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Abstract
Background and Objectives
Plasma phosphorylated tau at threonine 181 (p-tau181), a well-validated marker of Alzheimer
disease (AD) pathologic change, could be a more efficient way to diagnose AD than invasive or
expensive biomarkers requiring CSF or PET. In some individuals, neuropsychiatric symptoms
(NPS) are the earliestmanifestation of AD, observed in advance of clear cognitive decline.However,
the few studies assessing AD biomarkers in association with NPS have often had imprecision in
capturing behavioral symptoms that represent sequelae of neurodegenerative disease. Thus, the
mild behavioral impairment (MBI) construct was developed, framing NPS in a way to improve the
precision of risk estimates for disease. MBI core criteria stipulate that NPS emerge de novo in later
life and persist for at least 6 months. Here, cross-sectionally and longitudinally, we investigated
associations of MBI with p-tau181, neuropsychological test performance, and incident AD.

Methods
Cognitively unimpaired and mild cognitive impairment (MCI) Alzheimer’s Disease Neuro-
imaging Initiative participants were selected. MBI status was derived from the Neuropsychiatric
Inventory (NPI) using a published algorithm. NPI total scores at baseline and year 1 visits were
used to operationalizeMBI (score >0 at both visits), NPS notmeeting theMBI criteria (NPS-not-
MBI, score >0 at only 1 visit), and noNPS (score = 0 at both visits). Linear regressions were fitted
for cross-sectional analyses; multilevel linear mixed-effects and Cox proportional hazards models
were implemented to examine the longitudinal associations of MBI with changes in p-tau181 and
cognition and incident dementia.

Results
The sample included 571 participants (age 72.2 years, 46.8% female, 64.8% MCI). Cross-
sectionally (β = 8.1%, 95% CI 1.4%–15.2%, p = 0.02), MBI was associated with higher plasma
p-tau181 levels compared with no NPS; NPS-not-MBI was not. Longitudinally, MBI was asso-
ciated with higher p-tau181 (β = 0.014%, 95% CI 0.003–0.026, p = 0.02), in addition to a decline
in memory and executive function. Survival analyses demonstrated a 3.92-fold greater dementia
incidence in MBI, with no significant differences between NPS-not-MBI and no NPS.

Discussion
These findings extend the evidence base that MBI is associated with elevated risk of cognitive
decline and dementia and a sequela of emerging Alzheimer-related proteinopathies. MBI offers
a substantial improvement over current approaches that explore behavior as a proxy marker for
Alzheimer-related proteinopathies, with both clinical and AD trial enrichment implications.
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Alzheimer disease (AD) dementia develops over a range of
clinical stages, associated with pathologic progression and clinical
symptoms. Identifying AD at earlier stages is essential for disease-
modifying drug discovery to administer therapies earlier to
prevent or delay cognitive decline. As per the National Institute
of Aging-Alzheimer’s Association (NIA-AA) Framework, stages
1 and 2 on the AD continuum represent preclinical disease; stage
1 is an asymptomatic phase with objectively normal cognition
and stage 2 subtle impairment and/or subjective concerns. Stage
3 represents prodromal disease with impaired cognition but
maintained functional independence.1 Although cognition is the
core feature in stages 2 and 3, mild neurobehavioral changes may
coexist, and according to the NIA-AA Framework, the primary
complaint may be behavioral rather than cognitive.1 These be-
havioral changes may offer an accessible opportunity for earlier
detection. Mild behavioral impairment (MBI) is a neuro-
behavioral syndrome characterized by later-life emergent and
persistent neuropsychiatric symptoms (NPS) as a high-risk state
for incident cognitive decline and dementia.3,4 MBI is associated
with cognitive decline and progression toMCI and dementia5‐10

and is represented in stages 2 and 3 of theNIA-AAFramework as
“mild, recent onset behavioral symptoms… which persist and
cannot be explained by life events.” MBI core criteria stipulate
that NPS emerge in later life and persist for ≥6 months,4 in-
creasing the likelihood that symptoms represent sequelae of
neurodegenerative disease, rather than responses to events in-
dependent of the underlying neurodegenerative process.

To confirm the diagnostic and prognostic utility of MBI as a
preclinical/prodromal AD marker, exploring associations with
known neurobiological changes in preclinical/prodromal dis-
ease is essential. MBI in dementia-free older adults has been
associated with CSF β-amyloid (Aβ),11 CSF p-tau, tau-PET,12

and neurodegeneration,13–15 consistent with the amyloid/tau/
neurodegeneration (A/T/N) model of AD.1,16 Although CSF
and PETbiomarkers have enabled the in vivo detection of disease,
high cost, invasiveness, and poor access limit their use in clinical
screening and trials.17 Recent evidence supports the use of blood-
based biomarkers as accessible and cost-effective alternatives for
screening for AD pathologies. Plasma phosphorylated tau at
threonine 181 (p-tau181) is an AD-specific blood-based bio-
marker strongly associated with the A/T/N profile of AD, with
remarkable sensitivity in predicting emerging cognitive decline
andAD.18–20 Plasma p-tau181 has demonstrated greater precision
than previously established plasma biomarkers (Aβ42/Aβ40,21

neurofilament light [NfL],22 and total tau23) in predicting pro-
gression to AD dementia.18

Although MBI has been associated with changes in plasma Aβ
andNfL,24,25 the associations betweenMBI and plasma p-tau181
as an early marker of disease remain unclear.18 Our aim was to
determine whether inexpensive and scalable clinical assessments
could serve as simple-to-administer proxymarkers for tauopathy.
Thus, in addition to cognitive risk, we determined whether
superimposed stratification by MBI status could (1) cross-
sectionally improve detection of prevalent preclinical and pro-
dromal AD and (2) longitudinally predict increasing p-tau,
declining cognition, and incident AD dementia. We hypothe-
sized that MBI would be associated with higher p-tau181 and
greater cognitive decline and dementia incidence compared with
conventional approaches to NPS measurement. The implica-
tions are that if MBI were an early-stage AD marker, it might be
leveraged to help clinicians determine what workup is required,
assist clinical trialists reduce screen failures with sample enrich-
ment for biomarker positivity, and potentially aid public health
efforts to determine prevalence and risk.3,24,26

Methods
Participants
Participants were from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI: adni.loni.usc.edu). The ADNI is a non-
randomized natural history nontreatment study launched
in 2003 as a public-private partnership, led by Principal In-
vestigator Michael W. Weiner, MD. The ADNI started recruit-
ing participants in 2004 at 50 study sites across North America.
Participants were followed up at regular intervals from baseline.
Baseline MCI participants were followed up every 6 months for
the first 3 years and then yearly thereafter. Baseline normal
participants were followed up every 6 months for the first year
and then yearly thereafter. The ADNI has the following partic-
ipant inclusion criteria: Hachinski Ischemic score ≤4; age 55–90
years; Geriatric Depression Scale score <6; adequate visual and
auditory acuity for neuropsychological testing; good general
health with no diseases precluding enrollment; and minimum
sixth-grade education. Tracking the rate of conversion from
normal cognition to MCI andMCI to AD is a primary outcome
measure of the ADNI protocol. The ADNI Conversion Com-
mittee reviews individual participant reports and provides a
consensus diagnosis. Details of clinical diagnoses have been
previously described elsewhere.27

Based on ADNI clinical diagnoses, cognitively unimpaired
(CU) participants or those with MCI were included in the
sample. Participants with MCI at baseline who progressed to

Glossary
Aβ = β-amyloid; AD = Alzheimer disease; ADNI = Alzheimer’s Disease Neuroimaging Initiative; A/T/N = amyloid/tau/
neurodegeneration; CU = cognitively unimpaired;HR = hazard ratio;MBI = mild behavioral impairment;MBI-C = MBI checklist;
MLME = multilevel linear mixed effect;MMSE = Mini-Mental State Examination; NfL = neurofilament light; NIA-AA = National
Institute of Aging–Alzheimer’s Association; NPI = Neuropsychiatric Inventory; NPI-Q = NPI Questionnaire; NPS =
neuropsychiatric symptoms; p-tau181 = phosphorylated tau at threonine 181; RAVLT = Rey Auditory Verbal Learning Test.
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AD dementia at year 1 were classified as AD and not included
in the analysis. Only participants with available Neuropsy-
chiatric Inventory (NPI) or NPI Questionnaire (NPI-Q) data
at baseline and 1-year visit were included in the study, as this
information was required to determine MBI status based on 2
time points. Figure 1 illustrates the step-by-step process for
participant inclusion/exclusion.

NPS Operationalization
The primary measure was MBI, operationalized as persistent
NPS at baseline and 1 year captured by the NPI28 and NPI-
Q.29 Previous research has used the NPI/NPI-Q to determine
MBI status using a mapping algorithm.6,30 The 5 domains of
MBI incorporate 10 items of the NPI/NPI-Q as follows: (1)
decreased motivation (apathy/indifference); (2) emotional
dysregulation (depression/dysphoria, anxiety, and elation/
euphoria); (3) impulse dyscontrol (agitation/aggression,
irritability/lability, and aberrant motor behavior); (4) social
inappropriateness (disinhibition); and (5) abnormal percep-
tion or thoughts (delusions and hallucinations). MBI total
scores are then obtained by summing the scores from the 5
transformed MBI domains to give a total score of 0–30. MBI
criteria require symptom persistence for at least 6 months.
However, because NPI and NPI-Q both have a reference
frame of 4 weeks, NPS status across 2 consecutive visits was
used to assess symptom persistence in the present study.
Transformed NPS total scores from baseline and 1-year visits
were used to describe NPS profiles. A transformed NPS total
score >0 at both baseline and 1-year visit was classified as
persistent NPS (i.e., MBI); an NPS score >0 at only 1 visit was

considered transient NPS (i.e., NPS-not-MBI), and NPS
reported at neither visit was classified as no NPS.

Plasma Measurements
Annually sampled plasma p-tau181 measurements were per-
formed using single molecule array technology, as previously
described.19 Participants with missing p-tau181 data were ex-
cluded from the study. Participants with and without available
p-tau181 data did not differ in terms of NPS profiles.

Neuropsychological Assessment
The Rey Auditory Verbal Learning Test (RAVLT)31 was used
to assess episodic memory. The RAVLT measures of interest
to the longitudinal models included scores in immediate re-
call, learning, and delayed recall captured as percent forget-
ting. Scores in the Trail Making B test were used to assess
executive function. Details about each of these neuro-
psychological tests and their implementation in the ADNI
have been previously described elsewhere.32

Statistical Analysis
All statistical analyses were performed in RStudio v1.2.5033.
Plasma p-tau181 values were log transformed due to skew-
ness. Univariate tests were used to identify significant differ-
ences in demographic variables across NPS groups. The p
values were calculated based on 2-sample t tests for contin-
uous variables and the χ2 test for categorical variables. A violin
plot of the distribution of the log-transformed plasma
p-tau181 values per NPS category was produced using the
ggplot package.

Figure 1 Flowchart Illustrating the Step-by-Step Process of Inclusion/Exclusion Criteria of the Present Study

ADNI = Alzheimer’s Disease Neuro-
imaging Initiative; CU = cognitively
unimpaired; MBI = mild behavioral
impairment; MCI = mild cognitive
impairment; NPI = Neuropsychiatric
Inventory; NPI-Q = Neuropsychiatric
Inventory Questionnaire; NPS = neu-
ropsychiatric symptoms.
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Linear regressionmodels were fitted to test the cross-sectional
association between NPS profiles as independent variable
(exposure) and p-tau181 levels as the dependent variable
(outcome) adjusted for age, sex, education, Mini-Mental State
Examination (MMSE) score, and NPS instrument (NPI,
NPI-Q, or both). T-statistics were used to test for statistical
significance. Linear regression assumptions were tested using
the ggfortify package in R.

Longitudinal analyses used multilevel linear mixed-effect
(MLME) models to assess the associations over 4 years be-
tween NPS changes and plasma p-tau181 levels and between
NPS changes and performance on neuropsychological tests. For
the firstMLMEmodel, annualmeasures of plasma p-tau181 over
4 years were considered outcome variables, with concurrent
measures of NPS over 4 years as predictor variables. Additional
model covariates included age, sex, years of education, MMSE,
and NPS instrument. Then, a series of 4 MLME models were
implemented to assess the associations over 4 years between
NPS changes and performance on (1) RAVLT immediate recall,
(2) RAVLT learning, (3) RAVLT percent forgetting, and (4)
Trail Making B. Additional covariates for each of the 4 models
included age, sex, years of education, MMSE, and NPS in-
strument. For allMLMEmodels, the longitudinal change inNPS
was operationalized as a time-varying covariate for between- and
within-person effects, as per previously published methods.33

Annualmeasures ofNPS over 4 years were captured at 2 levels to
inform about both the within-person fluctuations of NPS (NPS-
not-MBI) and the persistent between-person NPS differences
(MBI). NPS severity across all visits of a single participant
compared with all other study participants was considered per-
sistent NPS (i.e., MBI), defined as the mean NPS total score
across all visits for each participant. Visit-to-visit changes in NPS
that occurred within a single participant over time were con-
sidered within-person variability (i.e., NPS-not-MBI), defined as
the NPS total score per visit minus the average score across all
visits for that participant. T-statistics tested for significance in all
MLME models using the Satterthwaite method.

To explore the associations of MBI with risk of dementia,
Kaplan-Meier survival curves were generated, comparing
dementia-free survival across NPS profiles, with log-rank tests
applied to assess between-group differences. Furthermore, a
Cox proportional hazards model was implemented to examine
the associations betweenNPS profiles and the risk of dementia,
while controlling for baseline age, sex, education, and MMSE
score. An additional Cox proportional hazards model was
implemented to explore potential interactions between NPS
profiles and dichotomized plasma p-tau181 levels based on a
published threshold of 17.7 pg/mL for this assay in the
ADNI.19 For this exploratory interaction analysis, a categorical
variable was defined based on NPS profiles at each stratum of
p-tau181 status (positive or negative). The Wald test was used
to test for significance in Cox models. The survival package of
R was used to implement survival and Cox analyses, and pro-
portional hazard assumptions were tested using the cox.zph
function of R.

Standard Protocol Approvals, Registrations,
and Patient Consents
All ADNI participants provided informed consent to partici-
pate in the study, and the ethics committee approval to conduct
this study was received at contributing ADNI sites.

Data Availability
All data used in preparing this article are publicly available on
request from the ADNI platform (adni.loni.usc.edu/).

Results
Demographic Characteristics
Of the 571 participants included in the study, 201 were CU,
and 370 had MCI. Across the entire sample, 103 participants
hadMBI, 135 hadNPS-not-MBI, whereas 333 had noNPS. No
significant difference was found between the MBI and no NPS
groups in terms of age, years of education, or MMSE score.
However, differences were found for sex (p < 0.001) and
plasma p-tau181 levels (p = 0.008). TheMBI group had a lower
percentage of females than no NPS (26.2% females in MBI vs
52.3% in no NPS). Compared with no NPS, plasma p-tau181
levels were higher in MBI (median [interquartile range] 16
[10.6] in MBI vs 13.8 [11.3] in no NPS). Figure 2 illustrates a
violin plot of the distribution of unadjusted log-transformed
plasma p-tau181 values at baseline across NPS categories, along
with the median, 25th, and 75th percentiles marked in blue. No
significant difference was found between NPS-not-MBI and no
NPS in terms of age, years of education, sex, or plasma p-tau181
levels. The mean MMSE score did differ, with the NPS-not-
MBI group having a lower mean MMSE score than no NPS
(28.2 ± 1.74 for NPS-not-MBI vs 28.6 ± 1.54 for no NPS,

Figure 2 Violin Plot of the Distribution of Unadjusted Log-
Transformed Plasma p-tau181 Values at Baseline
Across NPS Categories

In each NPS category, gray dots represent individual data points of log-
transformed p-tau181 values, and the embedded box plot in blue represents
the median, 25th, and 75th percentiles. MBI = mild behavioral impairment;
NPS = neuropsychiatric symptoms.
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p = 0.03). See Table 1 for detailed sample characteristics and
univariate comparisons.

Cross-sectional Association of MBI and
Plasma P-Tau181
Participants with MBI at baseline had 8.1% higher baseline
levels of plasma p-tau181 (95% CI 1.4%–15.2%, p = 0.02)
compared with no NPS after multivariable adjustment. NPS-
not-MBI was not associated with a difference in p-tau181
levels compared with no NPS (β = 1.7%, 95% CI −3.9% to
7.7%, p = 0.55) (Table 2). Among other covariates, baseline
age and MMSE score were also associated with baseline levels

of plasma p-tau181. Older participants had higher plasma
p-tau181 levels (β = 0.7%, 95%CI 0.3%–1.0%, p < 0.001), and
lower MMSE scores were associated with higher plasma
p-tau181 (β = −1.6%, 95% CI −3.0% to −0.1%, p = 0.03).

Longitudinal Association of MBI With Changes
in Plasma P-Tau181
AdjustedMLMEmodels revealed thatMBI was associated with
increasing levels of plasma p-tau181, both measured annually
over 4 years (β = 0.014, 95% CI 0.003 to 0.026, p = 0.02).
However, NPS-not-MBI was not associated with any signifi-
cant changes in p-tau181 levels (β = 0.0004, 95% CI −0.006 to

Table 1 Sample Characteristics for the 3 NPS Groups: MBI, NPS-Not-MBI, and No NPS

Characteristics MBI (N = 103) NPS-not-MBI (N = 135) No NPS (N = 333)
MBI vs no NPS
p value

NPS-not-MBI vs no NPS
p value

Age

Mean (SD) 72.1 (7.25) 72.2 (7.14) 72.2 (7.03) 0.85 0.96

Education

Median (Q1–Q3) 16 (14–18) 16 (14.6–18.4) 16 (14.5–18.5) 0.46 0.36

Sex, n (%)

Male 76 (73.8) 69 (51.1) 159 (47.7) <0.001 0.58

Female 27 (26.2) 66 (48.9) 174 (52.3)

MMSE

Mean (SD) 28.4 (1.44) 28.2 (1.74) 28.6 (1.54) 0.16 0.03

Plasma p-tau181a

Median (Q1–Q3) 16 (11.8–22.4) 14.4 (9.8–21.4) 13.8 (9.5–20.8) 0.008 0.56

Abbreviations: MBI = mild behavioral impairment; MMSE = Mini-Mental State Examination; NPS = neuropsychiatric symptoms; Q1 = first quartile; Q3 = third quartile.
p Values were calculated based on 2-sample t tests for continuous variables and the χ2 test for categorical variables.
a The plasma p-tau181 values are raw values before log transformation, but the t tests were performed on values after log transformation.
The bold entries for p values represent statistical significance, set at p < 0.05.

Table 2 Cross-sectional Associations Between MBI and Plasma P-Tau181, Compared With NPS-Not-MBI and Plasma
P-Tau181

Outcome Predictor βa 95% CI p Value

Plasma p-tau181 MBI vs no NPS 8.1% +1.4% to +15.2% 0.02

NPS-not-MBI vs no NPS 1.7% −3.9% to +7.7% 0.55

Age 0.7% +0.3% to +1.0% <0.001

Education −0.2% −1.1% to +0.7% 0.64

Sex 1.7% −3.0% to +6.7% 0.48

MMSE −1.6% −3.0% to −0.1% 0.03

NPI/NPI-Q (NPI-Q–NPI) −3.5% −9.2% to +2.5% 0.24

NPI/NPI-Q (NPI-Q) −15.3% −37.4% to +17.6% 0.34

Abbreviations: MBI = mild behavioral impairment; MMSE = Mini-Mental State Examination; NPI/NPI-Q = Neuropsychiatric Inventory/Neuropsychiatric In-
ventory Questionnaire; NPS = neuropsychiatric symptoms.
Plasma p-tau181 values were log transformed. The reference group for NPS groups was no NPS.
a β-coefficients represent the estimate percent difference in the plasma p-tau181 biomarker.
The bold entries for p values represent statistical significance, set at p < 0.05.
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0.007, p = 0.89). Moreover, higher levels of plasma p-tau181
over 4 years were associatedwith lowerMMSE scores over 4 years
(β = −0.007, 95% CI −0.013 to −0.002, p = 0.004) (Table 3).
eFigure 1 (links.lww.com/WNL/C461) illustrates changes in raw
plasma p-tau181 levels (log transformed) over 4 years across NPS
groups (noNPS,NPS-not-MBI, andMBI), showing that although
p-tau181 levels were increasing over 4 years in each NPS group,
levels were the highest within the MBI group.

Longitudinal Association of MBI With Changes
in Memory and Executive Function
AdjustedMLMEmodels with change in neuropsychological test
performance over 4 years as the outcome measure revealed that
MBI was associated with decline in the RAVLT immediate recall
score (β = −0.4, 95%CI −0.64 to −0.16, p = 0.001) and RAVLT

learning score (β = −0.13, 95% CI −0.2 to −0.07, p < 0.001) and
an increase in the RAVLT percent forgetting (β = 1.21, 95% CI
0.36 to 2.05, p = 0.005) and Trail Making B completion time
(β = 1.31, 95%CI 0.02 to 2.6, p = 0.046). NPS-not-MBI was not
associated with any significant changes in cognitive performance
in any of the neuropsychological tests examined (Table 4).

Longitudinal Association of MBI and
Incident Dementia
In total, 70 participants progressed to dementia over 5 years
(mean follow-up year: 3.2), all diagnosed with AD dementia.
Compared with no NPS and NPS-not-MBI, the dementia-free
survival was the lowest in MBI (p < 0.0001). No significant
differences were found between NPS-not-MBI and no NPS
(Figure 3A). Similar findings were demonstrated by the adjusted

Table 3 Longitudinal AssociationBetweenAnnualMeasuresofBothMBI (Between-PersonNPSChanges) andNPS-Not-MBI
(Within-Person NPS Changes) and Plasma P-Tau181 Over 4 Years, Using Linear Mixed-Effects Models

Outcome Predictor βa 95% CI p Value

Plasma p-tau181 MBI 0.014 0.003 to 0.026 0.02

NPS-not-MBI 0.0004 −0.006 to 0.007 0.89

Age 0.0079 0.005 to 0.012 <0.001

Education −0.0009 −0.008 to 0.006 0.80

Sex 0.0175 −0.021 to 0.056 0.37

MMSE −0.0074 −0.013 to −0.002 0.004

NPI/NPI-Q (NPI–NPI-Q) −0.0126 −0.06 to −0.035 0.60

NPI/NPI-Q (NPI-Q) −0.186 −0.433 to 0.06 0.14

Years 0.0096 0.004 to 0.016 0.002

Abbreviations: MBI = mild behavioral impairment; MMSE = Mini-Mental State Examination; NPI/NPI-Q = Neuropsychiatric Inventory/Neuropsychiatric In-
ventory Questionnaire; NPS = neuropsychiatric symptoms.
The model was adjusted for age, sex, education, MMSE, source of NPS data, and time. p-tau181 values were log transformed.
The bold entries for p values represent statistical significance, set at p < 0.05.

Table 4 Longitudinal Association Between Annual Measures of MBI (Between-Person NPS Changes) and NPS-Not-MBI
(Within-Person NPS Changes) and Changes in Cognitive Task Performance Over 4 Years, Using Linear Mixed-
Effects Models

Outcome Predictor β 95% CI p Value

RAVLT immediate change MBI −0.40 −0.64 to −0.16 0.001

NPS-not-MBI −0.12 −0.31 to 0.07 0.229

RAVLT learning change MBI −0.13 −0.20 to −0.07 <0.001

NPS-not-MBI −0.02 −0.09 to 0.05 0.521

RAVLT %forgetting change MBI 1.21 0.36 to 2.05 0.005

NPS-not-MBI −0.18 −0.94 to 0.58 0.635

Trail Making B change MBI 1.31 0.02 to 2.60 0.046

NPS-not-MBI 0.37 −0.77 to 1.50 0.526

Abbreviations: MBI = mild behavioral impairment; NPS = neuropsychiatric symptoms; RAVLT = Rey Auditory Verbal Learning Test.
All models were adjusted for age, sex, education, cognitive diagnosis, source of NPS data, and time.
The bold entries for p values represent statistical significance, set at p < 0.05.
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Cox models. Participants with MBI at baseline had a greater risk
of dementia compared with those with no NPS (hazard ratio
[HR] 3.92, 95% CI 2.27 to 6.79, p < 0.001), while adjusting for
baseline age, sex, education, and MMSE score. The hazard for
dementia in participants with NPS-not-MBI did not significantly
differ from no NPS (HR 1.31, 95% CI 0.69 to 2.49, p = 0.407).
Among other model covariates, higher MMSE scores were as-
sociated with lower dementia risk (adjusted HR 0.71, 95% CI
0.62 to 0.81, p < 0.001) (Figure 3B). Interaction analyses
between NPS profiles and p-tau181 status revealed that in
p-tau181–positive participants, MBI was associated with 2.56
times greater dementia incidence (95% CI 1.28–5.12, p = 0.008)

compared with p-tau181–positive status with no NPS. NPS-not-
MBI in p-tau181–positive participants was not significantly as-
sociated with greater dementia incidence (HR 1.43, 95% CI 0.69
to 2.94, p= 0.34), comparedwith thosewith noNPS and positive
p-tau181 status (eFigure 2, links.lww.com/WNL/C461).

Discussion
Both cross-sectionally and longitudinally, the presence ofMBI
in older adults with normal cognition or MCI was associated
with higher plasma p-tau181 levels. No difference in levels of

Figure 3 Kaplan-Meier Survival Curves and Adjusted Hazard Ratios for Dementia Across NPS Categories

(A) Dementia-free survival curves across
NPS categories: no NPS, NPS-not-MBI,
and MBI. (B) Forest plot of adjusted
hazard ratios for dementia across NPS
categories. Error bars represent the 95%
CIs. MBI = mild behavioral impairment;
MMSE = Mini-Mental State Examination;
NPS = neuropsychiatric symptoms.
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p-tau181 was found in those with NPS-not-MBI. MBI was
also longitudinally associated with decline in episodic mem-
ory and executive function, lower dementia-free survival, and
3.92 times greater risk for AD dementia. Our results extend
the evidence base linking MBI with AD biomarkers,11–15,25

supporting the notion that MBI can be a sequela of emerging
AD proteinopathies across the disease continuum and a core
feature of the AD process even in the absence of cognitive
impairment.

In recent years, blood-based biomarkers have provided a feasible
alternative for in vivo detection of AD, overcoming the accessi-
bility, cost, and invasiveness issues surrounding PET and CSF
biomarkers.34,35 Previously, several other blood-based plasma
biomarkers have been investigated as potential AD biomarkers.36

The plasma Aβ42/Aβ40 ratio is a successful plasma measure of
cerebral Aβ pathology,37 but differences in plasma are smaller
than those observed in CSF, likely due to the peripheral ex-
pression of Aβ.38 That said, a recent publication did describe an
association between lower Aβ42/Aβ40 ratio and higher MBI
score in an ADNI sample of CU and MCI participants.24 NfL, a
marker of axonal injury, is a proxy for neurodegeneration and
while not specific for AD, NfL is a marker of faster decline and
progression to dementia among patients with AD; it can repre-
sent the N of the A/T/N framework. One recent study has
reported an association between 2-year change in plasma NfL
and MBI status.25 More recently, plasma p-tau181 was found to
accurately differentiate AD from other neurodegenerative
diseases.35,39,40 Higher levels of plasma p-tau181 are associated
with Aβ and tau pathologies and imminent brain atrophy across
the AD continuum.18,20 Despite the previous studies identifying
strong associations between MBI and higher plasma NfL25 and
lower plasma Aβ42/Aβ40 ratio,24 the associations of plasma
p-tau181 levels with MBI as a noncognitive early marker of the
disease are largely unexplored The present study demonstrated
that both cross-sectionally and longitudinally, MBI in dementia-
free older adults is associated with higher levels of plasma
p-tau181.

Past literature on the associations between CSF p-tau181 and
NPS has been inconclusive, possibly because transient and per-
sistent NPS were not discriminated, with the former more likely
to be a response to life events and the latter neurodegenerative
disease. A systematic review of 21 studies on CSF correlates of
NPS across the AD continuum confirmed this notion, showing
that most studies found no associations between NPS and CSF
p-tau181.41 One study reported a longitudinal association be-
tween CSF p-tau181 and increasing NPI-Q scores in cognitively
normal older adults42 and another found an association between
CSFp-tau181 and apathy captured using theApathy Scale inmild
AD.43 In the present study of dementia-free older adults, MBI,
characterized by a new-onset persistent NPS profile, was cross-
sectionally associated with higher levels of plasma p-tau181.

Longitudinally, only MBI (the between-person NPS differ-
ence factor) was associated with increasing levels of plasma
p-tau181 over 4 years, whereas NPS-not-MBI (the within-

person NPS variability factor) was not. The between-person
NPS measure captures interindividual differences by com-
paring themeanNPS severity of each participant to that of the
group. This measure represents prominent and persistent
NPS change over time, consistent with MBI criteria, more
likely to represent behavioral sequelae of neurodegenerative
disease. In contrast, the within-person NPS measure captures
NPS variability or impersistence over time within a single
participant. The within-person NPS changes may reflect
transient, fluctuating, or reactive NPS manifesting due to life
events, change, or other medical conditions, independent of
the underlying neurodegenerative disease processes.

MBI was also longitudinally associated with 4-year decline in
memory, captured by performance in RAVLT battery of neu-
ropsychological tests, and executive function, captured by Trail
Making B completion time. NPS-not-MBI showed no significant
association with changes in performance in any test over this
4-year period. These findings are consistent with the previous
literature on the cognitive profile of MBI.5,9 Memory and exec-
utive deficits have been observed in early AD,44,45 and earlier
detection of these deficits could help identify an at-risk pop-
ulation for AD.Our findings demonstrate that capturing later-life
persistent NPS as per the MBI criteria provides an accessible
means for identifyingmemory and executive deficits earlier in the
disease course and identifying those at risk for greater decline in
memory and executive function over time. Similarly, our Cox
analyses demonstrated that individuals with MBI had a 3.92-fold
greater risk for AD compared with those with no NPS, whereas
NPS-not-MBI was not associated with greater risk. In our in-
teraction analyses, MBI in p-tau181–positive participants was
associated with 2.56 times greater dementia incidence, whereas
no significant association was found with NPS-not-MBI. This
finding indicates that even in the presence of plasma p-tau181
positivity, a robust biomarker of AD risk, capturing emergent and
persistent NPS identifies the stratum of individuals at even
greater risk for AD dementia. These findings further validate the
utility of assessing the later-life emergence of persistent NPS, a
core criterion of MBI, for predicting future cognitive decline and
AD dementia. Consistent with NPS-not-MBI, transient or re-
active NPS may reflect short-term adjustment to life events
rather than the chronic effects of neurodegeneration. Thus, NPS
not meeting the MBI criteria may be less specific for neurode-
generative diseases such as AD.

Aβ deposition in the brain has been considered the central
event in AD pathology. However, recent findings indicate that
tauopathy may indeed precede amyloidosis and tau may be
the main factor underlying the development and progression
of AD.46–48 MBI is associated with changes in plasma Aβ,24

and the present findings illustrate that MBI is also associated
with changes in plasma p-tau181. These findings add to the
evidence base supporting MBI as a potential proxy marker for
AD proteinopathies in preclinical and prodromal disease;
however, the order of events between amyloidopathy and
tauopathy cannot be elucidated from these findings because
they were derived from a mixed sample of CU and MCI.
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Future studies could explore the longitudinal associations of
MBI with p-tau and Aβ in a CU population to clarify the
pathologic development and behavioral changes in the pre-
clinical stages of AD. Nonetheless, our findings add to the
body of evidence linking MBI and AD proteinopathies by
providing evidence for plasma p-tau181 as an additional
biomarker correlate of MBI. Given the association between
plasma p-tau181, neurofibrillary tangles, and Aβ aggregates,49

MBI can be considered a proxy marker for AD risk and an
accessible approach to identify those with a higher likelihood
of having in vivo markers of AD at stage 2 (preclinical) and
stage 3 (prodromal) disease.1 Incorporating MBI assessment
in population-based studies can increase the likelihood of
detecting CU individuals or those with MCI who are at high
risk of developing AD. Alternatively, given the ease of de-
termining MBI status, even remotely, this can be an in-
expensive and scalable first step in dementia detection, with
the MBI group flagged for further clinical and/or biomarker
assessment to determine AD status. Both approaches are
suitable for AD clinical trial enrichment to increase screening
efficiency and decrease cost.26

In the present study, the APOE-e4 carrier status was not
accounted for in any of the statistical models. Although
APOE-e4 is an important risk marker for AD,50 and likely a
contributor to variation in modeling dementia biomarkers,51

the aim of our study was not to determine the optimal mul-
timodal marker combination to predict AD. The present
study aimed to determine whether assessing MBI in con-
junction with cognitive status at baseline could improve de-
tection of preclinical and prodromal AD, with this efficient
combined risk marker determined by simple-to-administer
clinical assessments in the absence of imaging and biomarker
studies. Clinical decisions could then be informed by this risk
status. Thus, in this context, the inclusion of multiple baseline
biomarkers such as APOE as predictors of prevalent
p-tauopathy would be antithetical to the study design and
distract from the simple clinical objective of providing evi-
dence for the utility of MBI as an additional proxy marker for
p-tau risk.

A limitation of the present study is the use of the NPI/NPI-Q
to operationalize MBI. The NPI/NPI-Q has a reference range
of 4 weeks, thereby not meeting the MBI criterion of symp-
tom persistence for at least 6 months. Thus, 2 time points
were used out of necessity but do not necessarily capture
changes that persisted beyond the 4-week reference range of
NPI/NPI-Q. Furthermore, the NPI-Q does not fully repre-
sent all the symptoms and domains in MBI. Another limita-
tion of requiring 2 visits to determine MBI status is that
participants who progressed to AD dementia at the second
visit were excluded, as MBI is defined as a predementia con-
struct. Potentially, some of the participants who progressed to
AD dementia at the second visit could have had MBI,
with their exclusion decreasing the magnitude of the associ-
ation of MBI with incident dementia. These limitations could
have been mitigated through use of the MBI checklist

(MBI-C).52,53 The MBI-C is a validated scale that oper-
ationalizes measurement of MBI in accordance with the In-
ternational Society to Advance Alzheimer’s Research and
Treatment–Alzheimer’s AssociationMBI criteria. TheMBI-C
has a 6-month reference range and is explicit that only later-
life emergent and persistent NPS are considered, allowing
MBI status to be determined at a single visit. The MBI-C was
developed for use in functionally independent community-
dwelling older adults, and also accurately represents the 5
MBI domains of impaired drive and motivation, affective
dysregulation, impulse dyscontrol, social inappropriateness,
and psychotic symptoms, missing fewer symptoms and having
greater sensitivity for the MBI syndrome. The MBI-C as an
NPS assessment scale has not yet been incorporated in co-
horts such as the ADNI, but once more broadly available,
future studies can use this measure to determine MBI status
more accurately and to explore the MBI domains.

Both cross-sectionally and longitudinally, MBI in CU and
MCI older adults was associated with higher plasma p-tau181
levels. In addition, MBI was longitudinally associated with
greater decline in memory and executive function and higher
risk for dementia. These findings add to the burgeoning evi-
dence showing that reframing NPS in the context of MBI
provides an accessible and clinically relevant approach to
better detect at-risk individuals for cognitive decline and de-
mentia. MBI could serve as a proxy marker for underlying AD
neuropathology. Incorporating MBI into clinical screening
may help to identify those with preclinical or prodromal AD.
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