rRNA gene (V3 to V5 hypervariable regions) was ampli-
fied. (5) child metabolomics at 1 year. Nontargeted global 
metabolomic profiles were generated at Metabolon Inc. 
by using ultra-performance liquid chromatography–tan-
dem mass spectroscopy (UPLC-MS/MS). (6) child DNA 
methylation data (cord blood). Cord blood and periph-
eral blood DNA using the Qiagen Puregene Kit (Valen-
cia, CA, USA) and bisulfite converted using the EZ DNA 
Methylation-Gold Kit (Zymo Research, Irvine, CA, USA). 
We randomized samples by chips and plates and gener-
ated DNA methylation data using the Infinium Human-
Methylation450 BeadChip (Illumina, San Diego, CA, 
USA).

Among the 748 child participants in VDAART, 102 
participants (13.6%) have all the six types of omics data 
available. Among the 6 omics data types, GWAS data 
has the largest sample size (see Fig. 2). Postnatally, every 
3  months, questionnaires administered to the mother 
by telephone up to the child’s third birthday inquired 
about the health of the infant and child, especially the 
occurrence of wheezing illnesses and asthma and allergy 
symptoms and diagnoses. In-person visit for the child 
obtained yearly questionnaire data, determined anthro-
pometric measurements, and collected blood. Here, we 

applied various machine learning models to predict the 
children’s asthma status at year 3 using those six omics 
data collected at/before year 1. Assessment of asthma 
was based on a doctor’s diagnosis which was defined as 
a positive response to a direct question to the mother at 
any time in the first three years of the life of the child. As 
recent symptoms may help identify young children with 
significant asthma [19], a more specific definition of doc-
tor’s diagnosis plus symptoms and medication use in the 
past was used. In addition, the following were also col-
lected in the VDAART study: vitamin D levels in blood 
of both the mother (through measurement of 25(OH)D 
levels in cord blood at delivery) and the child (at year 1); 
and other relevant covariates, e.g., maternal asthma, race 
and clinical center (see Table 1 for characteristic).

Prediction methods and performance evaluation
We leveraged several classical classifiers in scikit-sklearn 
[20], i.e., k-Nearest Neighbors (KNN), Logistic Regres-
sion (LR), LRCV (Logistic Regression with cross-val-
idator), Random Forest (RF), Multi-Layer Perceptron 
(MLP) and Gradient Boosting. We also considered two 
state-of-the-art deep learning methods: MOGONET [14] 
and Tabnet [21]. In addition, we also evaluated LR-VAE 
(Variational AutoEncoder) and LRCV-VAE, compress-
ing the input dimension of miRNA, mRNA, microbi-
ome, metabolomics and DNA methylation data to 5 via 
the variational autoencoder, which has been heavily 
used in dimension reduction for biological data [22, 23] 
(see Table 2 for the list of prediction methods). To com-
pare the performance of different methods on predic-
tion of asthma status, we first split the subjects into two 
groups for the following evaluation purposes: (1) Hold-
out validation: among the 102 subjects that have all six 
omics data types available, we randomly chose 16 cases, 

Fig. 2  UpSet plot of the intersection of six types of omics data in the VDAART cohort. GWAS: genome-wide SNP genotyping data and 
genome-wide association study analysis results; (2) Child miRNA (cord blood); (3) Child mRNA transcriptomics (cord blood); (4) Child microbiome 
3–6 months; (5) Child metabolomics at 1 year; (6) Child DNA methylation data (cord blood)
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then randomly selected 16 controls whose race and clini-
cal center match each case. (2) Cross-validation: fivefold 
cross-validation was used to evaluate the performance of 
each classification method on the remaining subjects (in 
total 300). To evaluate the performance of each method, 
we used the standard classification performance metrics: 
(1) Accuracy; (2) F1-score; (3) AUROC: Area Under the 
Receiver Operating Characteristic (ROC) curve and (4) 
AUPRC: Area Under the Precision-Recall Curve (PRC).

Feature selection
Omics data is typically high-dimensional in the sense 
that the number of features is significantly larger than 
the number of samples [24, 25]. Feature selection can fil-
ter out irrelevant and redundant features by identifying 
a subset of relevant features [26]. Besides, when fewer 
features are used as inputs in machine learning models, 
it also minimizes over-fitting risks. Numerous methods 
can be used for feature selection, e.g., univariate statisti-
cal testing, feature variance, Random Forest importance 
ranking, and information-theoretic measures [15, 27]. 
Here, we used the Wilcoxon rank-sum test on cross-vali-
dation subjects to identify the key features of count data, 
including miRNA, mRNA and microbiome data, due 
to its solid False Discover Rate (FDR) control and good 
power [28] (see Additional file 1: sec.2 for detail of statis-
tical analysis). For each of those data types, the top 300 
features with the lowest p-values were selected, so that 
the number of features is comparable to the number of 
subjects (249 healthy controls and 83 asthmatic cases). 
For continuous metabolomics and methylation data, we 
used the feature variance to identify the top 300 features 

with the largest variance across subjects [29]. We reduced 
the genetic data to 4 polygenic scores (PGS) computed 
from previous work [30] and 2 SNPs (rs4795399 and 
rs117097909) in the established 17q21 locus [31].

Omics data imputation
Since not all six omics data types are available for each 
subject, we performed data imputation first so that the 
evaluation of each prediction method was performed 
on the same set of subjects, enabling us to systemati-
cally examine the capability of each omics in the pre-
diction of asthma development. To keep more omics 
data unimputed and the subject size maximized, we 
selected the subjects with the following three omics 
data types: GWAS, DNA methylation and the microbi-
ome all available. Then, we imputed the miRNA, mRNA 
and metabolomics data using the following three meth-
ods, respectively: (1) median imputation: the missing 
value of a feature is replaced with the median value of 
the other samples. (2) TOBMI [32] (trans-omics block 
missing data): missing data of a subject in one omics 
is the weighted combination of k-nearest neighbors 
identified from another omics data. Here, the miss-
ing values of miRNA and mRNA were imputed using 
a k-nearest neighbors (KNN) weighted method, where 
a gene expression of a missing subject is the weighted 
combination of k nearest neighbors identified using 
the DNA methylation data. We leveraged this idea to 
impute the metabolomics data using the microbiome 
data. Hence, the distance matrix was constructed from 
the microbiome data. (3) missForest [33]: an iterative 
imputation method based on a random forest classifier. 

Table 1  Key Characteristics of VDAART subjects used in benchmarking asthma development prediction

Characteristics Healthy (n = 249) Asthmatic (n = 83)

Gender

 Male 128 33

 Female 121 50

Race

 Asian 20 2

 Black, African American 100 42

 Native Hawaiian 2 1

 White 86 30

 Others 40 6

Mother’s age (year) 28.11 ± 5.66 27.15 ± 6.09

Mother’s gestation age in days, at enrollment 96.51 ± 18.78 101.11 + 19.76

Vitamin blood values (ng/ml) at Enrollment visit 24.42 ± 1046 23.00 ± 9.99

Site name

 Boston Medical Center 45 25

 Kaiser Permanente Southern California Region 104 23

 Washington University at Saint Louis 100 35
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66% subjects were missing one omics data type, 28% 
subjects were missing two omics data types, and only 
5% subjects were missing all three omics data types. 
Note that, imputing the missing data on the original 
omics data requires significantly high computational 
effort, so we performed the imputation process after 
the feature selection. We emphasize that the imputa-
tion here is subject based, in the sense that the entire 
omics of some subjects were missing, rather than only 
few features within an omics were missing. Therefore, 
some traditional imputation methods, i.e., k-nearest 
neighbors cannot be directly utilized.

Results
Heathy and asthmatic children show differences in their 
multi‑omics profiles
We firstly examined the differences in the imputed 
multi-omics profiles between the healthy controls 
( n = 249 ) and asthmatic cases ( n = 89 ). We found 
a significant difference between the distributions of 
healthy and asthmatic groups using the t-SNE visuali-
zation (permutational multivariate analysis of variance 
(PERMANOVA), P < 0.05 ), regardless of imputation 
methods (see Fig. 3).

Table 2  Prediction models for asthma development

Method Description Refs.

Linear models

 LR Logistic Regression models the probability of object belonging to a class by having the log-odds for the class to be 
a linear combination of features

[42]

 LRCV Logistic Regression with build-in validation support to find the optimal parameters [42]

 LR-VAE Logistic Regression with reduced features using VAE (Variational AutoEncoder) [43, 44]

 LRCV-VAE LRCV-VAE: Logistic Regression with build-in validation support to find the optimal parameters and reduced features 
using VAE

[43, 44]

Nearest neighbors

 KNN k-nearest neighbors algorithm that predicts the class of object to the class of most common among its k nearest 
neighbors

[45]

Support vector machine

 SVC C-Support Vector Classification is a method for classification by constructing a set of hyperplanes in high dimen‑
sional space

[46]

Ensemble methods

 AdaBoost AdaBoost algorithm is an iterative procedure that tries to approximate the Bayes classifiers by combining many 
weak classifiers

[47, 48]

 GTB Learning procedure in Gradient Tree Boosting consecutively fit new models to provide a more accurate estimate of 
the response variable

[49, 50]

 RF Random forest is an ensemble classifier by constructing many decision trees and the final prediction is selected by 
most trees

[51]

 Bagging Bagging algorithm is a method for generating multiple versions of a predictor, then using these predictions to get 
an aggregated predictor

[52]

 Ensemble Aggregate the predictions of all other classifiers together. The continuous probability of a subject being asthmatic is 
the average probabilities of 15 methods, and a subject is predicted as asthmatic if it was predicted as asthmatic by 
at least 7 methods

Decision trees

 DecisionTree Decision Trees predict the response value by learning simple decision rules inferred from the data features [53]

 ERT An extremely randomized tree classifier is a tree-based ensemble method consisting of randomizing strongly both 
attribute and cut point choice

[54]

Naïve Bayes

 BernoulliNB Implements the Naïve Bayes training and classification for data that is distributed based on multivariate Bernoulli 
distribution

[55]

 GaussianNB Implements the Naïve Bayes training and classification for data that is distributed based on multivariate Gaussian 
distribution

[56]

Neural networks

 MLP Multi-layer Perceptron in a fully connected feedforward neural networks with at least three layers [57]

 MOGONET MOGONET is a multi-omics data analysis framework for classification tasks utilizing graph convolutional networks [14]

 Tabnet Tabnet uses a canonical deep neural networks architecture for tabular data with interpretability [21]
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There are four consistently high‑performing methods 
in the cross‑validations
Among all tested methods in fivefold cross-validations, 
we found that LR, LRCV, MLP and MOGONET show 
relatively higher performance over all four types of evalu-
ation metrics (imputed using the median). For example, 
the highest Accuracy, F1, AUROC and AUPRC of LRCV 
are 0.92, 0.8, 0.96 and 0.89 among fivefold cross-valida-
tions. MOGONET is a novel multi-omics integrative 
method that jointly explores omics-specific learning and 
cross-omics correlation learning based on Graph Convo-
lutional Networks (GCN) showing similar performance 
to LRCV (see Fig. 4; Additional file 1: Fig. S1). In particu-
lar, we found that the performance of those top-ranking 
methods is robust to different imputation methods (see 
Additional file 1: Fig. S2, S3 for missForest and TOBMI 
imputation). Higher performance of those four methods 
implies that prediction of children’s asthma development 
through leveraging the rich information in multi-omics is 
feasible.

Transcriptional and genomic data are critical for asthma 
prediction
Figure  4 shows the predictive performance of each pre-
diction method across all possible combinations of six 
omics data types. We observed that the prediction per-
formance largely depends on the omics used. To exam-
ine the importance of different omics combinations on 
children’s asthma status prediction, we ranked those 63 
combinations from six omics data types based on their 
median performance across all prediction methods. 
Interestingly, we found a consistent omics importance 
ranking over four evaluation metrics: mRNA alone, and 
combinations of GWAS, miRNA and mRNA can achieve 

the highest performance. Especially, mRNA alone shows 
the highest ranking among Accuracy, AUROC and 
AUPRC (see Additional file 1: Fig. S4). Furthermore, we 
measured the importance of each feature (such as gene, 
mRNA, miRNA) using MOGONET, since it yields the 
overall best performance with omics combination of 
genome, miRNA, and mRNA data yields the overall best 
performance, we selected this omics combination and 
the feature importance in MOGONET was computed 
by the performance decrease, e.g., F1 score after the fea-
ture is removed. We found biomarkers (i.e., features with 
high importance scores) identified by MOGONET have 
also shown associations with asthma (see Additional 
file  1: Table  S1). For example, has-miR-581, a micro-
RNA downregulated in severe asthma, is associates with 
forced expiratory volume in 1  s (FEV1) and immune 
inflammation [34]. In addition, hsa-miR-376c-3p, hsa-
miR-374b-5p, hsa-miR-374c-5p et  al., are circulating 
microRNAs associated with lung function in asthma [35]. 
When compared to healthy controls, bronchial smooth 
muscle cells from asthmatic patients express different 
levels of hsa-miR-376a-3p and hsa-miR-330-5p [36]. 
ENSG00000267174 is a long noncoding RNA (lncRNA), 
and many lncRNAs have been shown to be associated 
with asthma severity or inflammatory phenotype [37]. 
ENSG00000004139 can regulate the cell survival and 
cytokine release after inflammasome activation [38]. 
Again, we found that those top-ranking omics combina-
tions are quite robust to different imputation methods. 
These results suggest that accurate prediction of asthma 
development in children does not require sequencing as 
many as possible omics data. Whereas, using transcrip-
tional with genomic data can yield superior performance 
for predicting asthma development at year 3.

Fig. 3  Distribution of healthy controls and asthmatic cases. TSNE (t-distributed stochastic neighbor embedding) plot shows that healthy (blue; 
n = 249 ) and nonhealthy (orange; n = 83 ) groups have significantly different distributions of omics profiles according to PERMANOVA (Euclidean 
distance by directly concatenating the features from six types of omics. The feature number of GWAS is 6 and 300 for the each of remaining five 
omics.). Each point corresponds to a subject. Ellipses correspond to 95% confidence regions
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Different imputation methods produce a similar 
performance
Although multi-omics analysis can provide the con-
nections between biomolecules from different layers 
of omics data, one of the key challenges in multi-omics 
approaches is missing values within and across the 
omics data. Missing values across omics are a particu-
lar concern as they will result in different sample sizes 
among the omics, which requires imputation for the 
downstream analyses, i.e., classification. We compared 
the prediction performance of each prediction method 
using all 63 omics combinations imputed with three 
different methods, showing that median and TOBMI 
imputations can achieve significantly higher AUPRC 
than missForest (see Additional file 1: Fig. S5). Yet, the 
overall performance of the three imputation methods is 
similar.

Hold‑out validation displays similar results 
to cross‑validations
Phenotypes in biological studies are typically imbal-
anced; for example, most binary traits have fewer cases 
than controls [39]. To examine the performance of each 
prediction method on a balanced data set without impu-
tation, we trained each method using all the 300 sub-
jects in fivefold cross-validations, then evaluated them 
using an additional 32 subjects with 16 healthy controls 
and 16 asthmatic cases, respectively. Again, we found 
that LR and MOGONET show superior performance 
over other methods, i.e., the Accuracy, F1, AUROC and 
AUPRC of LR were 0.78, 0.74, 0.70 and 0.72, respectively, 
and 0.69, 0.59, 0.66 and 0.75 for MOGONET (see Fig. 5; 
Additional file 1: Fig. S6). In addition, we found that the 
combination of miRNA and mRNA achieves the highest 
Accuracy and AUPRC. Yet, the combination of miRNA 

Fig. 4  Prediction performance of prediction methods using all six omics combinations in cross-validation. Each classifier is applied to predict the 
asthma status of children at year 3 using all six omics combinations (in total 63). The missing values of miRNA, mRNA and metabolomics data were 
imputed using the median values. The heatmap plot shows the average performance of fivefold cross-validations. AdaBoost: A decision-theoretic 
generalization of online learning and an application to boosting [47]; Bagging: ensemble meta-estimators that aggregate individual predictions to a 
final prediction [52]; BernoulliNB: Bernoulli Naïve Bayes [55]; GTB: Gradient Tree Boosting [49]; DecisionTree: Decision Trees [53]. Ensemble: aggregate 
the prediction of all other classifiers together. ERT: An extremely randomized tree classifier [54]. GaussianNB: Gaussian Naïve Bayes. KNN: k-nearest 
neighbors; LR: Logistic Regression; LRCV: Logistic Regression with build-in validation support to find the optimal parameters; LR-VAE: Logistic 
Regression with compressed features from VAE (Variational AutoEncoder); LRCV-VAE: Logistic Regression with build-in validation support to find 
the optimal parameters and compressed feature from VAE (Variational AutoEncoder); MLP: Multi-layer Perceptron; MOGONET: Multi-Omics Graph 
Convolutional Networks [14]; RF: Random Forest; SVC: Support Vector Classification; Tabnet: Attentive Interpretable Tabular Learning [21]. 1: GWAS; 2: 
miRNA; 3: mRNA; 4: Microbiome; 5: Metabolomics; 6: DNA methylation
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and microbiome data can produce the highest F1 and 
AUROC (see Additional file 1: Fig. S7).

Utilizing covariates can further improve the prediction 
performance for particular omics combination
To evaluate whether including covariates together with 
omics data can further improve the prediction perfor-
mance, we considered the following covariates associ-
ated with each subject, i.e., father and mother’s asthma 
status, race, as well as vitamin D level into the prediction 
model. Previous analysis in hold-out validation using 
all 63 omics combinations has shown that the combina-
tion of miRNA and mRNA or the combination between 
miRNA and microbiome omics can reach the optimal 
performance for most of the prediction methods. Here 
we intended to investigate the influence of covariates by 
examining the performance of each method before and 
after including those covariates in addition to best-per-
forming omics combinations. As those covariates cannot 
be included easily in all prediction models, i.e., treat-
ing these covariates as an additional omics data type for 
MOGONET, we focused on two promising methods LR 

and LRCV that can fully exploit all predictors fairly. We 
found that that the impact of covariates on the asthma 
prediction depends on the omics used, e.g., it can fur-
ther improve the prediction for miRNA and mRNA 
combination for both of LR and LRCV, regardless of the 
performance metrics (see Fig.  6a). Yet, including those 
covariates will decrease the prediction performance for 
the miRNA and microbiome combination (see Fig.  6b). 
To understand this difference, we examined the associa-
tion between coefficients of each covariate in LR using 
two omics combinations, respectively, finding that the 
coefficients from two omics combinations display a posi-
tive correlation. Yet, we do find that for some covariates, 
such as, history of eczema or atopic dermatitis in mother, 
mother’s marriage status and history of hay fever or aller-
gic rhinitis in mother are associated with high coeffi-
cients in one combination, but not for another.

Discussion
The global prevalence, morbidity, mortality and eco-
nomic burden of children’s asthma has significantly 
increased in the past 40  years [1]. Predicting asthma 

Fig. 5  Prediction performance of prediction models using all six omics combinations for hold-out set validation. Each classifier is applied to predict 
the asthma status of children at year 3 using all six omics combinations (in total 63). The missing values of miRNA, mRNA and metabolomics data 
were imputed using the median values. The heatmap plot shows the performance of each prediction method in 32 balanced subjects with 16 
healthy controls and 16 asthmatic cases. 1: GWAS; 2: miRNA; 3: mRNA; 4: Microbiome; 5: Metabolomics; 6: DNA methylation
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development for children is imperative to understand 
the etiology of the disease and identify suitable inter-
ventions [10]. Yet, many diseases (including asthma) 
are heterogeneous, which renders the prediction of the 
disease status a big challenge. Here, we leveraged the 
rich omics collected in the VDAART cohort, examin-
ing the existing classification methods in the predic-
tion of children’s asthma development at year 3 using 
multi-omics data collected at/before year 1. Our results 
imply that including a subset of all types of omics data 
is helpful in asthma outcome prediction, especially a 
combination of transcriptional, genomic and microbi-
ome data can achieve optimal prediction. In addition, 
the imputation methods for missing values do not show 
a significant impact on the prediction.

Our analysis related to the impact of covariates on the 
asthma development prediction suggests that including 
the covariates in the prediction models does not always 
improve the performance. This also implies that the con-
clusion drawn from VDAART can also be valid in other 
cohorts, i.e., compromised of subjects with different 
racial distribution, as, in this study, race is not an impor-
tance predictor. However, we acknowledge the impor-
tance of replicating these findings in additional diverse 
populations.

Vitamin D can impact the developing of the lung and 
immune system during the fetal and early postnatal 
periods [40, 41], thus deficiency of vitamin D in preg-
nancy may be important in early asthma and wheezing. 
The VDAART Randomized Clinical Trial implies that 
the 3-year incidence of asthma or recurrent wheeze in 
the infants was 24.3% with 4400-IU/d and 30.4% with a 
400-IU/d supplement [17]. This reduction demonstrates 
that supplementation of vitamin D may be an important 
intervention for child health. The prediction of children’s 
asthma development after including the covariates indi-
cates that vitamin D level is associated with a reduction 
(negative coefficient) in the relative risk of asthma if the 
prediction is accurate, for instance, using the combina-
tion of miRNA and microbiome omics data types. This 
confirms that supplementation of vitamin D in preg-
nancy can reduce the risk of asthma for children.

Omics data usually contains missing values. Integration 
of those omics data together typically requires all omics 
of each subject available, which is challenging as more 
types of omics data are included. Data imputation enables 
us to systematically examine the impact of each omics 
data type in the prediction of disease status. Our results 
demonstrate that the performance of those superior 
methods, i.e., Logistic Regression using combinations of 

Fig. 6  Comparison of prediction performance with and without using covariates. The performance of two classifiers: LR and LRCV were 
compared in predicting the asthma outcome of children at year 3 before and after using covariates together with using the miRNA and mRNA 
(a) and miRNA and microbiome (b), respectively. The missing values of miRNA, mRNA data were imputed using the median values. w/covariates: 
including covariates in prediction; w/o covariates: without using covariates in prediction. (c): Correlation between the coefficient of each covariate 
together with two omics combinations: (1) miRNA and mRNA and (2) miRNA and microbiome in the prediction of asthma status using Logistic 
Regression. 1: History of asthma in mother; 2: History of asthma in father. 3: History of hay fever or allergic rhinitis in mother; 4: History of eczema 
or atopic dermatitis in mother; 5: History of eczema or atopic dermatitis in father; 6: History of hay fever or allergic rhinitis in mother; 7: Marital 
status of mother; 8: Highest level of school mother has completed; 9: Ethnicity of mother; 10: Race of mother; 11: Enrollment site; 12: assignment; 
13: Treatment Arm; 14: Vitamin D blood value (ng/ml) at Enrollment visit; 15: Mother’s age at enrollment; 16: Mother’s gestation age in days, at 
enrollment; 17: Mother’s Education re-worked; 18: Mother’s Marital status; 19: Race/Ethnicity
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non-imputed omics, i.e., miRNA and microbiome still 
displayed superior performance than other methods.
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