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Abstract
Severe acute respiratory coronavirus 2 (SARS-CoV-2) infection in the young and healthy usually results in an asympto-
matic or mild viral syndrome, possibly through an erythropoietin (EPO)-dependent, protective evolutionary landscape. In 
the old and in the presence of co-morbidities, however, a potentially lethal coronavirus disease 2019 (COVID-19) cytokine 
storm, through unrestrained renin-angiotensin aldosterone system (RAAS) hyperactivity, has been described. Multifunctional 
microRNA-155 (miR-155) elevation in malaria, dengue virus (DENV), the thalassemias, and SARS-CoV-1/2, plays critical 
antiviral and cardiovascular roles through its targeted translational repression of over 140 genes. In the present review, we 
propose a plausible miR-155-dependent mechanism whereby the translational repression of AGRT1, Arginase-2 and Ets-1, 
reshapes RAAS towards Angiotensin II (Ang II) type 2 (AT2R)-mediated balanced, tolerable, and SARS-CoV-2-protective 
cardiovascular phenotypes. In addition, it enhances EPO secretion and endothelial nitric oxide synthase activation and sub-
strate availability, and negates proinflammatory Ang II effects. Disrupted miR-155 repression of AT1R + 1166C-allele, sig-
nificantly associated with adverse cardiovascular and COVID-19 outcomes, manifests its decisive role in RAAS modulation. 
BACH1 and SOCS1 repression creates an anti-inflammatory and cytoprotective milieu, robustly inducing antiviral interferons. 
MiR-155 dysregulation in the elderly, and in comorbidities, allows unimpeded RAAS hyperactivity to progress towards a 
particularly aggressive COVID-19 course. Elevated miR-155 in thalassemia plausibly engenders a favorable cardiovascular 
profile and protection against malaria, DENV, and SARS-CoV-2. MiR-155 modulating pharmaceutical approaches could 
offer novel therapeutic options in COVID-19.
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Introduction

Severe acute respiratory coronavirus 2 (SARS-CoV-2) infec-
tion causing coronavirus disease 2019 (COVID-19) emerged 
in the markets of Wuhan, People’s Republic of China in late 
2019, and has since had the world in its grip in an unprec-
edented pandemic, challenging human health and econo-
mies [1]. COVID-19 demonstrates a highly variable and 
unpredictable course; asymptomatic or subclinical in some, 
inexplicably culminating into a catastrophic hyperinflamma-
tion and rapidly progressing to a potentially lethal cytokine 
storm in others, demanding sophisticated resources from 
strained health care systems [2]. Co-morbidities associated 
with chronic inflammatory states such as old age, smoking, 
hypertension, obesity, diabetes mellitus (DM), and cardio-
vascular disease (CVD), along with male gender, perilously 
predispose towards such unfortunate progression [2, 3]. Cer-
tain host attributes predict a severe course and impending 
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lethality while various genetic determinants, environmental 
elements, geography, lifestyle behaviors, and early age, may 
engender SARS-CoV-2 protection [4, 5].

Upon host invasion, SARS-CoV-2 spike protein (S) 
interaction with angiotensin-converting enzyme (ACE)2 
downregulates ACE2 expression in endothelial cells (EC) 
and impairs endothelial nitric oxide (NO) synthase (eNOS) 
activity and downstream NO bioavailability [6, 7]. ACE2 
is an important peptide of the renin angiotensin aldoster-
one system (RAAS), with a crucial role in counterbalanc-
ing activation of ACE1 in the vascular endothelium of the 
lungs and kidneys by cleaving circulating proinflammatory 
Ang II to vaso-protective Ang 1–7 and promoting eNOS 
activation [8, 9]. Overwhelmingly generated via eNOS in 
ECs, NO production is fundamental in maintaining normal 
endothelial function and defense against insults, injuries, 
and inflammation [10, 11]. Bioavailable NO potently inhib-
its leukocyte adhesion and displays significant antithrom-
botic, antiproliferative, antioxidative, immunoregulatory and 
microbicidal properties [10, 11]. Thus, through the latent 
suppression of endothelial expression of ACE2 and eNOS/
NO, SARS-CoV-2 renders ACE2’s function in maintaining 
homeostatic endothelial biology void, and may promote a 
state of RAAS hyperactivity with elevated angiotensin (Ang 
II) and aldosterone (ALD) levels and impaired NO bioa-
vailability, all in unison, contributing to the endotheliitis, 
vascular leakage, and resultant organ injuries observed in 
COVID-19 [6–9, 12–18]. In the young, however, despite the 
fact that this ACE1/ACE2 imbalance would be additionally 
potentiated by lower nasal ACE2 expression, and plausibly 
also by the serendipitous presence of certain RAAS activat-
ing single nucleotide polymorphisms (SNP), this enhanced 
RAAS overstimulation is apparently well tolerated and in 
addition renders SARS-CoV-2 infection mild or asympto-
matic [17, 19–27].

How do we reconcile these observations? First, why, 
and how does this SARS-CoV-2-induced pro-inflammatory 
RAAS state in children and young adults become beneficial 
for the host? Second, how is the principal ACE1/Ang II/Ang 
II type 1 receptor (AT1R) axis, that mediates this RAAS 
hyperactivity, controlled and prevented from deluging into 
an uninhibited state of a cataclysmic inflammatory response, 
and progressing to a potentially lethal cytokine storm [8, 28, 
29]? Finally, why is this faculty lost in the presence of old 
age and co-morbidities [3, 29]?

We have put forward an evolutionary congruent, mecha-
nistical explanation accounting for the interaction between 
host and SARS-CoV-2, that involves an early age, erythro-
poietin (EPO)-dependent, protective evolutionary landscape 
[2, 4, 5, 30]. Such an ancestral, protective EPO evolutionary 
landscape provides the host with a fitness advantage, form-
ing constraints against pathogen adaptation and invasion [31, 
32]. The source of this highly significant, age-dependent, 

anemia-independent EPO elevation observed during the 
first 13 years of life, highest in the youngest but declin-
ing during a child’s development, is unknown. It could be, 
reasonably, attributed to the significantly higher, age- and 
genotype-related ACE1 activities in serum and lower nasal 
ACE2 expression, physiologically found in newborns, 
healthy children, and teenagers but not in adults [24–26, 
33–37]. These early age, physiological states, in certain indi-
viduals also serendipitously enhanced by RAAS activating 
SNPs, elevate ACE1 and would appear to promote a toler-
able RAAS hyperactivity, that through elevated Ang II and 
ALD, both known master regulators of EPO secretion, can 
plausibly account for the elevated EPO levels seen in the 
young [31–35]. All molecules in this early age protective 
evolutionary landscape, involving RAAS-EPO-eNOS inter-
actions, are under significant genetic control aiming to sup-
port, augment, and extend EPO elevation and eNOS activ-
ity upon pathogen insult, as witnessed by the thalassemias, 
and protective RAAS and eNOS single nucleotide poly-
morphisms (SNPs) in malaria and Dengue virus (DENV) 
infection [27, 31, 32, 38–40]. The resulting elevated EPO 
levels and the consequently enhanced EPO-eNOS/NO path-
way responsiveness, are associated with a better outcome in 
children with cerebral malaria and may reasonably also pro-
mote an early age protection against SARS-CoV-2; indeed, 
children below the age of 5, when EPO response is maximal, 
generally experience asymptomatic or mild SARS-CoV-2 
infections [4, 30–32, 41–45]. EPO’s non-erythropoietic, 
extensive tissue protective action is mediated through its 
immunological effects[30], and enhancement of eNOS/NO 
pathway activity and subsequently increased vaso-protec-
tive NO generation and bioavailability [46–49]. EPO and 
eNOS together are known to abrogate the NACHT, LRR, 
and PYD domains-containing protein (NLRP) 3 inflam-
masome, centrally involved in the development of SARS-
CoV-2 endotheliitis, as well as effectively inhibit SARS-
CoV-2 early replication and cell entry [16, 44, 47–52]. It is 
thus, evident, that the host intends, with this physiological, 
and genetically imprinted, RAAS hyperactivity, to ensure 
adequate EPO levels to support this EPO-mediated, age-
dependent protective evolutionary landscape, plausibly 
explaining the first question regarding the uncomplicated 
and rare SARS-CoV-2 infections in the young [30]. While 
this physiological RAAS hyperactivity, enhanced by RAAS 
molecule SNPs, engenders beneficial evolutionary effects 
in the form of protection against malaria and SARS-CoV-2 
at an early age, SNP effects can be pleiotropic, and may 
turn into a detrimental disadvantage in older individuals, 
as suggested by the malaria-hypertension hypothesis and 
their association with severe adult COVID-19 outcomes 
[28, 53–58]. This disadvantage presumably occurs through 
the loss of eNOS/NO protection and the unopposed action 
of Ang II via the AT1R, a central player in the RAAS that 
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defines the biological efficacy of Ang II and mediates its 
vasoconstrictive and pro-inflammatory actions [8]. It is, 
consequently, imperative to answer the second and third 
questions, in order to understand how the host controls the 
resulting RAAS overactivity and diverts Ang II away from 
the AT1R, and why old age and co-morbidities impact on 
this ability.

The elusive regulator of the Ang II/AT1R axis 
within a RAAS hyperactive state

Receptor kinetic studies show that despite Ang II having 
similar affinities for both its receptors, AT2R stimulation 
will come into play only at unusually high circulating levels 
of Ang II, much higher than those needed for AT1R agonism 
[59]. Moreover, plasma Ang II rather than tissue Ang II is 
the agonist of AT2R, while the reverse applies to AT1R [59]. 
Consequently, since AT2R will only engage at high plasma 
Ang II concentrations and when most AT1R are occupied, 
the second question of how the Ang II/AT1R signaling is 
held under control, remains unanswered [59]. There is abun-
dant information, expertly reviewed by Dhangadamajhi and 
Singh [28], that plasma Ang II in malaria, apart from being 
conducive to EPO secretion, also possesses immunomodu-
lating properties and direct anti-plasmodial activity, able 
to inactivate up to 88% of plasmodial sporozoites [28, 60]. 
Ang II also seems to preserve blood–brain barrier (BBB) 
integrity, presumably by binding to AT2R [28]. Inhibition 
of Ang II/AT1R signaling, using pharmacological AT1R 
block (angiotensin receptor blockers (ARBs) or stimulation 
of Ang II/AT2R signaling, also appears to confer a survival 
benefit in an experimental model of CM [28]. Furthermore, 
studies on a human model of endogenous AT1R antago-
nism, in patients with Bartter's/Gitelman's syndrome (BS/
GS), show that the elevated Ang II and ALD do not result in 
adverse cardiovascular phenotypes but instead, unopposed 
AT2R signaling may lie behind increased NO-bioavaila-
bility, increased NO-mediated vasodilation, normotension, 
elevated heme oxygenase 1 (HO-1) with increased plasma 
antioxidant power, along with elevated expression of EPO 
[33, 61]. This latter observation is of particularly interest 
considering that Ang II mediates its EPO secretion regula-
tion through AT1R signaling [33–35, 62]! Evidently, Ang 
II–induced EPO production persists even when AT1R sign-
aling is disrupted. Presumably, additional mechanisms pre-
serving EPO formation come to play, such as hemodynamic 
effects and tissue oxygenation of EPO-producing cells, ALD 
via the mineralocorticoid receptor (MR), direct Ang II and 
ALD effects on hypoxia-inducible factor (HIF)-1α that 
induce EPO gene transcription, and compensatory Ang II 
activation of the AT2R [2, 33, 34, 61–64]. It is, thus, obvi-
ous that, RAAS regulation of EPO involves a summation of 
interconnecting mechanisms, and not exclusively Ang II/

AT1R signaling. Enthrallingly, in BS/GS individuals, the 
endogenous, overactive RAAS environment, elevated Ang 
II, and ALD, created through AT1R downstream signal dis-
ruption, with the simultaneous absence of hypertension and 
vascular remodeling, apparently also renders them resistant 
against SARS-CoV-2 infections/COVID-19 [4, 65].

Based on the above intriguing evidence, one must seek 
what mechanisms the host excogitates that confer endog-
enous regulation of the AT1R: is it through downregulation 
of receptor expression, blunting of Ang II/AT1R interac-
tion, dampening of direct Ang II pro-inflammatory effects, 
or a combination of all of the above? Recently, non-coding 
RNAs (ncRNA) have been associated with host cell antiviral 
defense mechanisms, including coronaviruses [66]. One type 
of such ncRNAs are microRNAs (miRNA), small (18–25 
nucleotide long), non-coding, one-stranded RNA molecules, 
that can target and silence around 60% of all human genes 
through translational repression [67]. MiRNAs bind to the 
3′ untranslated region (3′UTR) of a specific target mRNA, 
enhancing messenger RNA (mRNA) degradation and inhib-
iting protein translation, thereby repressing (silencing) gene 
expression [68]. Viral infections may force the host to elicit 
hitherto unknown, but evolutionary predetermined, defense 
programs through miRNA-induced alterations of its immune 
response [69]. Since a particular miRNA may target one or 
many different mRNAs while one mRNA may bind many 
miRNAs, the host can at the same time control diverse 
aspects of antiviral systemic and immune responses, all in 
a concerted effort to modulate feedback and control inflam-
mation [67–70]. Moreover, the role of certain miRNAs in 
the regulation of endothelial function with respect to the 
RAAS and NO bioavailability, as well as their influence on 
cytokine and interferon modulation, highlights their poten-
tial involvement in the pathogenesis of SARS-CoV-2 and 
COVID-19 [71, 72].

The beauty: MicroRNA‑155 target gene repertoire

Minimally detected under normal physiological conditions 
and mainly expressed in the thymus and spleen, miR-155 
is an ancient, evolutionarily well-conserved miRNA, with 
distinct expression profiles and multifunctionality [70, 73, 
74]. MiR-155 targets over 140 genes involved in numer-
ous physiological and pathological processes including 
hematopoietic lineage differentiation, immunity, inflam-
mation, cancer, CVD, DM, and particularly viral infections 
[70, 73–77]. MiR-155, is a key modulator of both innate 
and adaptive immune responses, with critical roles in viral 
and parasitic infections mounting ancestral mammalian 
host defense mechanisms against pathogen challenge [70, 
73, 74]. MiR-155’s target genes that associate with host 
defense against malaria, dengue virus (DENV), influenza 
A, and SARS-CoV-2 infection with COVID-19 are, BTB 
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and CNC homology 1, basic leucine zipper transcription fac-
tor 1 (BACH1), suppressor of cytokine signaling 1 (SOCS1), 
HIF-1α, Arginase-2 (ARG2), E26 Transformation-specific 
Sequence 1 (ETS-1) factor, and AGTR1 that encodes AT1R 
(Table 1) [73, 78–82].

Several studies have confirmed the prominent position of 
miR-155 in the regulation of inflammatory responses and 
RAAS/Ang II/AT1R effects in CVD [70, 82]. Most intrigu-
ingly, AT1R-mRNA is an authentic miR-155 target as are 
Arg2 and Ets-1 [70, 82]. As a repressor of AGTR1, ARG2, 
and ETS-1 expression, miR-155 has the potential to answer 
the second question we posed earlier on how the host rec-
onciles a pathogen-induced overtly hyperactive RAAS state 
with a protective CV phenotype in SARS-CoV-2. Further-
more, repression or modulation of additional gene targets 
in Table 1 will induce and/or potentiate EPO’s favorable 
immunological, anti-inflammatory and cytoprotective evo-
lutionary landscape (vide infra: hemoglobin E (HbE)/β-
thalassemia) to fight off pathogen replication, imminent 
invasion, and lower the burden of infection.

The beast: the taming of SARS‑CoV‑2

In a young and/or previously healthy host, without evidence 
of comorbidities and/or pharmacological RAAS interven-
tions, our proposed mechanistic pathway commences with 
the induction of miR-155 upon an impending pathogen 
invasion such as malaria, DENV, influenza A, or SARS-
CoV-1/2. Elevated in-vitro and in-vivo miR-155 levels have 
been reported in all the above conditions [70, 73, 86–89]. 
Hadighi et al. found significantly elevated host miRNAs 
including miR-155 in patients infected with P. vivax [86]. 
SARS-CoV-1/2 reportedly induce a tenfold upregulation of 
the miR-155 host gene (MIR155HG) and trigger a 3–16-fold 
increase of miR-155 in-vitro [88]. SARS-CoV-2 appears to 
induce host innate immunity earlier and twice as effectively 

as CoV-1, including miR-155 [88]. In clinical SARS-CoV-2 
infection, upregulated miR-155 levels have been reported 
to date, in all but two studies (Table 2) [90–99]. Elevated 
miR-155 levels could differentiate between different degrees 
of COVID-19 severity [90–99]. The contradictory findings 
in the two studies could be due to differences in sampling 
timing and elevated BMI and advanced age, factors known 
to be associated with blunted miR-155 expression [98–101].

When SARS-CoV-2 binds to ACE2, its cognate receptor, 
the SARS-CoV-2 spike 1 protein (S)-ACE2 complex is inter-
nalized through AT1R-dependent endocytosis (Figs. 1, 2) 
and ACE2 is subsequently downregulated [102]. An imme-
diate ACE1/ACE2 imbalance ensues, that strongly engages 
host humoral and tissue RAAS, leading to enhanced Ang II 
and ALD formation, while the protective arm of the RAAS 
is rendered void [2, 4]. As AT1R’s level of expression, 
defines the biological efficacy of Ang II and thus the degree 
of RAAS hyperactivity, miR-155’s robust AGTR1/AT1R-
mRNA repression will reduce AT1R expression and mem-
brane presence and blunt Ang II action through AT1R [70, 
82, 103]. Persisting high plasmatic Ang II concentrations 
will now be diverted and increasingly engage the AT2R, 
increasing protective Ang II/AT2R signaling and eNOS/NO 
pathway activation [8]. AT2R and eNOS/NO are fundamen-
tally involved in NLRP3 regulation, and robustly suppress 
NLRP3 activation and inflammatory cytokine release and 
pyroptosis, subsequently alleviating cardiopulmonary and 
cerebrovascular injury, cardiac remodeling, and inflamma-
tion (Fig. 2) [59, 73, 104–106]. In the absence of old age 
and comorbidities in SARS-CoV-2, miR-155’s purpose-
ful overexpression appears to induce a hyperactive, albeit 
protective RAAS state, very similar to the one seen with 
ARBs in CV disease and in BS/GS [2, 61, 73, 104]. Phar-
macological RAAS inhibition (RAASi) effects in SARS-
CoV-2 have been actively debated [107]. MiR-155 levels 
are reportedly decreased in coronary artery disease (CAD) 

Table 1   Direct targets of microRNA-155 relevant to SARS-CoV-2

Gene symbol Full gene name Action References

AGTR1 Angiotensin II type 1 receptor gene Repressed expression mediates an endogenous AT1R antagonism [70, 82]
ARG2 Arginase-2 Repression prevents l-arginine depletion, aids dendritic cell maturation, 

and averts lung pathologies
[78]

BACH1 BTB and CNC homology 1, basic leu-
cine zipper transcription factor 1

Repressing BACH1 leads to anti-inflammatory, cytoprotective, anti-
oxidant effects through HO-1, and to induction of antiviral interferon 
(IFN)

[73, 81]

ETS-1 E26 Transformation-specific Sequence-1 Repression negates some of Ang II effects involving gene regulation of 
inflammation, angiogenesis, and vascular remodeling

[70, 82, 83]

HIF-1a Ηypoxia-inducible factor 1α Promotes HIF-1α recovery and induces EPO gene transcription [64]
SOCS1 Suppressor of cytokine signaling 1 Repression of canonical negative regulation of type I IFN signaling leads 

to enhanced type I IFN-mediated antiviral response
Enhances JAK2/Y343/STAT5 axis: a crucial mediator of EPO-mediated 

protection against ischemic injury

[84, 85]
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compared to healthy subjects and concurrent ARB or ACE 
inhibitor (ACEi) treatment induced further reduction in miR-
155 levels versus no ARB/ACEi [108, 109]. It is thus plau-
sible that, despite a valuable AT1R blockade, the observed 
miR-155 reduction by ARB/ACEi deprives the host of other 
miR-155-induced beneficial, antiviral, immunological and 
cytoprotective effects, or that RAASi is not as potent or 
efficient as miR-155-induced AT1R downregulation, to 
promote cardioprotection during COVID-19 (Table 1) [70]. 
Furthermore, ACEi treatment, known to inhibit EPO secre-
tion through Ang II reduction, may negate EPO’s protective 
effects [34, 110, 111]. Moreover, while miR-155 levels in 
BG/GS patients have not been reported, it is worthwhile 
noting that miR-155 functions as a negative regulator of Ras 
homolog gene family, member A (RhoA) signaling, report-
edly downregulated in BG/GS [112, 113].

Given the AT1R-mediated signaling in EPO-producing 
renal cells one would expect that EPO should be reduced 
when miR-155 is elevated [33–35, 62]. However, Ang II 
stimulation of HIF-1α expression via AT2R-mediated 
posttranscriptional mechanism and miR-155’s actions on 
HIF-1α degradation can induce EPO formation and bypass 
the hurdle of AT1R repression (Table 1) [61, 64, 114]. The 
elevated EPO will be available to exert its tissue protective, 
antiapoptotic, anti-oxidative, and NLRP3 inflammasome 

abrogating, anti-inflammatory effects via the tissue protec-
tive receptor (TPR) that engages eNOS and increases NO 
bioavailability (Fig. 2) [4, 16, 50, 115, 116]. Interestingly, 
miR-155 also controls the Janus Kinase (JAK)2/Y343/
STAT5 signaling axis required for EPO-mediated protec-
tion against renal ischemic injury (Table 1) [85]. Further-
more, increased eNOS activity promoted via unopposed 
AT2R signaling when AT1R is downregulated (similarly to 
an ARB block), and through eNOS-AT1R dissociation due 
to reduced AT1R membrane availability, will ultimately, 
further increase NO-bioavailability (Fig. 2) [73, 117, 118]. 
Increased NO bioavailability may halt SARS-CoV-2 infec-
tion at an early stage by inhibiting i) palmitoylation and 
fusion of the SARS-CoV-1/2 spike (S) protein to ACE2, and 
ii) early production of viral RNA, processes critical in con-
trolling membrane fusion and virion infectivity (Fig. 2) [44]. 
As SARS-CoV-2-S-ACE2 complex is internalized through 
an AT1R-dependent endocytosis, reduced AT1R membrane 
presence through miR-155-induced AT1R repression could 
theoretically directly inhibit SARS-CoV-2 cell entry (Fig. 2) 
[102].

Furthermore, another direct target for miR-155, ARG2, 
constitutively expressed and also inducible in endothe-
lial and kidney cells, is a critical regulator of L-arginine 

Table 2   In-vitro and clinical studies investigating miR-155 levels in COVID-19

COVID-19 coronavirus disease 2019, ICU intensive care unit, miR-155, MicroRNA-155, SARS-CoV-2 severe acute respiratory coronavirus 2

Authors Type of study Result

Wyler et al. [88] In-vitro: SARS-
CoV-2- infected 
Calu-3 cells

Ten-fold upregulation of the miR-155 host gene (MIR155HG) and a 3–16-fold increase of 
miR-155

Haroun et al. [90] Clinical study Increased miR-155 expression level in COVID-19 patients vs. controls, in severe vs. moder-
ate COVID-19 patients, and in non-survival vs. survival COVID-19 patients

Abbasi-Kolli et al. [91] Clinical study Significantly increased miR-155-5p levels in the acute phase of COVID-19 vs. a healthy 
control group

Garg et al. [92] Clinical study Significantly increased miR-155 levels in COVID‐19 patients vs. healthy controls. MiR-155 
levels could distinguish between COVID‐19 and Influenza‐acute respiratory distress 
syndrome (ARDS) groups

Donyavi et al. [93] Clinical study Significantly upregulated miR-155-5p expression level in the COVID-19 group vs. controls. 
Significant inverse correlation between miR-155-5p and SARS-CoV-2 N-gene and RdRp-
gene

Gedikbasi et al. [94] Clinical study Significantly upregulated miR-155-5p levels in COVID-19 patients and associated with 
disease severity

SOCS1 expression robustly and negatively correlated with miR-155
Eyileten et al. [95] Clinical study MiR-155-5p expression levels differed between healthy individuals and COVID-19 patients 

and showed increasing trend at day-7 and day-21 after admission
Li et al. [96] Clinical study Markedly elevated miR-155 in mild/moderate COVID-19 disease vs. severe/critical disease 

and negative controls
Gaytán-Pacheco et al. [97] Clinical study Significant upregulation of miR-155 in severe COVID-19 patients versus negative controls
Giannella et al. [98] Clinical study Significantly downregulated miR-155 levels in severe vs. mild COVID-19, in ICU vs. non-

ICU. Predicted increased risk of COVID-19-related sequelae and/or death
Kassif-Lerner et al. [99] Clinical study 2.5-fold and fivefold less circulating miR-155 in mild and severe COVID-19 disease, respec-

tively, vs. healthy people
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metabolism and NO synthesis, implicated in the develop-
ment of endothelial dysfunction, CV disease, and diabetic 
nephropathy [78, 119, 120]. When repressed, Arg2 pre-
vents the depletion of L-arginine, the obligate substrate of 
eNOS, leading to improved substrate availability and addi-
tional increases in NO-production and NO-bioavailability, 
further aiding the above-mentioned cardio- and renopro-
tective and antiviral actions (Table 1, Figs. 1, 2) [78, 119]. 
L-arginine is crucial in promoting dendritic cell matura-
tion and their ability to drive T cell proliferation further 
improving antiviral responses [78, 79]. Low l-arginine 
levels impair T cell proliferation and IFN-γ production 
through reduced expression of the CD3ζ chain, a crucial 
part of the T-cell antigen receptor complex [121]. Moreo-
ver, Arg2 is essential for interleukin (IL)-10/miR-155 
axis-induced metabolic reprogramming of inflammatory 
macrophages, including IL-1β secretion, deciding the fate 
of a cell’s inflammatory status [80]. Finally, deranged con-
trol of Arg2 repression by miR-155 is a potential param-
eter contributing to the pathogenesis of lung diseases, an 
observation pertinent to COVID-19 lung pathology[78].

Evincing miR‑155’s decisive role in RAAS modulation

The link between miR-155 and its repression of the AT1R 
is particularly enthralling. The AT1R 1166A/C is a mirSNP 
(SNP disrupting microRNA targets) as it occurs in the 
AT1R 3′-UTR [70]. MiR-155 binding is, thus, disrupted in 
the + 1166C-allele harboring the SNP, as the target for its 
seed sequence binding to it is absent, rendering the AGTR1 
gene with the + 1166C-allele unresponsive, and conse-
quently only the + 1166A-allele expression can be downreg-
ulated [70, 103]. This observation biochemically accounts 
for the increased frequency of hypertension, CV, and meta-
bolic disease associated with the + 1166C polymorphism, 
due to increased AT1R expression, additionally worsened 
by Ang II/AT1R downregulation of eNOS phosphorylation 
and potentially unfavorable eNOS polymorphisms [73, 122, 
123]. Captivatingly, and maybe not unexpectedly, in carri-
ers of AT1R + 1166C-allele, the severity of COVID-19 and 
oxygen dependency was higher compared to the A allele 
carriers[53]. This observation provides remarkable in-vivo 
evidence evincing that the impact of miR-155 on RAAS sig-
nificantly influences COVID-19 course. In addition, reduced 
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Fig. 1   Severe acute respiratory coronavirus 2 (SARS-CoV-2) but 
also hemoglobin E (HbE)/β-thalassemia (β-thal), malaria and den-
gue virus (DENV) robustly increase miRNA-155 (miR-155) levels 
that, through translational repression of target genes, will lead to 
SARS-CoV-2 protection and/or asymptomatic or mild coronavi-
rus disease 2019 (COVID-19) course. Repression of angiotensin II 
type 1 receptor (AT1R), arginase 2 (Arg2) and E26 Transformation-
specific Sequence-1 (Ets-1) leads to a protective renin-angiotensin 
aldosterone system (RAAS) phenotype with erythropoietin (EPO) 

and endothelial nitric oxide (NO) synthase (eNOS) increase. Repres-
sion of BTB and CNC homology 1, basic leucine zipper transcrip-
tion factor 1 (BACH1), suppressor of cytokine signaling 1 (SOCS1), 
and promotion of hypoxia-inducible factor 1α (HIF1α) recovery will 
enhance heme oxygenase (HO)-1 levels and induce anti-inflammatory 
and cytoprotective programs along with antiviral interferon (IFN) 
responses. Red colors and signs decrease or inhibit. Green colors and 
signs increase or stimulate/promote
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membrane expression of AT1R may aid in dampening per-
sistent pro-inflammatory Ang II effects mediated through 
functional AT1R-autoantibodies (AT1-AA), that may arise 
through uncontrolled NLRP3-mediated pyroptosis [12, 
124–126]. AT1-AAs significantly correlate with IL-6 levels 
and are implicated in the pathogenesis of systolic blood pres-
sure, pre-eclampsia, and COVID-19 [127, 128].

Finally, Ets-1, acts as a transcriptional mediator of Ang 
II-induced endothelial and vascular inflammation, angiogen-
esis, and remodeling[83]. Ets-1 downstream targets include 
cyclin-dependent kinase inhibitor p21CIP (promoting hyper-
trophy in vascular smooth muscle cells and dysfunction 
and cell death in endothelial cells), plasminogen activator 
inhibitor–1 (PAI-1: critical determinant of the fibrinolytic 
system and contributing to the development of perivascu-
lar fibrosis), vascular cell adhesion molecule 1 (VCAM-
1: cell adhesion molecule induced in inflammation), Fms 
Related Receptor Tyrosine Kinase 1 (FLT-1: a receptor for 
vascular endothelial growth factor involved in angio- and 
vasculogenesis), and monocyte chemoattractant protein–1 
(MCP-1: mediates inflammatory response in hypertensive 
vascular disease)[83]. MiR-155 with two target sites in the 
3’-UTR of ETS-1, robustly represses it, and its markedly 

upregulated downstream effectors, thus potently dampen-
ing Ang II’s direct pro-inflammatory cardiovascular effects 
(Table 1, Fig. 1) [82].

Too much of a good thing: excessive miR‑155 levels

A vasoplegic state resembling profound RAAS inhibition 
(even in the absence of ACEi/ARBs), has been reported 
by certain research groups in sepsis and COVID-19 [129, 
130]. MiR-155 elevation is part of an early-stage human sep-
ticemic response, peaking at 12 h and decreasing at 48 h, 
kinetics similar to its induction in SARS-CoV-2 infected 
human cell lines [74, 88]. However, contradictory miR-155 
levels in sepsis underline the need of understanding how 
miR-155 is implicated in uncontrolled septic inflammatory 
responses. Elevated levels have been associated with severe 
condition, poor prognosis, and non-survival, while low lev-
els are implicated in reduced survival in young (< 65 years) 
critically ill patients [74, 131]. Moreover, persistent miR-
155 elevation could lead to decreased AT1R expression 
with excessive AT1R signaling impairment, contributing 
to sepsis-induced acute kidney injury [129]. Furthermore, 
protractedly elevated miR-155 levels may lead to impaired 
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Fig. 2   MiRNA-155 (miR-155)-induced angiotensin (Ang) II type 1 
receptor (AT1R) downregulation and reduced membrane expression 
will inhibit Ang II pro-inflammatory and vasoconstrictive effects, 
impede severe acute respiratory coronavirus 2 (SARS-CoV-2) AT1R-
dependent endocytosis, dissociate endothelial nitric oxide (NO) 
synthase (eNOS) from AT1R, and enhance its activity and NO bio-
availability, consequently blocking virus replication, and cell entry. 
Moreover, elevated plasmatic Ang II will increasingly engage the 
AT2R and induce eNOS/NO-mediated vasculoprotective cellu-
lar pathways, resulting in successful regulation of NACHT, LRR, 

and PYD domains-containing protein  (NLRP) 3 inflammasome. 
Repression of arginase 2 (Arg2) and E26 Transformation-specific 
Sequence-1 (Ets-1) will improve eNOS substrate availability and 
negate Ang II-induced endothelial and vascular inflammation, respec-
tively, while hypoxia-inducible factor 1α (HIF1α) recovery will fur-
ther enhance Ang II-mediated erythropoietin (EPO) secretion. BTB 
and CNC homology 1, basic leucine zipper transcription factor 1 
(BACH1) and suppressor of cytokine signaling 1 (SOCS1) repression 
will induce robust anti-inflammatory, antioxidant, cytoprotective and 
interferon (IFN)-mediated antiviral programs



915Beauty and the beast: host microRNA‑155 versus SARS‑CoV‑2﻿	

1 3

Ang II vascular reactivity due to synergism between AT1R 
downregulation and Ets-1 repression and could account for 
COVID-19-induced vasodilatory shock that may improve 
with Ang II infusion [132–134]. Low miR-155 levels on 
the other hand, as in the old and/or in comorbidities, could 
explain a RAAS hyperactive state with cytokine storm [76, 
100, 101, 135]. It is to date unclear how miR-155 finetunes 
this delicate balance in sepsis, but age and comorbidities 
appear of paramount importance [74, 131]. Clearly more 
studies are needed to understand its molecular underpin-
nings in order to reduce excessive inflammation and allevi-
ate tissue and organ damage through tissue and/or systemic 
miR-155-modulating pharmacological interventions.

MiR‑155 engenders SARS‑CoV‑2 protection 
in hemoglobin E (HbE)/β‑thalassemia carrier state

In our initial review on the HbE/β-thalassemia trait confer-
ring resistance against SARS-CoV-2 infection, subsequently 
supported in independent reports, we proposed miR-155 as 
the mediator for this protection [5, 136–138]. Supporting 
an antiviral effect for the HbE/β-thalassemia trait, akin to 
its anti-malarial effect, red blood cell precursors in Thai 
carriers of HbE/β-thalassemia trait were significantly less 
susceptible to DENV infection[5, 139]. MiR-155 is elevated 
in HbE/β-thalassemia, enhancing monocyte erythrophago-
cytic activity, while its exogenous overexpression appears 
to limit DENV replication in-vitro [81, 140–142]. MiR-155 
targets and downregulates BACH1, a sensor of heme levels 
and a strong repressor of the anti-inflammatory, cytopro-
tective, and antioxidant protein HO-1, ultimately leading to 
erythrophagocytosis and induction of antiviral interferon 
(IFN) responses (Table 1, Fig. 1) [70, 73, 81, 141, 143]. 
HO-1 is known to exhibit antiviral activity against human 
immunodeficiency and hepatitis B, C viruses[143]. The 
anti-DENV effects of HO-1 are exerted through its enzy-
matic product, biliverdin, an inhibitor of DENV proteases 
(NS2B/NS3), and DENV protease-suppressed antiviral IFN 
response is thereby rescued [70, 81, 143]. In experimental 
models of severe malaria and DENV, HO-1 was shown to 
control resistance and susceptibility to cerebral malaria and 
malaria-associated acute lung injury while its pharmacologi-
cal induction with cobalt protoporphyrin (CoPPIX) reduced 
experimental cerebral malaria incidence, and demonstrated 
significant delay in DENV disease onset and mortality, along 
with lower cerebral DENV load [143, 144]. HO-1’s cytopro-
tective, anti-inflammatory, and antiviral properties may aid 
in SARS-CoV-2 protection as its upregulation by the SARS-
CoV-2 S protein has been documented in-vitro and some 
repurposed drugs reportedly protective against COVID-19, 
increase HO-1 [143, 145, 146].

Furthermore, SOCS1, a canonical negative regulator of 
type I IFN signaling, is targeted by miR-155 in macrophages, 

and SOCS1 knockdown mediates the enhancing effect of 
miR-155 on type I IFN-mediated antiviral response (Table 1, 
Fig. 1) [84]. MiR-155’s central role in host defense in a 
model of coronavirus-induced neurological disease under-
scores its importance in enhancing antiviral T cell responses 
including IFN-γ secretion, cytolytic activity, and homing 
to the central nervous system (CNS) in response to viral 
infection [147]. Aggravated disease course, increased mor-
bidity/mortality, and an inability to control viral replication 
within the CNS was reported in miR-155-knockout (KO) 
mice[147]. Induction of ectopic upregulation of miR-155 in 
the liver of mice using hepatotropic adeno-associated virus 
8 (AAV8) vectors achieved complete protection against 
infectious parasite challenge through direct suppression of 
SOCS1 [148]. MiR-155 mediated downregulation of AT1R 
(vide supra) in antigen-specific CD8 + T cells could affect a 
variety of downstream functions ushering the host towards 
a malaria protective phenotype, highlighting miR-155’s 
fundamental role in Plasmodium liver infection in-vivo 
[148–150]. As previously mentioned, Hadighi et al. found 
significantly elevated host miRNAs, including miR-155, in 
patients infected with P. vivax [86].

Elevated miR-155 levels with repression of relevant target 
genes could convincingly account for the favorable inflam-
matory profile (Ets-1 repression with lower PAI-1 levels), 
better lipidemic and metabolic profile (SOCS1), better 
ambulatory blood pressure control (lower AT1R expression), 
and EPO-mediated renoprotection against ischemic injury 
through the SOCS1/JAK2/Y343/STAT5 axis, altogether 
leading to overall better CV health, repeatedly reported in 
HbE/β-thalassemia carrier state [151–153]. An advanta-
geous basal health condition in thalassemia carriers at the 
time of the initiation of SARS-CoV-2 infection, may poten-
tially lead to a more favorable COVID-19 outcome [138]. 
MiR-155 can thus eloquently engender HbE/β-thalassemia’s 
protective effects in malaria, DENV, and SARS-CoV-2 
(Fig. 1) [4, 5, 81, 85, 86, 89, 139, 141, 142, 148–150, 154].

Conclusions and future perspectives

As a multifunctional miRNA, miR-155 critically modulates 
innate, humoral, and cellular immune responses during viral 
infections [155]. In the current review, we propose that the 
elevated miR-155 levels in SARS-CoV-2 infection appear, 
anticipatorily and purposefully, to prepare the host for a 
SARS-CoV-2-S-ACE2-induced RAAS hyperactivity [88, 
90–99]. At a young age, and in the absence of comorbidi-
ties or pharmacological interventions, a judiciously initiated 
and choreographed miR-155 circuitry is expected to promote 
immediate, early, and late protection against SARS-CoV-2 
and its complications[2, 4, 70, 73, 85, 156]. MiR-155-me-
diated translational repression of AGTR1, ARG2 and ETS-1 
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(Table 1), purposefully tames this SARS-CoV-2-induced 
RAAS hyperactivity into a balanced, tolerable, and defen-
sive RAAS state, that through AT2R, promotes a protective 
EPO evolutionary landscape and NLRP3 inflammasome 
regulation (Fig. 1, 2) [30, 106]. MiR-155 engendered AT1R 
downregulation and reduced membrane availability coaxes 
a RAAS cardioprotective state [73], avails increased eNOS/
NO pathway activation [47, 157], the latter further potenti-
ated by Arg2 repression [80, 119, 158], leading to increased 
NO-bioavailability and impaired AT1R-mediated endocy-
tosis, SARS-CoV-2 replication, and cell entry (Fig. 2) [44, 
102]. Furthermore, Ets-1 repression negates proinflamma-
tory Ang II effects [83]. Disrupted miR-155 repression of 
the AT1R + 1166C-allele, associated with adverse CV and 
COVID-19 outcomes, biochemically manifests this miR’s 
decisive role in RAAS modulation [53, 122, 123]. Finally, 
BACH1 and SOCS1 repression enhances host antiviral 
responses to fight off pathogen invasion, simultaneously 
creating an anti-inflammatory, cytoprotective, antioxidant 
milieu, through HO-1 increase, that robustly lowers inflam-
matory burden (Fig. 1) [73, 81, 84, 85]. In situations when 
miR-155 homeostasis is compromised (T2DM, sarcopenia, 
obesity, smoking, aging, male gender, CVD and renal dis-
ease, or pharmacological interventions), unimpeded RAAS 
stimulation and inappropriately low EPO levels, with sub-
sequent EPO/eNOS-NO protection override, may allow 
NLRP3 dysregulation, and progress towards a particu-
larly aggressive COVID-19 course with aberrant immune 
response and immunopathological consequences [2, 4, 63, 
76, 77, 100, 101, 109, 135, 159, 160]. Genetic variants of 
the molecules in the RAAS and of eNOS may additionally 
and differentially impact on SARS-CoV-2 protection [30].

MiR-155 convincingly integrates disparate evidence 
in SARS-CoV-2 infection and COVID-19 course and 
appears as a valuable diagnostic marker and prognos-
tic tool [90–93]. Further studies on miR-155, and other 
miRNAs and their genetic polymorphisms, will clarify 
discrepancies in their differentially expressed miRNA 
profiles and improve our understanding of their patho-
physiology. Tissue specific studies and characterization 
of miR-155 temporal expression trajectory, are particu-
larly important. MiR-155 modulation approaches could 
offer innovative prevention and treatment strategies, but 
specific and directed tissue, rather than global modula-
tion, might offer superior therapeutic advantages [87, 
135]. ARDS in influenza A responded better with lung 
alveolar type II cell miR-155 inhibition rather than global 
inhibition that also involved miR-155 from inflammatory 
leukocytes that invaded the lung at a later stage [87]. In 
the present clinical management of COVID-19, careful 
combination of MR-antagonists (aldactone, eplerenone, 
finerenone) to avoid hyperkalemia, with a calcium channel 

blocker may prove effective in the elderly [135, 161]. MR 
inhibition will rescue and restore the profoundly low basal 
serum miR-155 levels in the aging vasculature and block 
two sequential steps involving miR-155 targets, Cav1.2 
(L-type calcium channel (LTCC) subunit) and AT1R that 
contribute to hypertension [135]. On the other hand, ARB 
or ACEi treatment further reduces miR-155 levels ver-
sus no ARB/ACEi [108]. Moreover, adding metformin in 
selected patient groups (obesity and T2DM) might confer 
additional benefits since metformin therapy prior to admis-
sion in patients with COVID-19 and pre-existing T2DM is 
associated with a significant reduction of in-hospital mor-
tality [162]. Metformin has also been reported to improve 
high fat-induced inflammation in vascular endothelium 
through increased expression of miR-155 levels [163].

In the coevolutionary virus-host arms race, viral miR-
NAs have possibly evolved to exploit pre-existing host 
gene regulatory pathways, in yet unknown ways, to pro-
vide a viral replicative advantage [164]. Kaposi's-sarcoma-
associated herpes virus, Marek’s disease virus, and Ebola 
virus, all encode miR-155 analogs, while Epstein Barr 
virus can even induce host miR-155 [73, 88]. It is thus, 
conceivable, that viral miR-155 induction is an invasive 
viral strategy in SARS-CoV-2 infection [73, 88]. Numer-
ous miRNAs are part of the vast and intricately coordi-
nated processes, interactively affecting multiple regulatory 
pathways [68]. We undoubtedly acknowledge that addi-
tional miRNAs are involved in the etiopathology of SARS-
CoV-2. However, our translational approach on miR-155 
offers an understanding of this multifunctional miRNA’s 
permeative effects in health and disease and highlights the 
need for circulating miRNA profiling to identify clusters 
and signatures, that will aid in patient stratification and 
treatment.
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