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Abstract

Conserved Oligomeric Golgi (COG) complex controls Golgi trafficking and glycosyla-

tion, but the precise COG mechanism is unknown. The auxin-inducible acute degra-

dation system was employed to investigate initial defects resulting from COG

dysfunction. We found that acute COG inactivation caused a massive accumulation

of COG-dependent (CCD) vesicles that carry the bulk of Golgi enzymes and resident

proteins. v-SNAREs (GS15, GS28) and v-tethers (giantin, golgin84, and TMF1) were

relocalized into CCD vesicles, while t-SNAREs (STX5, YKT6), t-tethers (GM130,

p115), and most of Rab proteins remained Golgi-associated. Airyscan microscopy and

velocity gradient analysis revealed that different Golgi residents are segregated into

different populations of CCD vesicles. Acute COG depletion significantly affected

three Golgi-based vesicular coats—COPI, AP1, and GGA, suggesting that COG

uniquely orchestrates tethering of multiple types of intra-Golgi CCD vesicles pro-

duced by different coat machineries. This study provided the first detailed view of

primary cellular defects associated with COG dysfunction in human cells.
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1 | INTRODUCTION

Newly synthesized proteins are delivered from the endoplasmic retic-

ulum (ER) to Golgi for processing, sorting, and secretion.1–7 Glycosyla-

tion is one of the major cargo modifications chiefly carried out by the

Golgi.8 Modification of glycoconjugates requires the transfer of sugar

donors onto acceptor substrates (proteins and lipids) by glycosyltrans-

ferases and partial remodeling by glycosidases. Under the cisternal

maturation model, secretory and transmembrane cargo molecules

remain in the lumen of the Golgi cisternae while the cisternae them-

selves progress through the stack and “mature” through recycling of

their resident proteins.9 During maturation, each Golgi cisterna needs

to maintain its specific set of glycosylation enzymes, sugar trans-

porters, and other cargo modifiers. Proper cisternal compartmentaliza-

tion of the glycosylation machinery is vital as glycosylation is template

independent.6–8,10 There are continuous discussions on the exact

mechanisms and pathways used by different cells and organisms for

the anterograde cargo transport through the Golgi,11–14 but the

majority of recent studies agree on general rules for the maintenance

of Golgi enzymes. It is reported that both active retention and recy-

cling mechanisms are utilized to maintain the proper localization of

Golgi resident proteins.9,15 The recycling of Golgi resident proteins
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and enzymes is mostly facilitated by COPI vesicle-mediated retro-

grade transport.3,7,14,16,17 A balance between anterograde and retro-

grade transport is not only important for maintaining proper

concentration of the resident Golgi proteins and lipids but also for the

cell's physiology.6,18 The vesicular trafficking machinery consists of

several distinct modules that drive vesicle budding from a donor com-

partment followed by its transport, tethering, and fusion with the

acceptor compartment.3,7,19 Vesicle formation is initiated by ARF

GTPases that recruit coat proteins which collect and segregate cargo

molecules into 60 mm vesicles. The vesicle then buds off, gets

uncoated, and then specifically tethered to the target membrane. Ves-

icle tethering is achieved by both coiled-coil and multi-subunit tether-

ing complex (MTC) tethers. followed by vesicle fusion with a specific

Golgi subcompartment in a SNARE-dependent reaction.4,18

The Conserved Oligomeric Golgi (COG) complex is the major

Golgi MTC.4,6,7,18,20 COG is composed of eight subunits

COG1-COG8,6,7,18,21,22 which are organized in two subcomplexes,

lobe A and lobe B.23,24 COG orchestrates retrograde intra-Golgi vesic-

ular trafficking by tethering vesicles carrying recycling Golgi resident

proteins (such as glycosylation enzymes and nucleotide sugar trans-

porters) back to their working compartments thereby facilitating

proper glycosylation of secretory and transmembrane proteins.2,25–27

To achieve its role in membrane trafficking, COG physically and func-

tionally interacts with other components of vesicular trafficking

machinery, including SNAREs, SNARE-interacting proteins, Rabs,

coiled-coil tethers, and coat proteins.1,4,7,18 COG malfunction in

humans causes global glycosylation defects termed COG-related con-

genital disorders of glycosylation (COG-CDGs).6,28,29 COG-CDGs are

multisystemic disorders with several common symptoms including

global developmental defects, dysmorphic features, microcephaly, and

failure to thrive which are accompanied by the liver and neurological

impairment. It has been reported that almost one-third of the patients

with congenital defects in the Golgi glycosylation have mutations in

COG complex subunits. More than 30 different COG mutations have

been identified to date.6,7,28,30–32

Multiple knockouts (KOs), knock-down (KD), and knock-sideways

approaches have been applied to unravel the details of the COG's cel-

lular functions.2,33–41 The complete KO of individual COG subunits in

HEK293T cells resulted in abnormal Golgi morphology, accumulation

of enlarged endolysosomal structures (EELSs), inhibited retrograde

protein trafficking, and altered the repertoire of secreted proteins.20,42

At the same time, the COG KD study revealed a massive accumula-

tion of COG complex dependent (CCD) vesicles that carry Golgi

enzymes and intra-Golgi v-SNAREs.25,34 Both COG mutations, KO or

KD of COG subunits resulted in altered glycosylation of both N-, and

O-linked glycans as well as destabilization or mislocalization of Golgi

glycosylation machinery.2,6,21,34,43 Though CRISPR-based KO and

RNAi-interference are important and robust approaches to studying

COG function, they both require a relatively long time (3–10 days) to

produce a mutant phenotype; KO and KD experiments can result in

incomplete silencing, off-target effects and adaptation, therefore

observed mutant phenotypes could be either direct or indirect conse-

quences of COG depletion. Golgi membranes are highly dynamic and

transport through the Golgi in human cells usually takes less than

30 min,44,45 so we reasoned that rapid silencing of COG subunits

would bring us closer to precisely elucidating COG's role in intra-Golgi

trafficking.

In this study, we have created a novel cellular system to investi-

gate the immediate effect of rapid COG depletion on Golgi physiol-

ogy. Auxin inducible degron (AID) approach46–48 has been applied to

completely degrade the COG4 subunit in RPE1 cells within 30 min

after adding auxin. This 30 min period was comparable with the traf-

ficking time through the Golgi allowing visualization of instant effects

of COG dysfunction on Golgi structure and dynamics. We applied a

combination of biochemical and microscopic approaches to dissect

the impact of the acute COG4 depletion on other COG subunits,

COG interacting membrane trafficking partners, glycosylation

enzymes, as well as other Golgi resident proteins. This study provided

the first detailed view of primary cellular defects associated with COG

dysfunction in human cells.

2 | RESULTS

2.1 | Establishment of cellular system for the acute
depletion of COG4

To achieve rapid inactivation of the COG complex we employed

mAID degron tagging of the COG4 subunit in combination with

coexpression of auxin perceptive F-box protein OsTIR1.47–49 COG4

is an essential subunit of lobe A COG subcomplex that interacts

with key elements of the vesicle fusion machinery: STX5, Sly1/

SCFD1, and Rab304,27,35,36,50–53 and we reasoned that COG4 inacti-

vation will be sufficient to compromise COG complex functions. To

induce auxin-mediated COG4 degradation, RPE1 COG4 KO cells29

were sequentially transduced with the retroviral construct expres-

sing OsTIR1-9myc and the lentiviral construct expressing

COG4-mAID-mCherry (COG4-mAID) hybrid protein under the con-

trol of endogenous COG4 promoter (Figure 1A). After the addition

of the auxin (indole-3-acetic acid [IAA]), the COG4-mAID protein

should become polyubiquitinated and degraded by the proteasome

(Figure 1A). The resulting cell line RPE1-COG4-mAID was viable,

exhibiting growth and morphological characteristics similar to the

wild-type RPE1 cells (FTS, VL, unpublished observation). Next, the

expression and functionality of COG4-mAID were tested by using

WB and IF approaches. The results revealed that COG4-mAID was

expressed at a near endogenous level compared to COG4 expres-

sion in wild-type cells (Figure 1B). In addition to the full-length

130 KDa hybrid protein, two minor protein bands (�115 and

105 KDa) were detected, likely representing COG4-mAID with par-

tially truncated mCherry. COG4-mAID protein was Golgi-localized in

the perinuclear region and colocalized with Golgi marker GM130/

GOLGA2 (Figure 1C, upper panel). WB analysis of COG4-mAID cells

validated the expression of OsTIR-9myc essential for auxin-induced

degradation of COG4-mAID (Figure 1B). Previously we have

reported that the stability and glycosylation of trans-Golgi enzyme
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B4GalT1, putative Mn2+ transporter TMEM165, cis-Golgi recycling

glycoprotein GPP130/GOLIM4 and lysosomal glycoprotein LAMP2

are altered in COG KO HEK293T cells.29,42 WB analysis of RPE1

COG4 KO cells confirms depletion of B4GalT1 and GPP130, as well

as an increase in the electrophoretic mobility of TMEM165 and

LAMP2, indicating defects in glycosylation (Figure 1B). The expres-

sion of COG4-mAID rescued the stability and glycosylation of all

affected proteins (Figure 1B), suggesting that the COG4-mAID is

functional and rescued the major biochemical phenotypes associated

with COG deficiency. (Figure 1B).

To test the IAA-induced degradation of COG4, the

COG4-mAID cells were treated with IAA at five-time point inter-

vals (0.5, 1, 2, 24, and 48 h) and tested for COG4-mAID protein

expression by WB. The result shows that IAA treatment leads to

a significant decrease in the COG4-mAID protein level at 30 min

and nearly complete COG4-mAID depletion after 1 h of incuba-

tion with IAA (Figure 1D). Airyscan super-resolution microscopy

revealed the absence of mCherry signal within 1 h of IAA treat-

ment (Figure 1C lower panel). Acute COG4 depletion did not sig-

nificantly change the morphology of GM130-labeled Golgi at the

IF level and did not cause significant Golgi fragmentation, judged

by the similar number of GM130 labeled Golgi fragments in con-

trol and IAA treated COG4-mAID cells (Supplementary S1). As

GM130 is not sensitive to COG4 depletion, it was used as a

Golgi marker to check the colocalization of other Golgi pro-

teins by IF.
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F IGURE 1 COG4-Maid-
mCherry (COG4-mAID) is
functionally substituted
endogenous COG4 and rapidly
depleted upon IAA (auxin)
treatment. (A) The diagram shows
the development of the RPE1
COG4 KO cell line coexpressing
COG4-mAID-mCherry

(COG4-mAID) under COG4
promoter and OsTIR1-9myc. The
COG4-mAid is ubiquitinated and
degraded upon IAA treatment.
(B) Expression of COG4-mAID
rescues major cellular phenotypes
associated with COG4 deficiency.
WB shows the expression of
COG4, myc, and COG-sensitive
proteins in wild type, COG4 KO,
and COG4-mAID cell lines. 10 μg
of total cell lysates were loaded
for each line. β actin has been
used as a loading control.
(C) COG4-mAID is Golgi localized
(upper panel) and it is absent from
the Golgi upon 1-h treatment
with IAA. Airyscan
superresolution IF analysis of
COG4-mAID-mCherry (red) cells
stained for GM130 (green). For
better presentation, green and
red channels are shown in
inverted black and white mode
whereas the merged view is
shown in RGB mode. Scale bars,
20 μm. (D) WB of time-
dependent depletion of
COG4-mAID upon IAA treatment.
A 10 μg of total cell lysates were
loaded to each lane and probed
with COG4 and actin antibodies.
(E) The graph represents the
quantification of D
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2.2 | COG4 acute depletion affects the entire COG
complex

To investigate the impact of acute COG4 depletion on other sub-

units of the COG complex, WB and IF approaches were applied.

Airyscan microscopy revealed that COG1, COG3, and COG8 sub-

units were mislocalized from Golgi to the cytoplasm (Figure 2A–C)

within 1 h of COG4 depletion. As a result, the colocalization of

COG subunits with GM130 was significantly decreased (Figure 2D).

Since the proteasomal degradation of COG4 resulted in off-Golgi
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± SD. (E) Transmission electron
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independent experiments with >10 fields
were analyzed. Statistical significance was
calculated by GraphPad Prism 8 using
paired t-test. Here ***p ≤ 0.001
(significant). Error bar represents
mean ± SD
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localization of other COG subunits, we wonder if this would com-

promise their stability as well. Previously we showed that COG4

KO affects the total cellular level of COG2 and COG3 but has a

lesser impact on lobe B subunits in the HEK293T cells.38 An effi-

cient knockdown of COG3 also resulted in a reduction in COG1,

2, and 4 protein levels in HeLa cells.34 We found that the acute

depletion of COG4-mAID in RPE1 cells significantly affected the

expression of COG1, COG2, and COG8, while the level of COG3

was affected only after a prolonged (48 h) depletion of COG4

(Figure S2). Together, the results suggest that acute COG4 depletion

displaces the COG complex from the Golgi and reduces the cellular

level of COG subunits.

2.3 | Acute COG4 depletion results in rapid
accumulation of COG complex-dependent (CCD)
vesicles

Previous microscopy analysis of COG KO HEK293T cells revealed

severe alteration of Golgi morphology, while siRNA-driven KD of

COG3 and COG7 in HeLa cell also resulted in accumulation of COG

complex dependent (CCD) vesicles.29,34,38 In this study, we have

employed a high-pressure freezing (HPF)/freeze substitution

(FS) transmission electron microscopy (TEM) approach to identify ini-

tial morphological changes in COG4-depleted RPE1 cells. TEM analy-

sis revealed a two-fold accumulation of vesicle-like structures in a

Golgi vicinity at the onset of COG4-mAID depletion (30 min after

auxin addition). Most of the accumulated CCD vesicles were lacking

any detectable protein coat and were situated along with the unal-

tered Golgi stacks. An additional two-fold increase in the number of

peri-Golgi CCD vesicles was observed after 1 h of IAA treatment. At

this point, the Golgi stacks were moderately swollen, but the stack

integrity was not severely altered (Figure 2E,F). Interestingly the mod-

est Golgi alteration was not detected by GM130 IF (Figure S1) indicat-

ing that cis-Golgi was unaltered after 1 h of COG4 depletion. We

concluded that the accumulation of CCD vesicles is the primary mor-

phological feature of RPE1 cells acutely depleted for COG complex

activity (Figure 2E,F).

2.4 | Redistribution of COG sensitive Golgi
v-SNAREs to CCD vesicles

COG subunits, mainly COG4, interact with the STX5-GS28-GS15-YKT6

SNARE complex to maintain intra-Golgi retrograde transport.18,35,37,51,54

A previous study in HeLa cells reported that COG3 KD causes the accu-

mulation of intracellular CCD vesicles carrying Qc SNARE GS15/Bet1L

and Qb SNARE GS28/GOSR1b.34 Moreover, the GS15 and GS28 were

reported as COG-sensitive GEARs-Golgi integral membrane proteins in

COG mutant CHO cells.55 Those findings guided us to test the impact

of rapid COG4 depletion on Golgi SNAREs. Golgi membranes (P30)

were separated from vesicular fractions (P100) by differential centrifu-

gation (Figure 3A). Initial analysis revealed that all Golgi SNAREs were

stable during the first 2 h of IAA treatment (Figure S3A,B) and therefore

CCD vesicles were biochemically characterized after 2 h of

COG4-mAID depletion. As expected, WB analysis of Golgi and vesicle

fractions of COG4-mAID cells revealed a significant increase in the

vesicular pool of both GS15 and GS28 (Figure 3B,C). Importantly, more

than 70% of total cellular GS15 was relocated into CCD vesicles. At the

same time, both Qa-SNARE STX5 and R-SNARE YKT6 cofractionated

with Golgi membranes upon COG4 depletion, indicating their t-SNARE

role during the intra-Golgi trafficking (Figure 3B,C). IF approach revealed

a significant decrease in relative colocalization of GS15 and GM130 in

COG depleted cells even after 1 h of IAA addition (Figure 3E,F), while

colocalization between STX5 and GM130 was not sensitive to

COG4-mAID degradation (Figure 3D,F). We also found that a prolonged

inactivation of COG resulted in a significant decrease in the total cellular

level of three Golgi SNAREs—GS15, GS28, and YKT6, indicating their

dependency on the COG complex function in RPE1 cells (Figure S3A,B).

The combined results revealed that acute COG4 depletion causes

severe displacement of v-SNAREs GS15 and GS28 into relatively stable

CCD vesicles.

2.5 | Differential effect of acute COG4-mAID
depletion on golgins and Rab proteins

Next, we sought to dissect the effect of rapid COG4 depletion on

COG interacting golgins (coiled-coil Golgi-located vesicular tethers)

golgin84/GOLGA5, p115/USO1, GM130, giantin/GOLGB1, and

TMF1.18,27,53,56,57 Previous studies reported that both golgin84 and

giantin are COG sensitive “GEAR proteins,” while p115 is not sensi-

tive to COG depletion in CHO cells.55 As shown above (Figure 1C),

GM130's localization was not sensitive to rapid COG4-mAID deple-

tion. Both p115 and golgin84 were also Golgi localized 1 h after IAA

treatment, while giantin and TMF1 were significantly mislocated from

the Golgi to vesicle-like haze (Figure 4A–D, Figure S4A,D). We desig-

nated golgins that remained on the Golgi upon COG depletion as

target-tethers (t-tethers) and golgins that significantly relocated to

CCD vesicles as vesicular tethers (v-tethers). We propose that even a

partial depletion of COG4-mAID causes defect in tethering of a sub-

set of intra-Golgi vesicles and we categorized these vesicles as “early”
CCD vesicles; both giantin and TMF1 were associated with these

vesicular carriers. A slightly longer (2 h) COG4-mAID depletion

resulted in significant relocalization of both golgin84 and TMF1 to a

vesicular membrane fraction (Figure 4E,F), suggesting that golgin84 is

located on the “late” CCD vesicles that are temporally distinct from

the “early” giantin-containing transport intermediates. Importantly,

p115, like GM130, was not sensitive to COG4 depletion, indicating

that these two t-tethers operate from the Golgi side during vesicle

tethering. Similarly, TGN located golgin97/GOLGA1 and golgin245/

GOLGA4 were not sensitive to rapid COG depletion either

(Figure S4B–D).

Rabs are small GTPases involved in all steps of vesicle transport

and COG interacts with several Golgi Rabs.53,58,59 COG potentially

binds to activated Rab1a, Rab1b, Rab2a, Rab4a, Rab6a, Rab10, Rab14,
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Rab30, Rab39, and Rab4318 and we have tested a representative sub-

set of Golgi Rab proteins for their sensitivity to acute COG4-mAID

depletion. Rab selection was based on the availability of commercial

antibodies that can detect endogenous proteins in IF and/or WB

applications. Airyscan microscopy revealed that Rab1B and Rab6A did

not change their localization from the Golgi into CCD vesicles

(Figure 5A–C) after 1 h of COG depletion. Similar results were

obtained with cells transiently transfected with GFP-Rab30a and
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GFP-Rab43a (Figure S5A–C). Two hours of COG4-mAID depletion

did not shift Rab2A, Rab6A, and Rab30 into CCD vesicles

(Figure 5D,E). By contrast, Rab1B vesicular fraction was increased sig-

nificantly at this time point, indicating that Rab1B could be incorpo-

rated into “late” CCD vesicles (Figure 5D,E). In summary, COG

depletion did not shift the majority of COG-interacting Rabs to the

vesicular fraction, strongly suggesting that these Rabs, like t-tethers

p115 and GM130, primarily operate from the Golgi side during the

vesicle tethering process.

2.6 | Redistribution of Golgi resident proteins into
CCD vesicles

One of the most common defects associated with permanent COG

dysfunction is the defect in the stability of intracellular recycling gly-

coproteins and Golgi enzymes.2,18,29,42,55,60 COG-related depletion of

Golgi proteins could be caused either by direct re-routing of recycling

protein to degradative compartments like lysosomes, or their instabil-

ity could be due to deficient glycosylation, or their relocalization into
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F IGURE 4 The rapid COG4 depletion has no effect on the localization of coiled-coil tether p115 but displaces giantin, golgin84, and TMF1
from Golgi. Airyscan superresolution IF analysis of untreated (control) or IAA treated COG4-mAID cells stained for (A) GM130 (green) and
golgin84 (red), (B) GM130 (green) and p115 (red), and (C) GM130 (green) and giantin (red). Scale bars, 20 μm. For the better presentation, green
and red channels are shown in inverted black and white mode whereas the merged view is shown in RGB mode. (D) Colocalization of tested
golgins with GM130 was determined by using Pearson's correlation coefficient, >90 cells were analyzed. Statistical significance was calculated by
GraphPad Prism 8 using paired t-test. Here, p ≥ 0.05, nonsignificant (ns), ****p ≤ 0.0001 (significant). Error bar represents mean ± SD. (E) WB
analysis of tethers (p115, golgin84, TMF1) in Golgi and vesicle fractions. Equal volumes of Golgi (G) and vesicle (V) membrane fractions were
analyzed with corresponding antibodies. (F) The graph represents the quantification of vesicle fraction (%) of golgins in COG-depleted cells
compared to control. The abundance of p115, golgin84, and TMF1 in vesicles was calculated as a percentage of the immuno-signal in the vesicle
fractions to the combined signal in Golgi and vesicle fractions from n = 3 independent experiments. Statistical significance was calculated by
GraphPad Prism 8 using paired t-test, *p ≤ 0.05, significant, p ≥ 0.05, nonsignificant (ns). Error bar represents mean ± SD
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recycling CCD vesicles that are unable to dock and fuse to a proper

compartment and therefore got degraded by yet unknown mecha-

nism.2,18,25,29,34,38,42,55,60 To identify the primary defect associated

with COG dysfunction, we first determined changes in the total cellu-

lar level of Golgi recycling and resident proteins upon both acute and

prolonged COG4-mAID depletion (Figures 6A,B and 7A,B). Results

revealed that cis-Golgi GPP130/GOLIM4, medial-Golgi TMEM165,

trans-Golgi TGN46/TGOLN2, and SDF4/Cab45 were stable during

the first 2 h of IAA treatment and then degraded during a prolonged

COG depletion. In the case of TGN46 and SDF4, protein depletion

coincided with a change in protein electrophoretic mobility, indicating

defects in secondary protein modifications (Figure 6A,B). A similar deg-

radative pattern was observed for Golgi enzymes B4GalT1 (beta-1,

4-galactosyltransferase 1), GalNT2 (N-acetylgalactosaminyltransferase

2), and MGAT1 (alpha-1,3-mannosyl-glycoprotein 2-beta-N-ac-

etylglucosaminyltransferase 1) (Figure 7A,B), indicating that only
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F IGURE 5 The majority of conserved oligomeric Golgi (COG)-interacting Golgi Rabs are not changing their localization upon COG4 depletion.
Airyscan superresolution IF analysis of untreated (control) or IAA treated COG4-mAID cells stained for (A) GM130 (green) and Rab1B (red), and
(B) GM130 (green) and Rab6 (red). Scale bars, 20 μm. For better presentation, green and red channels are shown in inverted black and white
mode whereas the merged view is shown in RGB mode. (C) Colocalization of Rab-GTPases with GM130 was performed by calculating Pearson's
correlation coefficient, >90 cells were analyzed. Statistical significance was calculated by GraphPad Prism 8 using paired t-test. Here, p ≥ 0.05,
nonsignificant (ns). Error bar represents mean ± SD. (D) WB analysis of Rab1B, Rab2A, Rab6A, and Rab30A in Golgi and vesicle fractions. Equal
volumes of Golgi (G) and vesicle (V) membrane fractions were analyzed with antibodies as indicated. (E) The graph represents the quantification
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Statistical significance was calculated by GraphPad Prism 8 using paired t-test. Here, p ≥ 0.05, nonsignificant and **p ≤ 0.01. Error bar represents
mean ± SD
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prolonged, but not acute depletion of COG4-mAID causes degradation

of Golgi resident proteins. At the same time, Airyscan microscopy anal-

ysis revealed a significant fraction of all tested Golgi resident proteins,

with the notable exception of GalNT2, displaced from the Golgi into a

vesicle-like dot pattern (Figures 6C–G, 7C–F, Figures S6A–D, S7A–C)

within 1 h of COG4 depletion.
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To further investigate the COG-dependent behavior of Golgi resi-

dent proteins, we analyzed Golgi and vesicle fractions as described

above (Figure 3A). WB analysis revealed that the vesicular pool of all

tested Golgi recycling proteins and enzymes including trans-Golgi

enzyme FUT8 (Alpha-[1,6]-fucosyltransferase 8) increased signifi-

cantly after 2 h of COG4 depletion (Figures 6H,I and 7G,H). COG

depletion resulted in the relocalization of �50% of all analyzed Golgi

resident proteins into CCD vesicles. Most dramatic relocalization

(�80%) to the vesicular fraction was observed for B4GalT1, indicating

that this trans-Golgi enzyme is constantly recycling in CCD vesicles.

Interestingly, GalNT2 partially relocalized to a vesicular fraction as

well, suggesting that this enzyme is mostly recycled by the “late” CCD
vesicles. The relocation of Golgi resident proteins to vesicular fraction

was specific since the localization of another recycling protein

ERGIC53/LMAN1 did not change its distribution between Golgi and

vesicle fractions upon COG4-mAID depletion (Figure 6H,I).

Fluorescently-labeled lectins are a useful tool to assess the func-

tionality of glycosylation machinery.61 Others and we reported altered

binding of several lectins to both total and surface-exposed glycopro-

tein in COG mutants due to impaired Golgi glycosyla-

tion.2,25,29,31,38,60,62,63 Galanthus nivalus lectin (GNL) binds to terminal

1,3- and 1,6-linked mannose residues on N-linked glycans,29,38,60,64

while helix pomatia agglutinin (HPA) binds to terminal N-

acetylgalactosaminyl residues in O-glycans,29,60,65 respectively. There-

fore, an increase in binding of GNL indicates MGAT1 deficiency and

accumulation of underglycosylated N-linked glycoconjugates, while an

increased binding of HPA indicates a deficiency in GalNT enzymes

and accumulation of underglycosylated O-linked glycoconjugates,

respectively.29,60,65,66 Both MGAT1 and GalNT2 are severely mislo-

cated from the Golgi after the acute COG depletion. To check the “N”
and “O”-glycosylation fidelity during time-dependent COG4 deple-

tion, GNL and HPA conjugated with Alexa-647 (GNL-647 and

HPA647) have been utilized for WB analysis of COG4-mAID cells

(Figure 7I–L). WB lectin analysis revealed that GNL-647 and HPA-647

binding was not increased during the first 2 h of COG depletion, indi-

cating a lack of detectable glycosylation defects. This data indicated

that previously observed changes in glycosylation in COG mutant cells

are a secondary manifestation of COG complex deficiency. In

agreement with this hypothesis, GNL and HPA binding were signifi-

cantly increased after prolonged COG4 depletion (Figure 7I–L). In

combination, our data revealed that the acute COG4 depletion causes

the redistribution of the Golgi enzymes and a subset of other resident

proteins into CCD vesicles whereas a prolonged COG depletion

causes significant degradation of mislocated enzymes causing glyco-

sylation defects.

2.7 | COG sensitive Golgi proteins are recycled
in distinct CCD vesicles

Previously, we showed that COG3 KD in HeLa cells resulted in rela-

tively slow (48–72 h) accumulation of several Golgi proteins in CCD

vesicles.34 The acute COG4-mAID depletion approach resulted in a

much faster (1–2 h) accumulation of CCD vesicles containing a subset

of COG interacting partners, Golgi enzymes as well as Golgi resident

proteins. IF and WB data indicate that several proteins (like GS15,

MGAT1, and B4GalT1) dislocate from the Golgi at the onset of

COG4-mAID depletion in the “early” CCD vesicles, while others (like

Rab1B and GalNT2) require a longer depletion of COG for their relo-

calization into “late” CCDs. Temporal differences in the displacement

of different Golgi proteins into vesicular fractions indicate that differ-

ent resident proteins are using different carriers for recycling between

Golgi subcompartments. To test this hypothesis, we first analyzed

CCD vesicles by Airyscan microscopy. In control cells, MGAT1 and

B4GalT1 reside in adjoined Golgi cisternae, showing partial colocaliza-

tion by IF (Figure 8A). If these two proteins use the same CCD vesi-

cles for their COG-dependent recycling, we expect an increase in

their colocalization, since vesicle size (�60 nm) is significantly below

the resolution limits of Airyscan microscopy (170 nm). Therefore, if

two different proteins reside in the same vesicle, they would show

strong colocalization. Indeed, if two different secondary antibodies

labeled with Alexa488 and Alexa647 were used to analyze B4GalT1

localization, significant colocalization of fluorescent signals was

observed (Farhana Taher Sumya unpublished data). In contrast, Airys-

can analysis revealed a significant decrease in colocalization of

MGAT1 and B4GalT1 upon acute COG4-mAID depletion, indicating

F IGURE 6 Acute COG4 depletion causes relocalization of Golgi resident proteins into CCD vesicles. (A) WB of time-dependent depletion of
COG4-mAID shows the expression of Golgi resident proteins (GPP130, TMEM165, TGN46, and SDF4). 10 μg of total cell lysates were loaded
and probed with indicated antibodies. β actin was used as a loading control. (B) The graph represents the quantification of A. In the bar graph,
values represent the mean ± SD from three independent experiments. Statistical significance was calculated using one-way ANOVA. P ≥ 0.05,
nonsignificant (ns), ****p ≤ 0.0001, significant. (C, D, E, F) Airyscan superresolution IF analysis of untreated (control) or auxin treated (IAA)
COG4-mAID cells stained for (C) GM130 (green) and GPP130 (red), (D) GM130 (green) and TMEM165 (red), (E) GM130 (green) and TGN46 (red),
(F) GM130 (green) and SDF4 (red), respectively. Scale bars, 20 μm. For better presentation, green and red channels are shown in inverted black
and white mode whereas the merged view is shown in RGB mode. (G) Colocalization of Golgi resident proteins with GM130 was determined by

calculating Pearson's correlation coefficient and >90 cells were analyzed. Statistical significance was calculated by GraphPad Prism 8 using paired
t-test. Here, ****p ≤ 0.0001, ***p ≤ 0.001, *p ≤ 0.05, significant and p ≥ 0.05 nonsignificant (ns). Error bar represents mean ± SD. (H) WB analysis
of GPP130, SDF4, and ERGIC53 in Golgi and vesicle fractions. Equal volumes of Golgi (G) and vesicle (V) membrane fractions were analyzed with
antibodies as indicated. (I) The graph represents the quantification of vesicle fraction (%) of Golgi resident proteins in COG depleted cells
compared to control. The Golgi protein abundance in vesicles was calculated as a percentage of the immuno signal in the vesicle fraction to the
combined signal in Golgi and vesicle fractions from n = 3 independent experiments. Statistical significance was calculated by GraphPad Prism
8 using paired t-test, ****p ≤ 0.0001, ***p ≤ 0.001, *p ≤ 0.05, significant and p ≥ 0.05 nonsignificant (ns). Error bar represents mean ± SD
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that these two proteins recycle in different sets of CCD vesicles

(Figure 8B). Similar results have been obtained for B4GalT1 and cis-

Golgi protein GPP130 indicating that these proteins also travel in

separate vesicles (Figure S8A,B). To complement IF studies, the analy-

sis of CCD vesicles separated via sucrose velocity sedimentation67

was performed (Figure 8C). The WB analysis of individual sucrose
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gradient fractions revealed vesicular fractions enriched for B4GalT1,

MGAT1, and GalNT2 proteins (Figure 8D). The maximum signal for

B4GalT1 was detected in fraction 5 while MGAT1 and GalNT2 are

mostly enriched in fraction 6 (Figure 8E) indicating that medial and

trans-Golgi enzymes are recycling in separate CCD vesicle populations

that slightly differ from each other by size and/or density. WB analy-

sis of gradient fractions for B4GalT1 and GPP130 (Figure S8C) also

revealed two distinct vesicular populations (Figure S8D). In summary,

the IF and WB analysis of vesicles accumulated in acute COG

depleted cells indicate that cis, medial, and trans-Golgi residents recy-

cle in different populations of CCD vesicles.

2.8 | Displacement of multiple vesicular coats from
Golgi upon acute COG4 depletion

It has been postulated that intra-Golgi retrograde trafficking is primar-

ily accomplished by selective incorporation of recycling proteins into

vesicles formed by COPI protein coat.68–70 COG-COPI genetic and

physical interaction was reported by others and us,4,34,55,58,71 sug-

gesting that COG is tethering COPI-formed intra-Golgi trafficking

intermediates. At the same time, recent data from the yeast system

demonstrated the role of the AP1 vesicle coat complex in recycling

trans-Golgi enzymes.72–74 Also, GGA vesicular coat was implicated in

the localization of a subset of Golgi proteins.70,75

Since our analysis revealed that different resident Golgi proteins

are recycling in different CCD vesicles we have investigated the

changes in the localization of Golgi located vesicular coat machineries

in cells acutely depleted for the COG complex. First, the localization

of β0 and γ subunits of COPI vesicular coat complex was determined

by Airyscan IF approach. Microscopy analysis of COG4-mAID cells

revealed that both β0COP/COPB2 and γCOP/COPG1 were Golgi

located in control cells and become severely displaced from Golgi

perinuclear region as early as the 1 h of COG4 depletion

(Figure 9A,B). COPI selects recycling proteins into vesicles either

directly,76 or indirectly, using additional adaptors like GOLPH3 and

GOLPH3L.77–79 In agreement with this model, GOLPH3 was rapidly

displaced from the Golgi region at the early onset of COG4-mAID

depletion (Figure S9A,B). Biochemical fractionation of COG depleted

cells did not reveal COPI associated with CCD vesicle fraction, indi-

cating that upon COG4-mAID depletion COPI is dissociated from

nontethered vesicles and accumulated in cytosol (Farhana Taher

Sumya unpublished data). Intriguingly, two other Golgi-based vesicle

adaptor complexes, GGA and AP1 reacted to COG acute repletion in

a manner similar to COPI. The GGAs and the AP1 are mainly localized

in the trans-Golgi network and are likely to select cargo proteins into

distinct types of vesicles.80 IF analysis showed that both GGA2 and

AP1β/AP1B1 adaptor proteins were displaced from Golgi upon acute

COG depletion (Figure 9C,D). A colocalization analysis confirmed sig-

nificant decrease in colocalization of COPI subunits (β0 , γ) as well as

adaptor proteins (GGA2, AP1β) with the Golgi marker GM130

(Figure 9E). In summary, we have uncovered that COG complex acute

depletion caused a buildup of multiple types of nontethered recycling

vesicles that likely to be formed from different Golgi cisternae with

the help of COPI, AP1, and GGA vesicle budding/cargo sorting

machineries.

3 | DISCUSSION

Intra-Golgi trafficking and localization of Golgi resident proteins are

intensely studied for more than 50 years, but the exact rules for locali-

zation of Golgi glycosylation machinery, the repertoire of membrane

carriers that move retrograde and anterograde cargo, and the mecha-

nisms for vesicle tethering and docking in the Golgi are still an enigma.

To advance our knowledge of Golgi physiology, we investigated the

effect of the acute depletion of the COG complex, the major multi-

subunit Golgi vesicle tethering factor, on the dynamics of Golgi

F IGURE 7 Acute depletion of COG4 displaces a significant fraction of the Golgi enzymes into CCD vesicles causing their subsequent
degradation and glycosylation defects. (A) WB of total cell lysates during time-dependent depletion of COG4-mAID shows the expression of
Golgi B4GalT1, GalNT2, and MGAT1 enzymes. 10 μg of total cell lysates were loaded and probed with indicated antibodies. β actin was used as a
loading control. (B) The graph represents the quantification of A. In the bar graph, values represent the mean ± SD from three independent
experiments. Statistical significance was calculated using one-way ANOVA. ****p ≤ 0.0001, significant. (C, D, E) Airyscan superresolution IF
analysis of untreated (control) or IAA treated COG4-mAID cells stained for (C) GM130 (green) and B4GalT1 (red), (D) GM130 (green) and GalNT2
(red), (E) GM130 (green) and MGAT1 (red), respectively. Scale bars, 20 μm. For better presentation, green and red channels are shown in inverted
black and white mode whereas the merged view is shown in RGB mode. (F) Colocalization of Golgi enzymes and GM130 was determined by
calculating Pearson's correlation coefficient, >90 cells were analyzed. Statistical significance was calculated by GraphPad Prism 8 using paired
t-test. Here, ***p ≤ 0.001, ****p ≤ 0.0001 (significant) and p ≥ 0.05 nonsignificant (ns). Error bar represents mean ± SD. (G) WB analysis of
glycosylation enzymes in Golgi and vesicle fractions. Equal volumes of Golgi (G) and vesicle (V) membrane fractions were analyzed with
corresponding antibodies. (H) The graph represents the quantification of vesicle fraction (%) of Golgi enzymes in COG depleted cells compared to

control. The Golgi enzyme abundance in vesicles was calculated as a percentage of the immuno signal in the vesicle fractions to the combined
signal in Golgi and vesicle fractions from n = 3 independent experiments. Statistical significance was calculated by GraphPad Prism 8 using paired
t-test, ****p ≤ 0.0001, ***p ≤ 0.001, significant. Error bar represents mean ± SD. (I) HPA-647 lectin blot of total cell lysates obtained during time-
dependent depletion of COG4-mAID. COG4 KO cells were used as a control. (J) The graph represents the quantification of H. (K) GNL-647 lectin
blot of total cell lysates during time-dependent depletion of COG4-mAID. COG4 KO cells were used as a control. (L) The graph represents the
quantification of K. Values in bar graphs represent the mean ± SD from three independent experiments. Statistical significance was calculated in
GraphPad Prism 8 using one-way ANOVA. ***p ≤ 0.001, **p ≤ 0.01, *p ≤ 0.05
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resident proteins. We found that rapid COG4 depletion was sufficient

to induce COG complex dysfunction causing a dramatic accumulation

of CCD vesicles that carry a specific set of SNAREs, golgins, and Golgi

resident proteins. In agreement with previous EM data,81 accumulated

intra-Golgi vesicles were mostly uncoated and initially located in close

proximity to the unaltered Golgi stack, indicating that the coat falls off

promptly after vesicle budding to allow golgin-assisted long-range

tethering to occur. A large group of Golgi resident proteins promptly

relocated into CCD vesicles 30–60 min after the initiation of COG4

depletion, therefore, we termed these carriers the “early” CCD

vesicles. Other Golgi residents required a more substantial 2-h-long

COG depletion for their incorporation into vesicular carriers suggest-

ing that these molecules travel in the “late” CCD vesicles.

Comparison of our results with the data obtained with HEK293T

COG KO cells,18,20 we can conclude that massive accumulation of

CCD vesicles is a transient cellular reaction on the acute COG com-

plex dysfunction, while the intense Golgi fragmentation and accumu-

lation of EELS compartment phenotype is likely a long-term

adaptation of trafficking machinery to COG-less trafficking conditions.

Interestingly, the adaptation in COG KO cells does not include
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stabilization of Golgi enzymes or v-SNAREs, indicating that these

components are mostly disposable for cellular physiology at least in a

tissue culture setting. Interestingly, lobe B COG subcomplex is stable

in lobe A KO cells and vice versa, indicating a potential COG complex-

independent role of the subcomplexes in cell physiology.

On the other hand, our results are in a good agreement with the

data obtained with HeLa cells depleted for COG3 and COG7 using

siRNA approach,25,34 confirming our earlier hypothesis that accumula-

tion of nontethered CCD vesicles is a primary cellular reaction to

COG complex dysfunction. Importantly, in our earlier studies accumu-

lation of CCD vesicles was observed 48–72 h after siRNA treatment

of cancer cell line, while in this work even short 30 min COG4 deple-

tion in noncancerous RPE1 cells was sufficient for accumulation of

“early” CCD vesicles. While in the earlier study we mostly rely on

exogenously expressed tagged and often overexpressed Golgi resi-

dent proteins, this work significantly extended our understanding of

CCD vesicle carriers by detecting multiple specific endogenous cargo

proteins and revealing the existence of several population of CCD

carriers.

In agreement with previously published data, we found that GS15

and GS28 are actively incorporated into CCD vesicles to operate as

v-SNARE proteins, while STX5 and YKT6 remain on the Golgi and

work as t-SNAREs.82 YKT6 lacks a transmembrane domain, instead it

is anchored to the membrane by the lipid anchor. At the same time,

YKT6 is essential for Golgi integrity and cell viability,83,84 further sup-

porting its role as a t-SNARE at the Golgi. STX5 is a transmembrane
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protein, which is shown to cycle via ER3,85–87; since STX5 localization

is COG-independent, it will be important to investigate which mem-

brane carriers are used to recycle STX5 during Golgi biogenesis.85

Curiously, previous proteomic studies identified STX5 as a component

of in vitro formed COPI Golgi vesicles3,88,89 this result is likely to indi-

cate the principal difference between in vivo accumulated and in vitro

formed Golgi-derived vesicles.

Rab GTPases are traditionally described as a vesicular component

of trafficking machinery.90,91 Rab1, Rab2, Rab6, and Rab30 proteins

are incorporated in the in vitro-produced Golgi-derived COPI vesi-

cles.88,92,93 Surprisingly, our data revealed that many tested Golgi Rab

proteins (Rab2a, Rab6, Rab30, Rab43) did not change their intracellu-

lar localization upon the acute COG depletion and remained on the

Golgi membranes. This data again indicated that the in vivo formed

and physiologically relevant CCD vesicles are significantly distinct

from the in vitro-produced COPI vesicular structures. One possibility

is that the in vitro formed COPI vesicles are lacking regulatory

machinery that limits the incorporation of STX5 and Rabs and favors

the concentration of Golgi resident proteins into vesicular carriers. As

Rab2, Rab6, Rab30, and Rab43 interact with the COG complex18,27

we propose that they preferentially work from the Golgi membrane to

tether incoming CCD vesicles. In agreement with this proposal, yeast

Golgi Rab Ypt1, which is highly related to Rab2, Rab30, and Rab4394

is shown to work from the Golgi membrane during tethering of COPII

vesicles.95 Unlike other tested Rabs, Rab1B was partially relocated to

the “late” CCD vesicles, and therefore could work from the vesicle

side during the tethering/fusion process.

Coiled-coil Golgi-located vesicular tethers, golgins, like SNAREs,

demonstrated differential response to the acute COG depletion. Two

COG-interacting golgins, p115 and GM130 remained on the Golgi

and are likely to operate in vesicle tethering from the Golgi side as

t-tethers. In contrast, giantin, golgin84, and TMF1 were actively relo-

cated to CCD vesicles, indicating that these golgins may operate from

the vesicle side as v-tethers. Both giantin and golgin84 are transmem-

brane proteins, therefore, their segregation into CCD vesicles could

not only indicate their function as v-tethers but also their behavior as

a recycling Golgi cargo. On the other hand, TMF1 protein does not

have a transmembrane domain and must be actively segregated to

CCD vesicles. Previous in vitro studies indicated that during tethering

of intra-Golgi vesicles golgin84 interacts with the CASP, while giantin

interacts with p115.96 In agreement with this model, our results

showed that one component (golgin84 or giantin) of the tethering

reaction is vesicle localized, while the other component (p115 and

possibly CASP) is associated with the Golgi stack. It is also interesting

to note that previous data implicated Rab1, Rab2a, and Rab6 as TMF1

binding partners.53,97 In COG-depleted cells, Rab2a and Rab6

remained associated with the Golgi, while TMF1 and Rab1b are asso-

ciated with CCD vesicles, suggesting that TMF1 initiates vesicle teth-

ering by binding to activated Rabs on both vesicle and Golgi

membranes. Importantly, Sean Munro's lab reported that both gol-

gin84 and TMF1 ectopically expressed on the mitochondrial mem-

brane were capable of attracting vesicles containing Gogi enzymes,98

confirming their tethering role in the intra-Golgi vesicle recycling.

The most intriguing aspect of our work is finding that upon the

acute COG depletion the majority of Golgi resident proteins are sig-

nificantly relocated into CCD vesicles and that these vesicles are not

uniform in their content and physical properties. Massive accumula-

tion of Golgi resident proteins in Golgi-derived vesicles could be

viewed as a surprising result, considering that previous immuno-EM

analysis failed to localize Golgi enzymes in budding profiles and peri-

Golgi vesicles.99,100 This may be due to the very short half-life of

intra-Golgi vesicles in cells with functional COG complex and with a

small number of recycling enzymes carried by one transport vesicle.

It is likely that CCD vesicles originated from different Golgi subcom-

partments and that different vesicle budding machineries are

involved in their formation. Some Golgi residents, like medial-Golgi

MGAT1 and trans-Golgi B4GalT1, are very sensitive to COG deple-

tion, actively relocating to the “early” CCDs, indicating that both

enzymes are frequently incorporated into transport membrane inter-

mediates that require COG to tether and fuse with the acceptor

membrane. Importantly, we were unable to colocalize MGAT1 and

B4GalT1 in the same peri-Golgi vesicles, indicating that these pro-

teins recycle in different populations of “early” CCD vesicles. The dif-

ference in rates at which different Golgi residents are incorporated

into CCD vesicles could be related to the precision of their localiza-

tion in specific Golgi cisternae. MGAT1 and B4GalT1 operate in par-

tially overlapping medial and trans-Golgi cisternae.101,102 To maintain

this specific localization in a constantly maturing Golgi, these

enzymes should be incorporated into the recycling CCD vesicles at a

higher rate. On the other hand, GalNT2 is found throughout the

Golgi stack.103 This type of localization requires less precision and

therefore GalNT2 could be recycled from multiple Golgi compart-

ments and incorporated into CCD vesicles at a lesser rate. Indeed,

we found that GalNT2 is less sensitive to COG depletion, relocating

to “late” COG vesicles. V-tether golgin84 is also reacted “late” to

COG depletion, suggesting that this protein was using GalNT2-filled

carriers. However, the mitochondria relocalization studies demon-

strated that ectopically expressed golgin84 tethers membranes con-

taining GalNT2,104 indicating that golgin84 and GalNT2 used

different CCD vesicles for their recycling of needs. In agreement with

IF data, vesicles carrying medial and trans-Golgi enzymes were sepa-

rated on a velocity gradient. Similar separation of vesicles carrying

MGAT1 and B4GalT1 was observed previously by the Ostermann

laboratory while studying the vitro formed COPI Golgi vesicles,67

suggesting that the “early” CCD vesicles accumulated in COG defi-

cient cells are formed by COPI machinery. Indeed, several COPI sub-

units and COPI-interacting adaptor GOLPH3 were very sensitive to

COG depletion. Surprisingly, two other Golgi-located vesicular coats

AP1 and GGA, were also sensitive to acute COG4 depletion, indicat-

ing that CCD vesicles could be formed by at least three different

vesicular coats. The involvement of the AP1 complex in the intra-

Golgi trafficking was recently demonstrated in yeast cells by the

Glick laboratory72 and our findings support the notion that AP1 is

playing an active role in intra-Golgi trafficking in mammalian cells as

well. The role of the GGA coat in the localization of Golgi enzymes

has been documented previously.105
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In a summary model (Figure 10) and Table 1, we postulate that

during the Golgi maturation process all Golgi resident proteins are

continuously recycling from the later cisternae to the early ones in

CCD vesicles. The notable exception from this rule is STX5, which is

not incorporated into CCD carriers and is likely to be recycled by

tubular connections or other COG-independent mechanisms. The like-

lihood of protein incorporation into CCD vesicle and the rate of vesic-

ular recycling is different for different Golgi residents and it may

define their intra-Golgi localization pattern – residents with tight

localization (like B4GalT1) would cycle more frequently compared to

more dispersed residents like GalNT2. CCD carriers are formed from

different Golgi cisternae by specific coat machinery, such as COPI is

forming vesicles from cis, medial, and trans compartments, while AP1

is selecting resident proteins in trans-Golgi and TGN, and GGA is

forming retrograde vesicles from TGN and the endosomal compart-

ments. Different CCD vesicles carry distinct cargo and a specific set

of v-tethers. It is currently unknown how many molecules of Golgi

residents are packaged in a single 60 nm vesicle carrier, but our inabil-

ity to colocalize Golgi enzymes in the same CCD vesicle suggests a

relatively low number of cargo molecules per vesicle. GS28 and GS15

are likely to be the major v-SNAREs for all classes of CCD vesicles,

although the early Golgi could use Sec22b and GS27/GOSR2,106–109

while some TGN and endosome-derived CCD carriers may utilize

VAMP4 and STX6.108,110–113 We also recently discovered the

involvement of SNAP29 and VAMP7 in intra-Golgi trafficking.114

Although different classes of CCD carriers are initially recognized at

the acceptor cisternae by a specific combination of t-tethers and

Rabs,115 the final docking and SNARE pairing of all intra-Golgi vesicles

is uniquely orchestrated by the COG complex. COG complex

extended 8 tentacle structure allows multiple sequential and/or simul-

taneous interactions with different components of CCD vesicle teth-

ering and fusion machinery thus stabilizing and proofreading correct

pre-fusion arrangements. During acute COG depletion, this final

proofreading stage does not occur, causing a massive accumulation of

all classes of partially tethered and nontethered CCD vesicles. The

exact mechanism of COG action awaits its resolution, but the use of

the novel COG4 acute depletion cellular system unarguably proved

that COG machinery is an essential centerpiece of intra-Golgi retro-

grade trafficking.

4 | MATERIALS AND METHODS

4.1 | Cell culture and auxin treatment

hTERT RPE1 (retinal pigment epithelial) and HEK293T cells were pur-

chased from ATCC. hTERT RPE1 COG4 KO cells were described pre-

viously.29 Cells were cultured in Dulbecco's Modified Eagle's Medium

(DMEM) containing Nutrient mixture F-12 (DMEM/F12, Corning

10–092-CV) supplemented with 10% fetal bovine serum (Atlas Bio-

logicals, CF-0500-A). Cells were incubated in a 37�C incubator with

5% CO2 and 90% humidity.

For rapid COG4 degradation, a stock solution of 0.5 M Indole-

3-acetic acid sodium salt (auxin, IAA, Sigma # I5148) was prepared in

water and stored in a frozen aliquot. Time course treatment of cells

was performed with 500 μM IAA for 0.5, 1, 2, 24, and 48 h at 37�C.

The cells without auxin treatment were considered as untreated

control.

4.2 | Plasmid preparation, generation of lentiviral
particles, and stable cell lines

All constructs were developed using standard molecular biology tech-

niques and are given in Table 2.

4.3 | Generation of retroviral particles and COG4
KO cell line expressing OsTIR1

OsTIR1-9myc was stably expressed in COG4 KO cells to induce

depletion of AID-tagged COG4 protein. pUMVC (5.2 μg), pMD2.G

(2.6 μg), and pBabe OsTIR1-9myc (7.2 μg) were mixed to transfect

HEK293FT cells using Lipofectamine 3000 using a standard protocol.

Transfected HEK293FT cells were placed in serum-reduced Opti-

MEM with 25 μM Chloroquine and 1� GlutaMAX. Five hours after

TTGN

Trans

Medial

Cis

Endosome

GGA2AP1 COPI coats

Golgi enzyme and resident
protein

Rab-GTPases

COG

Control Acute COG4
depletion

t-SNARE

v-SNARE

v-tether

t-tether

F IGURE 10 The model depicts the effect of acute COG4
depletion on Golgi homeostasis and vesicular trafficking. Note that
upon COG4 depleting t-SNAREs, t-Tethers, and Rab proteins
remained at the Golgi while vesicular coat protein, glycosylation
enzymes, and other Golgi resident proteins dissociated from the
Golgi in nontethered trafficking intermediates.
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transfection Na-Butyrate (5 mM final concentration) was added. The

next day, the medium was changed to Opti-MEM supplemented with

1� GlutaMAX. At 48 h after transfection, the medium was collected,

and cell debris was removed by centrifugation at 1000� g for 5 min.

The supernatant was clarified by passing through a 0.45 μM poly-

ethersulfone (PES) membrane filter; the viral supernatant was frozen

in 1 ml aliquots and stored at �80�C.

hTERT RPE1 COG4 KO cells were plated on a 6-wells plate in

DMEM/F12 at 50% confluency. The next day, cells were transduced

with 500 μl of viral supernatant. A 48 h after transduction, the retro-

viral media was exchanged for fresh DMEM/F12 growth media con-

taining Puromycin (10 μg/ml final concentration, selection dose). After

48 h of puromycin selection, the media was replaced with complete

media containing 5 μg/ml of puromycin (maintenance dose). The

single-cell clones were isolated into 96 well plates by serial dilution.

Cells were allowed to grow for two more weeks before expanding.

After that, cell colonies were collected by trypsin detachment and

expanded into a 12-well plate with a complete media containing the

maintenance dose of puromycin. Expanded clones were screened by

western blot (WB) and immunofluorescent (IF) analysis to identify the

cells with uniform OsTIR1-9myc expression.

4.4 | Construction of plasmid COG4-mAID-
mCherry in pENTRA1A

To produce COG4-mAID-mCherry in pENTRA1A, mAID-mCherry was

first amplified by PCR from pMK292 mAID-mCherry2-NeoR plasmid

TABLE 1 The list of Golgi protein effected by acute COG4 depletion

Effect of acute COG4 depletion on Golgi protein

Early COG4 sensitive proteins
(30–60 min depletion of COG4)

CCD vesicle protein
(2 h depletion of COG4) COG4-insensitive Golgi proteins

COG subunits COG1,

COG3,

COG8

SNAREs GS15/BET1L,

GS28/GOSR1

GS15/BET1L,

GS28/GOSR1

STX5,

YKT6

Coiled-coil tethers Giantin/GOLGB1,

TMF1/ARA160

Golgin84/GOLGA5,

TMF1/ARA160

GM130/GOLGA2,

P115/USO1

GOLGA1/Golgin97

GOLGA4/Golgin245

Small GTPases Rab1B Rab2A,

Rab6A,

Rab30A,

Rab43A

Coat proteins β0COP/COPB2,

γCOP/COPG1,

GGA2,

AP1β/AP1B1

Golgi enzymes B4GalT1,

MGAT1

B4GalT1,

MGAT1,

GalNAcT2,

Fut8

Other Golgi resident proteins TMEM165/TPARL,

GPP130/GOLIM4,

TGN46/TGOLN2,

Cab45/SDF4

GPP130/GOLIM4,

Cab45/SDF4

ERGIC53/LMAN1

Cargo adaptor protein GOLPH3

TABLE 2 The list of plasmids used in this study

Plasmid name Source Citation

pBabe OsTIR1-9myc (PuroR) Addgene #47328 46

pMK292 mAID-mCherry2-NeoR Addgene #72830 116

pUMVC (packaging plasmid for

producing MNuLV retroviral

particles)

Addgene #8449 117

pMD2.G (VSV-G envelope

expressing plasmid) (a gift from

Didier Trono

(Addgene plasmid

#12259; http://

n2t.net/addgene:

12259; RRID:

Addgene_12259)

118

pRSV-Rev Addgene #12253 118

pMDLg/pRRE Addgene #12251 118

COG4-2xGFP in pEntra1A Lab 29

pLenti COG4 Neo DEST plasmid

with COG4 promoter

Lab 29,60

COG4-mAID-mCherry in

pENTRA1A

This study —

COG4-mAID-mCherry in pLenti This study —
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(Addgene #72830) using primers 50-AATTGGTACCGGATCCGGTG-

CAGGCGCCAAG-30, and 50-GCGCCTCGAGTTACTTGTACAGCTCG

TCGTCCAT-30 following KpnI/XhoI digestion and ligation of PCR

fragment with similarly digested COG4-2xGFP in pEntra1A.29

4.5 | Production of COG4-mAID-mCherry
lentivirus and COG4 KO-OsTIR1 expressing AID
tagged COG4 stable cell line

COG4-mAID-mCherry in pEntra1A were recombined into pLenti

COG4 Neo DEST plasmid with COG4 promoter29,60 to generate

COG4-mAID-mCherry in pLenti using Gateway LR Clonase II

Enzyme Mix (Thermo Fisher) and transformed into Stbl3 competent

cells according to the manufacturer's instructions. DNA was

extracted with QIAprep Spin Miniprep DNA extraction Kit. Correct

COG4-mAID-mCherry pLenti clones were tested by restriction anal-

ysis. COG4-mAID-mCherry expression was validated by transfecting

HEK293T cells with selected COG4-mAID-mCherry pLenti plasmids

followed by WB analysis of total cell lysates using COG4 antibody.

To produce lentiviral particles, equal amounts of lentiviral packaging

plasmids pMD2.G [a gift from Didier Trono (Addgene plasmid

#12259; http://n2t.net/addgene: 12259; RRID: Addgene_12259)],

pRSV-Rev, pMDLg/pRRE,118 and COG4-mAID-mCherry pLenti

were mixed to transfect HEK293FT cells with Lipofectamine 3000

using a manufacturer protocol. Transfected HEK293FT cells were

placed in serum-reduced Opti-MEM supplemented with 25 μM

Chloroquine and 1� GlutaMAX. The next day, the medium was

changed to Opti-MEM supplemented with 1� GlutaMAX. At 72 h

after transfection, the medium was collected, and cell debris was

removed by centrifugation at 600� g for 10 min. The supernatant

was passed through a 0.45 μM polyethersulfone (PES) membrane

filter and the lentiviral medium was stored at 4�C overnight or

splitted into aliquots, snap freezed in liquid nitrogen, and stored

at �80�C.

hTERT RPE1 COG4 KO OsTIR1-9myc cells were plated in two

wells of a 6-wells plate in complete medium to reach 90% confluency

the next day. One of the wells was used as a control for antibiotic

selection. The next day, cells were transduced with 500 μl of lentiviral

supernatant. At 48 h after transduction, the lentiviral media was

substituted to cell growth media containing G418 (600 μg/mL final

concentration, selection dose). After 48 h of selection, the media was

replaced with complete media containing 200 μg/mL of G418 (main-

tenance dose). The cells were expanded at 37�C and 5% CO2 for

48 h. After G418 selection, the single-cell clones were isolated into

96 well plate by serial dilution. Cells were allowed to grow for

2 weeks, collected by trypsin treatment, and expanded each colony

into a 12-well plate with a complete medium containing G418. WB

and IF analyses were performed to identify the clone with

COG4-mAID-mCherry expression. Clones with a uniformed expres-

sion of COG4-mAID-mCherry were split onto 10-cm dishes, aliquots

were cryopreserved in 2� freezing medium (80% FBS with 20%

DMSO) mixed with growth medium.

4.6 | Preparation of cell lysates and western blot
analysis

To prepare the cell lysates, cells grown on tissue culture dishes

were washed three times with phosphate-buffered saline (PBS) and

lysed in hot 2% SDS. Samples were mixed with 6� SDS sample

buffer containing β-mercaptoethanol and heated for 10 min at 70�C.

To prepare the lysates for each fraction mentioned in the membrane

fractionation experiment, membrane pellets were resuspended in

2% SDS following the addition of 6� SDS sample buffer containing

β-mercaptoethanol. For making the sample for supernatant (men-

tioned in the membrane fractionation experiment) and fractions of

vesicle gradients 6xSDS sample buffer containing β-mercaptoethanol

was added. The samples were heated for 5 min at 95�C following

10 min at 70�C.

A 10–20 μg of protein was loaded into Bio-Rad (4%–15%) or

Genescript (8%–16%) gradient gel. Proteins were transferred onto

nitrocellulose membrane using the Thermo Scientific Pierce G2 Fast

Blotter. Membranes were washed in PBS, blocked in Bio-Rad block-

ing buffer for 20 min, and incubated with primary antibodies for 1 h

at room temperature or overnight at 4�C. Membranes were washed

with PBS and incubated with secondary fluorescently-tagged anti-

bodies diluted in Bio-Rad blocking buffer for 1 h. All the primary

and secondary antibodies used in the study are given in Table 3.

Blots were then washed with PBS and imaged using the Odyssey

Imaging System. Images were processed using the LI-COR Image

Studio software.

4.7 | Lectin blotting

To perform blots with fluorescent lectins, 10 μg of cell lysates

were loaded onto Bio-Rad (4%–15%) gradient gels, and proteins

were transferred to nitrocellulose membrane using the Thermo Sci-

entific Pierce G2 Fast Blotter. The membranes were blocked with

Bio-Rad blocking buffer for 20 min. Helix Pomatia Agglutinin

(HPA)-Alexa 647 (Thermo Fisher) or Galanthus Nivalis Lectin (GNL)

conjugated to Alexa 64739 were diluted 1:1000 in Bio-Rad block-

ing buffer from their stock concentration of 1 and 5 μg/μl, respec-

tively. Membranes were incubated with diluted HPA-647 or GNL-

647 for 1 h, washed four times in PBS, and imaged using the

Odyssey Imaging System.

4.8 | Super-resolution AiryScan fluorescent
microscopy

Cells were grown on 12-mm round coverslips to 80%–90% confluency

were fixed with 4% paraformaldehyde (PFA, freshly made from 16%

stock solution) diluted in PBS for 15 min at room temperature. Cells

were then permeabilized with 0.1% Triton X-100 for 1 min followed by

treatment with 50 mM ammonium chloride for 5 min, treated with 6 M

urea for 2 min (only for COG3 staining), and washed twice with PBS.
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Blocking (two incubations 10 min each) in 1% BSA, 0.1% saponin in

PBS was done. Cells were then incubated with primary antibody

(diluted in 1% cold fish gelatin, 0.1% saponin in PBS) for 45 min,

washed, and incubated with fluorescently conjugated secondary anti-

bodies diluted in the antibody buffer for 30 min. Cells were washed

four times with PBS, then coverslips were dipped in PBS and water

10 times each and mounted on glass microscope slides using Prolong®

Gold antifade reagent (Life Technologies). Cells were imaged with a

63� oil 1.4 numerical aperture (NA) objective of an LSM880 Zeiss Laser

invertedmicroscopewith Airyscan using ZEN software.

4.9 | Analysis of Golgi fragmentation

Ten fields (at least 30 individual cells) of GM130-stained Airyscan

microscopic images of untreated (control) or auxin treated (IAA)

COG4-mAID cells were used. ImageJ software was used to create

binaries. Then the Golgi particles having a surface area <1 μm2 were

counted using the “Analyze Particle” function of ImageJ. These parti-

cles were considered “Golgi fragments.” The average number of frag-

mented Golgi in auxin-treated COG4-mAID cells was compared with

the untreated control.

4.10 | Membrane fractionation experiment

Cells grown in 15 cm dishes to 90% confluency, were washed with

PBS and collected by trypsinization followed by centrifugation at

400� g for 5 min. The cells pellet was resuspended in 1.5 ml of cell

collection solution (0.25 M sucrose in PBS) followed by centrifugation

at 400� g for 5 min. The pellet was then resuspended in 1.5 ml of a

hypotonic lysis solution (20 mM HEPES pH 7.2, with protein inhibitor

cocktail, and 1 mM PMSF) and passed through a 25 G needle 20 times

to disrupt cells. Cell lysis efficiency was evaluated under the phase-

contrast microscope. After that KCL (to 150 mM final concentration)

and EDTA (2 mM final) were added. Unlysed cells and cell nuclei were

removed by centrifugation at 1000� g. The postnuclear supernatant

(PNS) was transferred to the 1.5 ml Beckman tube (#357488) and the

Golgi-enriched fraction was sedimented at 30 000� g for 10 min. The

Supernatant (S30) was transferred into a new Beckman tube and the

vesicle-enriched fraction was pelleted at 100 000� g for 1 h, at 4�C

using a TLA-55 rotor. The samples from each fraction were prepared

to perform WB analysis.

4.11 | Fractionation of vesicles by velocity
sedimentation

Fractionation of vesicles by velocity sedimentation was done follow-

ing a published protocol67 with some modifications. Before placing

the sucrose fraction Beckman ultra-clear 2 ml centrifuge tube

(#347356) was coated with siliconizing reagent Sigmacote (Sigma

Aldrich), rinsed with water, and dried for 1 h. 200 μl each of 35%,

32.5%, 30%, 27.5%, 25%, 22.5%, 20%, 17.5%, 15%, and 12.5%

(weight/weight) sucrose in KHM buffer (150 mM KCl, 10 mM

Hepes-KOH, pH 7.2, 2.5 mM MgOAc) were overlaid in a siliconized

centrifuge tube and left at room temperature for 2 h to create a lin-

ear gradient. Vesicular pellet (P100) was resuspended in KHM

buffer. A 200 μl of resuspended vesicle fraction was laid on top of

sucrose gradients and the gradient was centrifuged for 1 h at

186 000� g in an ultracentrifuge rotor TLS55 at 4�C. A total of

11 fractions of 200 μl each were manually collected from the top.

The samples were mixed with 6� sample buffer and prepared for

WB analysis.

4.12 | High-pressure freezing, freeze substitution,
and EM

4.12.1 | High-pressure freezing/freezing
substitution

Sapphire disks were coated with a 10 nm carbon layer followed by

collagen (Corning) coating per the manufacturer's instructions. Coated

disks were sterilized under UV light and transferred to new sterile

3 cm dishes for plating the cells. After reaching 80%–100% conflu-

ence, cells were equilibrated in fresh media for 2–3 h at 37�C, treated

with Auxin various times. HPF at specified time points was performed

in cryo-protectant (PBS with 2% Type IX ultra-low melt agarose

[Sigma-Aldrich], 100 mM D-mannitol, and 2% FBS) using a Leica EM

PACT2 high-pressure freezing unit (Leica Microsystems) with rapid

transfer system at high pressure (2100 bar). All solutions, bayonets,

and sample holders were pre-warmed to 37�C, all manipulations were

carried out on a 37�C heating platform.

4.12.2 | Freeze substitution dehydration

Samples were transferred under liquid nitrogen to cryovials containing

anhydrous acetone with 2% osmium tetroxide, 0.1% glutaraldehyde,

and 1% double-distilled (dd) H2O. Next, the tubes were transferred to

a freeze-substitution chamber at �90�C programmed with the follow-

ing schedule: �90�C for 22 h, warm 3�C/h to �60�C, �60�C for 8 h,

warm 3�C/h to �30�C, �30�C for 8 h, warm 3�C/h to 0�C. Afterward,

sample tubes were placed on ice and moved to the cold room (4�C).

After washing three times with acetone samples were stained with a

1% tannic acid, 1% ddH2O solution in acetone on ice for 1 h followed

by three acetone washes. Next, samples were stained with a 1%

OsO4, 1% ddH2O solution in acetone on ice for 1 h, washed

3� 10 min in acetone, and dehydrated over a series of ethanol grada-

tions (25%, 50%, 75%, and 100%) using automatic resin infiltration

protocol for PELCO Bio-Wave Pro laboratory microwave system.

Samples were embedded in Araldite 502/Embed 812 resins with a

DMP-30 activator and baked at 60�C for 48 h.
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TABLE 3 List of antibodies

Antibody Source/Catalog # Species Dilution (WB) Dilution (IF)

COG1 ABclonal A17594 Rabbit 1:1000 1:500

COG2 Sigma OS2 #041212 Rabbit 1:1000 —

COG3 Lab Mouse 1:1000 1:500

COG4 (C terminal) Sigma SAB4200469 Rabbit 1:1000 —

COG8 (C terminal) Sigma SAB4200427 Rabbit 1:1000 1:500

Giantin/GOLGB1 Covance PRB-114C Rabbit — 1:2000

GM130/GOLGA2 CalBiochem, CB1008 Rabbit — 1:2000

GM130/GOLGA2 BD Biosciences, 610283 Mouse 1:400

Golgin84/GOLGA5 Warren's Lab Rabbit 1:1000 —

Golgin84/GOLGA5 Warren's Lab Rabbit — 1:1000

P115/USO1 Sztul's Lab Rabbit 1:1000 1:400

β-Actin Sigma, A5541 Mouse 1:2000 —

TGN46/TGON2 Bio-Rad AHP500G Sheep 1:2000 1:500

LAMP2 DSHB, H4B4 Mouse 1:2000 —

TMEM165 Sigma HPA038299 Rabbit 1:2000 —

B4GalT1 R&D Systems AF-3609 Goat 1:500 1:500

Myc-tag Cell Signaling 9B11 Mouse 1:2000 1:2000

Rab6 (C19) Santa Cruz #SC310 Rabbit — 1:400

Rab2A Avivoasysbio #QC32060 Rabbit 1:1000 —

Rab30A Thermo Fisher #PA537206 Rabbit 1:500 —

Rab1B ABclonal #A7514 Rabbit 1:1000 1:400

ERGIC53/LMAN1 Enzo OTI1A8 Mouse 1:1000 —

GS15/BETL1 Lab Rabbit 1:500 —

GS15/ BETL1 BD Biosciences, 610961 Mouse — 1:300

GS28/GOSR1 BD Biosciences, 611185 Mouse 1:1000 —

Syntaxin5/STX5 Synaptic Systems, 110-053 Rabbit — 1:300

YKT6 ThermoFisher, A305-479A Rabbit 1:1000 —

Syntaxin 5/STX5 Lab Rabbit 1:1000 —

GPP130 Covance, PRB-144C Rabbit 1:1000 1:1000

SDF4/Cab45 Sigma HPA011249 Rabbit 1:1000 1:400

GALNT2/GalNacT2 R&D, AF7507-SP Sheep 1:1000 1:500

MGAT1 Abcam, ab180578 Rabbit 1:500 1:400

hFut8/FUT8 R&D, BAF5768 Sheep 1:500 —

GGA2 BD Biosciences #612612 Mouse — 1:400

AP1β1/AP1B1 Sigma HPA065226 Rabbit — 1:300

β0COP/COPB2 ABclonal, A7036 Rabbit — 1:400

γCOP/COPG1 Duden's Lab Rabbit — 1:2000

GOLPH3 Sigma SAB1102208 Rabbit — 1:500

IRDye 800 anti-Goat LiCOR/926-32214 Donkey 1:20 000 —

IRDye 800 anti-Mouse LiCOR/5-32210 Goat 1:20 000 —

IRDye 800 anti-Rabbit LiCOR/8100901 Donkey 1:20 000 —

Alexa Flour 647 anti-Goat Jackson Immuno Research/705605-147 Donkey 1:4000 1:500

Alexa Fluor 647 anti-Sheep Jackson Immuno Research/705605-147 Donkey 1:4000 1:500

Alexa Fluor 488 anti-Rabbit Jackson Immuno Research/705605-151 Donkey — 1:500

Alexa Fluor 488 anti-mouse Jackson Immuno Research/715-545-151 Donkey 1:4000 1:500

Alexa Fluor 647 anti-mouse Jackson Immuno Research/705605-151 Donkey 1:4000 1:500

Alexa Fluor 647 anti-rabbit Jackson Immuno Research/705605-152 Donkey 1:4000 1:500
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4.12.3 | Thin section TEM

Thin sections were cut at a thickness of 50 nm with a Leica UltraCut-

UCT microtome and poststained with aqueous uranyl acetate and

Reynold's lead citrate (EMS).

4.12.4 | Electron microscopy and image handling

Images were taken using an FEI Tecnai TF20 intermediate-voltage

electron microscope operated at 80 keV (FEI Co.). Images were

acquired with an FEI Eagle 4 k digital camera controlled with FEI

software.

4.13 | Antibodies

Primary and secondary antibodies used for WB or IF were made in

the lab, received from colleagues or commercially purchased. The list

of antibodies and their dilutions are given in Table 3.

4.14 | Statistical analysis

All the WB images are representative of three repeats and those

were quantified by densitometry using the LI-COR Image Studio

software. Error bars for all graphs represent standard deviation. Sta-

tistical analysis was done using one-way ANOVA or paired t-test

using GraphPad Prism software. In the case of IF analysis, each dot

in the bar graph represents the colocalization of GM130 and other

Golgi proteins in several (1–10) cells imaged per field. The Pearson

coefficient value represents the global protein colocalization value in

several cells per each field (>30 cells total) using ZEN Blue

Software.
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