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Background. The molecular classification of HCC premised on metabolic genes might give assistance for diagnosis, therapy,
prognosis prediction, immune infiltration, and oxidative stress in addition to supplementing the limitations of the clinical
staging system. This would help to better represent the deeper features of HCC. Methods. TCGA datasets combined with
GSE14520 and HCCDB18 datasets were used to determine the metabolic subtype (MC) using ConsensusClusterPlus.
ssGSEA method was used to calculate the IFNγ score, the oxidative stress pathway scores, and the score distribution of
22 distinct immune cells, and their differential expressions were assessed with the use of CIBERSORT. To generate a
subtype classification feature index, LDA was utilized. Screening of the metabolic gene coexpression modules was done
with the help of WGCNA. Results. Three MCs (MC1, MC2, and MC3) were identified and showed different prognoses
(MC2-poor and MC1-better). Although MC2 had a high immune microenvironment infiltration, T cell exhaustion
markers were expressed at a high level in MC2 in contrast with MC1. Most oxidative stress-related pathways are
inhibited in the MC2 subtype and activated in the MC1 subtype. The immunophenotyping of pan-cancer showed that the
C1 and C2 subtypes with poor prognosis accounted for significantly higher proportions of MC2 and MC3 subtypes than
MC1, while the better prognostic C3 subtype accounted for significantly lower proportions of MC2 than MC1. As per the
findings of the TIDE analysis, MC1 had a greater likelihood of benefiting from immunotherapeutic regimens. MC2 was
found to have a greater sensitivity to traditional chemotherapy drugs. Finally, 7 potential gene markers indicate HCC
prognosis. Conclusion. The difference (variation) in tumor microenvironment and oxidative stress among metabolic
subtypes of HCC was compared from multiple angles and levels. A complete and thorough clarification of the molecular
pathological properties of HCC, the exploration of reliable markers for diagnosis, the improvement of the cancer staging
system, and the guiding of individualized treatment of HCC all gain benefit greatly from molecular classification
associated with metabolism.
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1. Introduction

Hepatocellular carcinoma (HCC) is ranked as the second
major contributor to malignant tumors [1], and its etiology
is closely related to viral infection and liver fibrosis [2]. Fol-
lowing surgery or ablation, around 70% of cases of HCC will
recur within the first 5 years, and the 5-year survival rate is
only approximately 30-40% [3]. The main factors leading
to the dismal prognosis of HCC patients include an elevated
degree of malignancy, easy recurrence, insensitivity to radio-
therapy and chemotherapy, and proneness to vascular, lym-
phatic, and distant metastasis [4].

The tumor microenvironment (TME), especially the tumor
immune microenvironment, performs an integral function in
HCC. The TME comprises cancer cells, signaling molecules,
fibroblasts, infiltrating immune cells, surrounding blood vessels,
and the extracellular matrix [5]. Previous research has demon-
strated that the TME may influence the gene expression of
tumor tissues in a variety of ways, which could in turn influence
the onset and progression of cancers [6]. For instance, tumor
cells may modulate the TME via the negative control mecha-
nism established by the immune system of the body. A wide
variety of immunosuppressive states may be employed to coun-
ter the antitumor immunity that the body naturally has [7]. The
degree of immunosuppression present in the TME is intimately
linked to the individual differences in the effectiveness of tumor
immunotherapy [5]. The dynamic network that constitutes the
TME is primarily made up of stromal and immune cells that
have infiltrated the tumor tissues. It is generally accepted that
the mutual metabolic needs of immune and tumor cells are
the root cause of immunosuppression in the surrounding envi-
ronment [8], and inflammation performs a fundamental func-
tion in the development, invasion, and metastasis of HCC [9].
Although earlier research examined the tumor immune micro-
environment (TIME) of HCC, further studies are needed to
identify diagnostic markers for HCC.

Currently, clinicopathological staging is a standard method
that is frequently utilized for determining the prognosis of indi-
viduals who have HCC. Nevertheless, HCC often exhibits clin-
ical heterogeneity, which diminishes the efficacy of prognostic
evaluations that are routinely performed. To provide high-risk
groups with more clinically meaningful treatment strategies,
prolong survival, and improve quality of life, the findings of
the clinical staging prediction need to be optimized by the
development of an innovative prognostic prediction model.
As a result of the advent of gene chips and high-throughput
sequencing technologies, as well as the large amounts of data
included in the GEO and the TCGA databases, the systematic
and thorough investigation of genes associated with tumors
and the modulatory mechanisms that control them based on
bioinformatic approaches has become an integral aspect of the
present tumor genomics group. In the past ten years, screening
for genetic alterations at the genome level has seen extensive use
of gene sequencing and bioinformatic analysis, elucidating part
of the molecular mechanism of the onset and advancement of
HCC and guiding the determination of differentially expressed
genes (DEGs) that participate in the progression of HCC. Func-
tional pathway research provides more options for HCC ther-
apy [10]. Recently, the identification of genetic markers for

the prognosis of HCC has become a hot spot in many studies
[11, 12]. However, because the properties of tumor markers
are dependent on the tumor burden, their significance in the
early diagnosis of tumors is limited.

The high proliferation and persistent inflammation of
HCC cells are related to oxidative stress. In HCC, HBV
genome-encoded X protein (HBx) is associated with increased
ROS in mitochondria [13]. Increased levels of oxidative DNA
damage, 8-oxyoguanine (8-oxoG), were observed in human
hepatocellular carcinoma cells infected with HCV and in the
liver of transgenic mice expressing HCV core protein
in vitro [14]. Site-specific epigenetic alterations in HCC cells
include methylation of the E-cadherin promoter caused by
H2O2 treatment and methylation of the cytokine signaling
suppressor SOCS3 caused by HBV-induced mitochondrial
ROS accumulation [15]. In general, increased ROS levels are
one of the causes of HCC proliferative.

As a crucial aspect of malignancies, metabolic disorders
are an important factor to consider [16], since they all influ-
ence various HCC biological behaviors, development, and
transfer recurrence [17, 18]. Carcinogenic factors, on the one
hand, disturb the body’s delicate metabolic equilibrium and
lead to the development of metabolic recombinant cell carci-
noma; in addition, the metabolic system after recombination
is mediated by various biological behaviors, participating in
the proliferative, invasive, and metastatic abilities of cancer
cells [19, 20]. Recently, researchers have investigated the
development of the molecular pathological properties of
HCC [21]. These studies have summarized many abnormal
metabolic genes related to HCC prognosis from different cells,
animals, or HCC [22, 23]. In summary, the goal of HCC
metabolism research is to fully understand the molecular
pathological characteristics of HCC, explore reliable markers
of HCC diagnosis and transfer recurrence prediction, improve
the hepatoma staging system, guide individualization, and
improve the treatment of HCC [24].

Based on this purpose, we divided HCC into different met-
abolic subtypes andmultidimensional differences between dif-
ferent metabolic subtypes. Different MCs were analyzed, and
different response patterns were observed with immunother-
apy. At the same time, the correlation between the immuno-
logical examination points and the distinct metabolic
molecular types and the variation inmolecular mutations were
subjected to a comparison. The final screen was selected with
the potential prognostic marker associated with the metabolic
feature index. In summary, we have created numerous sub-
types of an immunological festival index and developed a
molecular categorization model premised on metabolic prop-
erties, thus supplementing the lack of clinical installment sys-
tems. Our findings will serve as a base of research directions as
well as a theoretical foundation for the evaluation of prognosis
and the tailored therapy of HCC patients.

2. Materials and Methods

2.1. Sources of Expression Profile Information and Genes
Involved in Metabolism. We retrieved TCGA-HCC RNA-
seq data as well as clinical survival and characteristic data
by utilizing the TCGA GDC API. We downloaded datasets
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with survival time including the GSE14520 from the Gene
Expression Omnibus (GEO) database and the HCCDB18
from the HCCDB database (http://lifeome.net/database/
hccdb/home.html). The date of the data retrieval was the
7th of April 2021. We downloaded the metabolism-related
genes corresponding to the keywords carbohydrates, oxida-
tions, glycogen, glycogenolysis, glycolysis, pyruvate, citric
acid, and fatty acid from the KEGG and Reactome databases.
Duplicate genes between pathways were removed, and then,
619 genes were identified (Table 1).

2.2. TCGA-HCC, GSE14520, and HCCDB18 Data
Preprocessing. TCGA-HCC’s RNA-Seq data processing is
as follows: (1) We eliminated any samples that lacked infor-
mation about clinical follow-up, survival time, and status.
(2) Ensembl was converted to gene symbol. (3) When com-
paring the expression of various gene symbols, we used the
median value. (4) Genes whose expression in sample < 0:5
were filtered, which accounted for more than 50% of the
genes.

Dataset processing of GSE14520 is as follows: (1) We
retained the samples from the GPL3921 platform. (2) Sam-
ples lacking information on clinical follow-up information,
survival status, and time were removed. (3) HCC samples
were retained. (4) Probes were converted to gene symbol.
(5) A probe in response to multiple genes was removed.
(6) The expression of multiple gene symbols was assessed
by taking its midvalue.

Dataset processing of HCCDB18 is as follows: (1) We
eliminated any samples that lacked information on clinical
follow-up, survival time, and status. (2) HCC samples were
retained. The following are the pretreatment samples: TCGA
365, GSE14520 221, and HCCDB18 203 (Table S1).

2.3. HCC Subtype Classification. First, the “metabolic genes”
that were linked to prognosis were screened using a univar-
iate Cox regression analysis. By employing the Consensu-
sClusterPlus technique, the 365 TCGA-HCC samples were
clustered, and stable clustering findings were established
based on the cumulative distribution function (CDF) as well
as the CDF delta area curve. With the help of the specified
metabolic genes, the HCC metabolic genes were constructed.
The rationality for clustering is validated with the use of the
resampling-based technique known as the ConsensusClus-
terPlus 1.52.0 method. km arithmetic and “1-Spearman cor-
relation” distance were utilized to complete 500 bootstraps
with every bootstrap having specimens (≥80%) of TCGA-
HCC sample dataset. Cluster number k was between 2 and
10, and the optimum k was identified as per cumulative dis-
tribution function (CDF) and consistency matrix. The pro-
cess of resampling has the potential to disrupt the original
dataset. In this way, cluster analysis was carried out on each
of the resampled samples, and the results were then analyzed
in detail. The results of the analysis of subclusters provided
an evaluation of consistency (consensus).

2.4. Single-Sample Gene Set Enrichment Analysis (ssGSEA).
Single-sample GSEA (ssGSEA) is an extension of gene set
enrichment analysis (GSEA). The absolute degree to which

genes from a particular gene set are enriched in a sample is
reflected by the ssGSEA enrichment score assigned to each
gene. The levels of gene expression for a particular sample
were categorized and then standardized. To compute an
enrichment score, the empirical cumulative distribution
function (ECDF) was applied to both the genes that were
included in the signature and the genes that were retained.
We employed the ssGSEA approach to determine each
patient’s IFNγ score to assess the Th1/IFNγ expression var-
iations in metabolic subtypes and enrichment score of 14
oxidative stress-related biological pathways. The ssGSEA
score was normalized to uniform distribution, for which
the ssGSEA score is distributed between 0 and 1.

2.5. Immune Infiltration Characteristics. To contrast the
immunological properties of the various metabolic groups,
when analyzing the score distribution and differential expres-
sion of 22 different immune cells present in the TCGA-HCC
sample, we made use of the CIBERSORT technique. CIBER-
SORT [22] is a technology that may be used to deconvolve
the expression matrix of different types of immune cells using
the linear support vector regression methodology as the foun-
dation. The analysis of the expression pattern based on tran-
scriptomic sequencing was performed with the CIBERSORT
tool, and the denoising method and the unknown mixture
content were removed by the deconvolution method to deter-
mine the relative proportion of each of the 22 distinct types of
immune cells. The relative expression of certain genes was
assessed based on the data from the expression patterns of
each sample that was sequenced. This allowed for the propor-
tions of 22 different types of immune cells to be predicted.

2.6. Prediction of Chemotherapeutic/Immunotherapeutic
Response and Establishment of the Subtype Characteristic
Index. To examine the similarities between patients’ diverse
metabolic subtypes and the GSE91061 dataset (melanoma
dataset undergoing anti-CTLA-4 and anti-PD-1 therapy), we
used a subclass mapping technique. When the p value is
decreased, the degree of similarity increases. At the same time,
we compared the degree of responsiveness between various
subtypes and conventional chemotherapeutic agents (cis-
platin, vinorelbine, embellin, and pyrimethamine) using the
same methodology.

We employed linear discriminant analysis, also abbrevi-
ated as LDA, to create a subtype classification feature index
so that we could more accurately measure the immunological
features of patients who were represented by a variety of sam-
ple cohorts. In the TCGA dataset, we employed the LDA
model to compute each patient’s subtype feature index, and
we examined the feature index of each of the distinct subtypes.
Within the TCGA dataset, we assessed the characteristics that
were linked to prognosis. Firstly, a z-score was done on each
individual feature, and Fisher’s LDA optimization standard
was utilized to specify that the centroids of each group should
be as dispersed as possible. It was discovered that a linear com-
bination A maximized the between-class variance of A in
comparison to the variance of the within-class measure. The
properties of the model allow for the differentiation between
samples of various subtypes analyzed.

3Oxidative Medicine and Cellular Longevity

http://lifeome.net/database/hccdb/home.html
http://lifeome.net/database/hccdb/home.html


Table 1: Metabolism-related genes.

All metabolism-related gene list

ACSS2 ACYP2 VCAN B4GALT2 PHKG2 EXT1 CYP2D6 GLYAT AKR7L

GCK ME1 PHKA2 B4GALT6 B3GNT7 BGN CYB5R3 MAT1A GSTM2

PGK2 ACYP1 TPR PPP1R3C SEC13 HS3ST4 GSTZ1 CYP2U1 SULT1A4

PGK1 ME2 HEXB GOT1 ST3GAL2 SLC25A10 GSS NAT2 UGT2B11

PDHB MDH2 GYG2 NUP43 SLC35B2 GPC6 AHCY UGT2B4 AS3MT

PDHA1 MDH1 NDC1 B4GALT4 ACAN CHST6 CYB5B N6AMT1 ACSM4

PDHA2 PC GPC1 FMOD B4GALT5 B3GALT5 IMPAD1 GLYATL2 CYP21A2

PGM2 GLO1 ST3GAL6 HS3ST2 PFKFB1 PGP SULT2A1 CBR3 UGT1A5

TPI1 ACACB PHKA1 CHST3 B4GALT3 HS6ST3 CYP3A5 CYP3A4 UGT1A9

ACSS1 ACACA HYAL2 PFKFB2 ADPGK HYAL3 AHR CYP3A7 UGT1A1

FBP1 AKR1B1 PYGM CHPF SLC37A1 RHD CYP2C18 CYP11B1 UGT1A8

ADH1B ACOT12 NUP133 SDC4 G6PD CHP1 UGT2B10 FDXR UGT1A10

HK2 CPT1A NDST1 SLC35B3 ST6GALNAC6 NHLRC1 SULT1E1 AKR7A3 UGT1A3

ADH1C CPT1C PRKACA NUP153 HS3ST6 AGRN UGDH BPNT1 GSTA1

HK1 ACADS HMMR GOT2 SDC3 RHCE AIP HPGDS ACY1

HK3 ACADSB NUP37 HS3ST3B1 B3GALT2 PRELP PTGES3 CMBL GSTA2

ADH4 ACADL GPC4 NUP85 AGL POM121 CYP27B1 CYP2C19 UGT1A7

PGAM2 ACADM GCKR ST3GAL3 NUP35 FUT4 PODXL2 NNMT UGT1A4

ADH5 CYP4A11 SEH1L NUP214 GNPDA2 FUT11 AADAC ACSM1 CYP2A6

PGAM1 ACADVL B4GALT1 OMD GLB1L SHPK ABHD14B GLYATL1 SULT1A3

ADH1A ACAA2 SLC9A1 IDUA GYG1 RPE POMC UGT1A6 FDX2

ALDOC HADH NUP50 NCAN TKT CHSY3 SLC35D1 DPEP2 UGT2A2

ALDH7A1 HADHB XYLB AC010618.1 NDST3 CALM1 MTR CYP2S1 GSTT1

LDHAL6B HADHA AAAS FUT5 PHKG1 PAPSS2 2-Mar GGT6 PDK4

PKLR CYP4A22 NUP188 SLC35D2 PRKACG NUP62 PTGIS CYP7A1 PDK2

LDHAL6A ACSL6 SLC25A1 CHSY1 ALDH1A1 GPC2 MTRR UGT3A2 MPC1

ENO1 ECHS1 PYGL NUP210 HGSNAT HEXA NQO2 GSTM4 CS

PKM ACSL5 PYGB BCAN PGM2L1 GALT POR MAT2A IDH3G

PFKP EHHADH RAE1 LYVE1 CRYL1 UBA52 TPST2 TPST1 PDK3

BPGM GCDH PRPS2 SLC37A2 NDST2 PRPS1L1 CHAC1 GSTA4 SDHA

PCK2 ACOX3 PHKB GNS B4GALNT2 RPEL1 SULT4A1 UGT2B7 L2HGDH

PCK1 ACSL1 NUP93 CHST5 LALBA B3GALT4 CYP2E1 NAT1 PDPR

ALDH1B1 ACAA1 HAS3 STAB2 GLYCTK HS3ST5 GGT7 CYP4F11 FH

ALDH2 CPT2 XYLT1 CHST12 CHST14 POM121C AOC3 CYP4F22 SLC16A8

ALDH3A1 CPT1B CEMIP NUPL2 SDC2 SLC37A4 AOC2 ARNT2 ACO2

AKR1A1 ACOX1 PPP2CB HS6ST1 DCXR GCLC ACY3 CYP7B1 IDH3B

FBP2 ECI2 MAN2B1 PPP2R1B UGP2 CYP51A1 CNDP2 CES3 OGDH

PFKM ECI1 GYS1 KHK CSGALNACT2 AOC1 GSTT2B CES2 PDHX

PFKL ACSL3 HAS1 GLCE GUSB CYP26B1 GSTM1 TRMT112 PPARD

LDHC ACSL4 PPP2R1A NDST4 GLB1 GGCT GSTM5 SULT1B1 NNT

GAPDH ACOT4 GAPDHS NUP54 UBB FMO3 GSTM3 UGT2A1 SDHB

ENO3 TECR OGN PAPSS1 B3GNT2 MGST1 CYP2J2 GSTA3 DLST

ENO2 BAAT GALK1 LUM PFKFB3 FMO1 UGT2A3 OPLAH SUCLA2

PGAM4 ELOVL5 SLC25A11 KERA HAS2 NR1H4 UGT2B28 CYP11B2 SLC16A3

ADH7 ELOVL6 NUP88 NUP58 HS6ST2 DPEP1 CYP27A1 CYP8B1 MPC2

ADH6 ACOT2 NAGLU SORD FUT3 CYP24A1 BPHL GSTA5 SDHC

LDHB YOD1 MANBA MAN2C1 RBKS CYP3A43 TPMT ACSM5 ADHFE1

ALDH1A3 ELOVL2 B3GAT1 GALNS GAA GCLM FDX1 ACSM2A PDK1
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2.7. Weighted Correlation Network Analysis (WGCNA). We
clustered the samples using the R software program
WGCNA and then filtered the coexpression modules of met-
abolic genes after selecting the TCGA expression profile
dataset with a MAD value of more than 50%. According to
the findings of the research, the coexpression network con-
forms to the scale-free free network; i.e., the logarithm of
the connection degree k ðlog ðkÞÞ of a node has an inverse
correlation with the logarithm of the likelihood that the
node occurs, which is denoted by log ðpðkÞÞ, and the corre-
lation coefficient is >0.85. Further conversion into an adja-
cency matrix was performed on the expression matrix, and
after that, a topological matrix was derived from the adja-
cency matrix. To cluster genes, we utilized the TOM and a
technique called average-linkage hierarchical clustering as
per the criteria of the hybrid dynamic shearing tree and
established 80 as the basic threshold for each gene count in
the gene network module. After identifying the gene mod-
ules with the use of the dynamic shear approach, we carried
out cluster analysis on the modules before calculating each
module’s eigengenes in turn. We created a new module by
merging the modules that were physically located closer to
one another and set minModuleSize = 80, DeepSplit = 3,
and height = 0:25.

2.8. Statistical Analysis.R (version 3.6.0) was adopted to execute
all analyses of statistical data. All statistical tests were bilateral.
The statistical significance level was established at p value< 0.05.

3. Results

3.1. Molecular Typing Based on Metabolic Gene Construction.
To construct molecular subtypes, we performed the univariate
Cox regression analysis ofmetabolic genes in the three datasets,
and the results of the intersection with prognostic-related
genes (TCGA: 214, GSE14520: 133, and HCCDB18: 169,
Table S2-4) showed that there were only 30 prognostic-
related genes (Figure 1(a)), which indicates that the
consistency of metabolic genes between datasets on different
platforms is poor, and the expression of a particular
metabolic gene might vary remarkably depending on the
cohort. As a consequence, to conduct the subsequent
analysis, we based on 30 metabolic genes that were all
recognized as prognostic-related genes (p < 0:05).

Consensus clustering (ConsensusClusterPlus) was per-
formed on 365 TCGA-HCC samples to determine a stable
clustering result (cluster = 3, Figure 1(b)), and lastly, three
metabolic subtypes (metabolism cluster, MC1/2/3) were
obtained (Figure 1(c)). Additional investigation into its
prognostic qualities revealed that the prognosis for patients
within MC2 was unfavorable, while the prognosis for those
within MC1 was positive, and the disparity between the
two was statistically remarkable (Figure 1(d)). In
GSE14520 and HCCDB18, we also observed the same result
(Figures 1(e) and 1(f)). These findings suggest that the 3
metabolic subtypes that were developed premised on meta-
bolic genes are reproducible across multiple research groups.

Table 1: Continued.

All metabolism-related gene list

ALDH3B1 FADS1 ST3GAL4 G6PC3 CHST11 CYP46A1 CYP19A1 CYP2R1 SLC16A1

ALDH3B2 FADS2 NUP98 PGD DSEL MAT2B CYP1B1 CYP4F2 SUCLG1

ALDH9A1 PECR NUP107 HSPG2 B3GALT1 AKR7A2 SULT6B1 CYP4F12 PDP1

ALDH3A2 SCD5 GYS2 PRKACB FUT9 TBXAS1 CYP2C9 1-Mar IDH3A

GALM SCD DSE RPS27A FUT10 AHRR CYP2C8 RXRA BSG

ALDOA HACD1 UST SLC26A1 HPSE2 GSTO2 ESD CYP4F8 SUCLG2

DLD ACOT1 B3GAT2 CHST7 HPSE ACSM2B NCOA2 CYP4F3 PDP2

DLAT ACOT7 EPM2A PRPS1 CSPG4 MAOB CYP11A1 CYP26C1 FAHD1

ALDOB HSD17B12 PPP2R5D GPC3 B4GAT1 CYP2W1 CYP1A1 MAOA D2HGDH

G6PC2 HACD2 ARSB CSGALNACT1 FUT1 GSTP1 CYP1A2 SULT1A1 IDH2

LDHA HS3ST1 GNPDA1 TKFC CHST2 NCOA1 DPEP3 UGT2B15 SDHD

G6PC SLC25A13 NUP155 B3GAT3 CHST1 MGST2 CYP4B1 SULT1A2 VDAC1

PGM1 ST3GAL1 PPP2CA UBC B3GALT6 SULT2B1 MGST3 CYP2B6

GPI IDS PFKFB4 EXT2 B3GNT4 SMOX ARNT CYP2F1

ME3 DCN HYAL1 RANBP2 FUT2 COMT EPHX1 GSTK1

GRHPR MAN2B2 GBE1 RPIA TALDO1 FMO2 CHAC2 CYP2A13

HAGH XYLT2 CSPG5 HS2ST1 GPC5 PTGS1 ABHD10 UGT2B17

ACAT2 DERA ABCC5 HS3ST3A1 B3GNT3 CYP26A1 CYP4V2 SULT1C4

ACAT1 CD44 SLC25A12 CHST9 FUT7 HSP90AB1 UGT3A1 CYP2A7

LDHD B4GALT7 SDC1 NUP205 CHST13 GSTT2 CYP39A1 SULT1C2

HAGHL NUP160 GALE SLC26A2 SGSH GGT5 PAOX CES1

CHPF2 SLC2A1 FUT6 CHST15 GGT1 GSTO1 GLYATL3

5Oxidative Medicine and Cellular Longevity



HCCDB18.Risk

HCCDB18.Protective

TCGA.Protective

13
11

33
16

1050

86

50

23

4

1

1 7

14

21

9
GSE14520.Risk

TCGA.Risk

GSE14520.Protective

(a)

Consensus CDF

Consensus index

1.0

1.0

0.8

0.8

0.6

0.6

CD
F

0.4

0.4

0.2

0.2

0.0

0.0

Delta area

k

0.5

10

0.4

8

0.3

6

Re
la

tiv
e c

ha
ng

e i
n 

ar
ea

 u
nd

er
 C

D
F 

cu
rv

e

0.2

0.1

4
0.0

2

10
9
8
7

6
5
4
3
2

(b)

Figure 1: Continued.

6 Oxidative Medicine and Cellular Longevity



Consensus matrix k = 3

1
2
3

(c)

021837115
0121574
152056176

0.50

Su
rv

iv
al

 p
ro

ba
bi

lit
y

0.25

0.00

0.75

1.00

MC1

p < 0.0001

MC2
MC3

Time
107.552.50

MC1
TCGA

MC2
MC3

pp < 0.00010

(d)

Figure 1: Continued.

7Oxidative Medicine and Cellular Longevity



p < 0.0001

738455054
420294260

21637993107

0.50

Su
rv

iv
al

 p
ro

ba
bi

lit
y

0.25

0.00

0.75

1.00

MC1
MC2
MC3

Time
54210

42
22
71

3

MC1
GSE14520

MC2
MC3

p < 0.0001

(e)

p = 2e–04

00406672
01214054
01487277

0.50

Su
rv

iv
al

 p
ro

ba
bi

lit
y

0.25

0.00

0.75

1.00

MC1
MC2
MC3

Time
64210

9
1
6

22
6

24

3 5

MC1
HCCDB18

MC2
MC3

(f)

Figure 1: The metabolism cluster in HCC. (a) Intersection Venn diagram showing metabolic genes with substantial prognostic significance
in the 3 cohorts. (b) CDF curve of cohort samples from the TCGA and CDF delta area curve, consensus clustering’s delta area curve,
reflecting the degree of variance in the area under the cumulative distribution function (CDF) curve for each classification number k in
comparison to k – 1. The category number k is represented on the horizontal axis, and the relative change of the area under the CDF
curve is shown on the vertical axis. (c) Heat diagram of a sample clustering when consensus k = 3. (d–f) KM curve of the prognostic
relationship of the three subtypes in the TCGA (d), GSE14520 (e), and HCCDB18 (f) datasets.

8 Oxidative Medicine and Cellular Longevity



3.2. The Link between Metabolic Subtypes, Oxidative Stress,
and Common Gene Mutations. To study the link between
metabolic subtypes and oxidative stress, we obtained the
TCGA expression profile dataset and then assessed the
enrichment scores of 14 oxidative stress-related biological
pathways in each sample by using the ssGSEA method.

Then, we calculated the distribution of these oxidative stress
pathway enrichment scores in the three metabolic molecular
subtypes, and we observed that there were significant differ-
ences in 9 (64.3%) oxidative stress-related pathways. Among
these significantly different biological pathways, except for
“response to oxidative stress” and “cellular response to
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Figure 2: Differential distribution of oxidative stress in different molecular subtypes. (a) Distribution of 14 oxidative stress-related pathways
in three subtypes. (b) The variance in the distribution of the total number of gene mutations found in the samples corresponding to the three
different molecular subtypes. The p value was determined with the use of the rank sum test; ∗ is less than 0.05; ∗∗ is less than 0.01.
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oxidative stress,” MC2 has lower scores in oxidative stress-
related pathways (Figure 2(a)). These results indicated that
changes in oxidative stress levels are related to different clin-
ical outcomes of hepatocellular carcinoma. Following this,
we filtered an additional 2484 genes (mutation frequency
> 3) and utilized the chi-square test to search for genes exhi-
biting considerably greater mutation frequencies in each
subtype (threshold value p < 0:05), ultimately yielding 133
genes (Figure 2(b)).

3.3. Expression of Chemokines in Metabolic Typing and
Expression of Immune Checkpoint Genes.To examine the differ-
ent ways inwhich chemokines are expressed among the 3 differ-
ent metabolic subtypes, we evaluated the expression of
chemokines as well as their corresponding receptor genes in
theTCGAcohort. Among 41 chemokines, 34 (82.93%) had sub-
stantial variations in subtypes (Figure 3(a)), while 16 of the 18
chemokine receptor genes (88.89%) exhibited substantial varia-
tions in the expressionofmetabolic subtypes (Figure 3(b)). From
these findings, it is convinced that various metabolic subtypes
will have a varying degree of immune cell infiltration.

We obtained Th1/IFNγ gene signatures to assess the var-
iations in expression levels of Th1/IFNγ that exist across the
3 metabolic categories [25], and by using ssGSEA methodol-
ogy, we determined each patient’s IFNγ score. According to
the findings, the MC2 and MC3 subgroups both exhibited
greater IFNγ scores, whereas the MC1 subgroup exhibited
the smallest IFNγ scores (Figure 3(c)).

To examine the lytic activity of immune T cells in rela-
tion to the 3 metabolic subtypes, we used the average expres-
sion levels of GZMA and PRF1 [26] to determine the level of
lytic activity exhibited by immune T cells in each patient’s
tumor. Interestingly, MC2 and MC3 possessed the greatest
immune T cell lysis activity, whereas MC1 possessed the
least, and there was a significant difference between sub-
groups (Figure 3(d)).

To examine the variances in angiogenesis score expres-
sion between the three metabolic subgroups, we obtained
the angiogenesis-related gene set [27] to analyze each
patient’s angiogenesis score. The findings illustrated that
MC1 had a considerably greater angiogenesis score as
opposed to MC2 and MC3. The difference between sub-
groups was significant (Figure 3(e)).

47 immune checkpoint-related genes were analyzed to
determine the expression variations across the 3 metabolic
categories [25]. The results illustrated that 41 (87.23%) genes
were present in the 3 metabolic subgroups. There were
remarkable variations among the subtypes. It was found that
the expression of the majority of genes associated with
immune checkpoints was much higher in MC2 cells in con-
trast with that in MC1 cells. The levels of expression of T cell
exhaustion markers including HAVCR2, CD276, PDCD1,
CTLA4, and LAG3 were much greater in MC2 cells as
opposed to the levels in MC1 cells (Figure 3(f)). Based on
these findings, it seems that distinct patient subgroups might
exhibit varying degrees of immunotherapeutic response.

3.4. Immune and Metabolic Pathway Features in Various
Metabolic Subgroups. We adopted CIBERSORT to assess

the immune properties in distinct metabolic subtypes.
According to the findings, there were remarkable variations
in the immunological features shown by each of the subtypes
(Figure 4(a)). Different CD8 T cells, M0, M1, and M2
macrophages as well as resting CD4 memory T cells were
significantly and highly expressed in different subtypes
(Figure 4(b)), indicating that they may have an instrumental
function in HCC.

We examined 10 distinct oncogenic pathways to ascer-
tain their characteristics across various metabolic subtypes
[28]. According to the findings, eight of the ten pathways
displayed substantially different characteristics depending
on the subtype. Among these 8 pathways, MC2 scores were
relatively high in the cell cycle, NOTCH, RAS, and TP53
pathways, while the remaining two pathways had low
enrichment scores in MC2 (Figure 4(c)). The results of an
analysis of immune infiltration revealed that MC2 and
MC3 had greater levels of immune microenvironment infil-
tration compared to MC1, and MC1 was shown to have the
least ImmuneScore (Figure 4(d)).

We acquired the data on molecular subtypes [29] from
these samples to examine the link between these molecular
subtypes and the previous six pan-cancer immunotypes.
The findings demonstrated that there are substantial varia-
tions across the various pan-cancer immunotypes
(Figure 4(e) and Figure S1). The C1 and C2 subtypes with
unfavorable prognosis accounted for significantly higher
proportions in our definition of MC3 and MC2 subtypes
than MC1, and the proportion of C3 with better prognosis
in MC2 was significantly lower than MC1 (Figure 4(e)),
which is consistent with the poor prognosis of MC2 and
MC3. Based on these outcomes, it appears that these 3
subtypes could be added to the established six subtypes
that were employed in the prior research.

3.5. Analysis of the Variation in TIDE across Metabolic
Subtypes. We utilized the TIDE (http://tide.dfci.harvard.edu/)
tool to assess the possible clinical impacts of immunotherapy
in the three metabolic subtypes. The greater the TIDE predic-
tion score, the greater the likelihood of immune evasion, sug-
gesting that immunotherapy is less likely to be effective for
the patient. The results showed that the TIDE score of MC2
in the TCGAdataset was considerably elevated in contrast with
that ofMC1 (Figure 5(a)), indicating thatMC1 is more likely to
respond favorably to immunotherapy as opposed to MC2/3.
Moreover, by comparing the findings of the T cell dysfunction
versus rejection scores, we discovered that MC2 displayed a
lower T cell dysfunction score in contrast with MC1/3
(Figure 5(b)); MC2 was shown to have an elevated T cell rejec-
tion score, whereas MC1 had a higher score (Figure 5(c)). We
observed the same results in the HCCDB18 (Figures 5(d)–5(f
)) and GSE14520 (Figures 5(g)–5(i)) datasets. These findings
could explain why the prognosis for MC2 is unfavorable while
that of MC1 is satisfactory.

3.6. Comparative Analysis of Metabolic Subgroups and
Chemotherapy/Immunotherapy. To assess the variations
between immunotherapeutic and chemotherapeutic inter-
ventions in various metabolic subtypes, we compared the
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Figure 3: Expression of chemokines and immune checkpoints in different metabolic subtypes. (a) Variation in the distribution and
expression of chemokines in TCGA cohort. (b) Variations in the distribution and expression of chemokine receptors in TCGA cohort.
(c) Differences in the IFNγ score distribution across the various subgroups derived from TCGA cohort. (d) Variations in the lysis
activity of immune T cells between the two subgroups. (e) Scores on angiogenesis that were variable across the several groups. (f)
Variations in the TCGA cohort’s immune checkpoint genes both in terms of their expression and their distribution. Analysis of variance
was the statistical method that was used to assess the significance. ∗ means p < 0:05; ∗∗ means p < 0:01; ∗∗∗ means p < 0:001; ∗∗∗∗ means
p < 0:0001.
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similarities across the 3 metabolic subgroups and immuno-
therapy patients in the GSE91061 dataset using subclass
mapping. We found that in different datasets, the MC1 sub-
type showed a greater degree of sensitivity to CTLA4 inhib-
itors compared to the other two subtypes (Figures 6(a), 6(c),
and 6(e)). When we compared the responses of various sub-
types to standard chemotherapeutic agents (cisplatin, vino-
relbine, embellin, and pyrimethamine), we discovered that
the MC2 subtype was more responsive to these four medica-
tions (Figures 6(b), 6(d), and 6(f)).

3.7. Establishment of the Metabolic Subtype Characteristic
Index.We utilized linear discriminant analysis (LDA) to con-
struct a subtype classification feature index premised on 30
prognosis-related parameters which allowed for the accurate
assessment of the immunological characteristics of patients
in various sample cohorts. The first two characteristics of the
model may be differentiated as samples of several subtypes
(Figure 7(a)). We noticed statistically significant variations
between the characteristic indices of the various subtypes

when using the LDA model to generate each subtype’s value
for its subtype characteristic index (Figure 7(b)). ROC analysis
illustrated that the characteristic index was in different sub-
types. For the classification performance in the model, the
multicategory comprehensive prediction AUC was 0.93
(Figure 7(e)). The metabolic subtype feature index was applied
to the GSE14502 and HCCDB18 datasets, and the results were
similar to the TCGA dataset: the feature indexes of distinct
subtypes varied significantly (Figures 7(c) and 7(d)), and
ROC analysis illustrated that the comprehensive AUC was
0.94 and 0.93, respectively (Figures 7(f) and 7(g)). Those data
suggested that those 3 MCs had better predictive ability.

3.8. Determination of Metabolic Feature Index among
Coexpressed Gene Modules. We clustered the samples with
the help of the WGCNA package of the R tool and screened
the coexpression modules (Figure 8(a), soft threshold = 12).
To guarantee that the network was not susceptible to scaling
problems, we chose β = 12 and obtained 12 modules
(Figures 8(b)–8(d)). The gray module represents a set of
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Figure 4: Immune and pathway characteristics in different metabolic subtypes. (a) The ratio of each of the 22 distinct immune cell
components found in the samples across the various subgroups. (b) Variations in 22 immune cell components between samples
belonging to various groups. (c) Variations in the scores of ten pathways associated with aberrations in tumors observed in various
subgroups. (d) Scores for immune infiltration varied significantly among the various groups. (e) An examination of the similarities and
differences between the 3 metabolic molecular subtypes and the previous six pan-cancer metabolic molecular subtypes.
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genes that cannot be merged with those of other modules.
Figure 8(e) displays the data on the transcripts of each indi-
vidual module. Gene modules that cannot be assigned are
described as gray modules. Each module’s relationship to
the patient’s age, sex, M stage, N stage, T stage, stage,
MC1, MC2, and MC3 was examined. The module had a sub-
stantial and negative correlation with MC1 and a significant
and positive correlation with MC2, respectively. The correla-
tion between the green, pink, and salmon modules and MC2
was greater than 0.4 (Figure 8(f)).

3.9. Prognostic Analysis of Metabolic Feature Index in
Coexpressed Gene Modules. We determined the degree to
which these 12 modules’ feature vectors were correlated with
the metabolic feature indices by performing correlation analy-
sis. According to the findings, each of the 12modules had a sig-
nificant correlation with the immunological characteristic
index (Figure 9(a)). To conduct a reliable and accurate prog-
nostic analysis, we chose modules that had a strong correlation
with the metabolic feature index, and we observed that green,
purple, cyan, dark, salmon, and royal blue were significantly

correlated (Figure 9(b), p ≤ 0:01). We further screened the
green and darkmodules based on the link between themodule,
metabolic molecular subtypes, and prognosis, with the module
feature vector correlation coefficient > 0:9 and the prognostic
significant gene (p < 0:01) as the hub genes for the module.
Finally, seven key genes (RBM12, SENP1, SART3, DHX9,
ARMC8, CREB1, and ZNF207) were identified in the dark
module. At the same time, we classified the patients into
groups with low and high expression premised on gene expres-
sion and evaluated whether there were prognostic differences
between the genes in these two expression groups. The findings
illustrated that except for the group survival curve of the
ARMC8 gene, which was marginally significant, the survival
curves of other genes had significant differences (Figure 9(c)).

Next, we enriched the genes of the dark and green modules
(cluster profile package). The findings highlighted that the dark
module was associated with tumor processes, including DNA
replication, cell cycle, and autophagy-animal (Figure S2).
Meanwhile, the green module was related to Huntington’s
disease, Parkinson’s disease, Alzheimer’s disease, and other
related diseases (Figure S3).
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Figure 5: Differential analysis of TIDE in various metabolic subtypes. (a–c) TCGA score difference of TIDE, T cell rejection, and T cell
dysfunction in various metabolic subtypes. (d–f) HCCDB18 score difference of TIDE, T cell rejection, and T cell dysfunction in distinct
metabolic subtypes. (g–i) GSE14520 score difference of TIDE, T cell rejection, and T cell dysfunction in various metabolic subtypes.
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4. Discussion

Currently, clinical decisions for HCC are often based on the
disease staging system. It divides patients into different sub-
groups according to clinical factors associated withHCC prog-

nosis, especially pathological factors, and determines the
corresponding treatment plan [30]. Clinical factors associated
with the prognosis of patients with HCC mainly reflect the
degree to which tumors have spread (distant metastasis, vas-
cular invasion, number of tumor nodules, tumor size, and
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Figure 6: Differential expressions of immunotherapy/chemotherapy in various metabolic subtypes. (a, b) According to the results of the
TCGA submap study, MC1 might be more responsive to CTLA4 (Bonferroni-corrected p < 0:05). Box plots of the estimated IC50 for
MC1/2/3. (c, d) The results of the HCCDB18 submap analysis suggested that MC1 might be more responsive to CTLA4 (Bonferroni-
corrected p < 0:05). Box plots of the estimated IC50 for MC1/2/3. (e, f) As per the findings of the GSE14520 submap analysis, MC1
might be more responsive to CTLA4 (Bonferroni-corrected p < 0:05). Box plots of the estimated IC50 for MC1/2/3.
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others) and the severity of liver damage (symptoms of liver
decompensation, protein synthesis, and detoxification func-
tion, among others) [31]. Although this classification method
based on pathological diagnosis has effectively guided clinical
practice and brought tangible benefits to patients with HCC,
it can only describe the biological characteristics of tumors at
the tissue level and fails to accurately represent the biological
nature of tumors, especially the essential differences in
molecular biology between different classifications [32]. In
addition, considering that HCC is such a very heterogeneous
illness, even individuals with the same TNM stage might have
substantially different responses to therapeutic drugs and
varying duration of survival time.

With the in-depth analysis of the molecular pathological
characteristics of HCC, some studies have explored the link
between the expression profiles of specific genes and the
clinicopathological characteristics of HCC, opening new
doors for clinical practice. However, it is difficult to attain
a global comprehension of the molecular biological charac-
teristics of HCC metastasis, recurrence, and prognosis based
on the expression level of one or a few genes. With the devel-
opment of molecular pathology research on tumors genome-
wide, a new tumor typing method, tumor molecular typing,
has emerged. It classifies tumors according to their patholog-

ical characteristics (mainly genomic characteristics) at the
molecular level. Molecular typing can provide global features
at the molecular level, such as the tumor genome/proteome/
metabolome, enrich molecular pathological information on
tumor occurrence and progression, and provide support
for clinical diagnosis, staging, individualized treatment, and
prognosis prediction [33].

In the current research, we attempted to molecularly
categorize HCC at the metabolic level, and as a result,
we discovered some novel insights. Our samples were clas-
sified into three different metabolic subtypes (MC1, MC2,
and MC3) premised on the 619 metabolic genes that were
used to classify HCC, where the subtypes showed signifi-
cant differences in prognosis (Figure 1). The immunologi-
cal properties of the various metabolic subtypes were
distinct, and these subtypes might have varied responses
to immunotherapy (Figure 3). In independent datasets
(HCCDB18 and GSE14520), there was a significant degree
of reproducibility across metabolic subtypes. To more
accurately assess the immunological characteristics of
patients and accurately represent their varying degrees of
immune infiltration, an immune feature index was devel-
oped premised on the metabolic subtypes. There was a
link between the metabolic feature index and the immune
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Figure 7: Immune characteristic index and ROC curve in various metabolic subtypes. (a) The link between the first two characteristics of
the TCGA metabolic feature index and the different subtypes of metabolism. (b–d) TCGA, GSE14520, and HCCDB18 datasets of different
subtypes of immune feature index differences. (e–g) TCGA, GSE14520, and HCCDB18 dataset immune characteristic index ROC curve.
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checkpoint. In the meantime, using the coexpression net-
work analysis as a foundation, we conducted a screening
of seven possible gene markers (RBM12, SENP1, SART3,
DHX9, ARMC8, CREB1, and ZNF207) that are linked to
the metabolic feature index.

The TME has been shown to have a significant modula-
tory function in the onset and advancement of tumors. The
TME that is generated as a result of the process of dynamic
alterations is controlled by a wide range of immunosuppres-
sion signals, and its diversity may help determine several fac-
tors, particularly patients’ prognosis and how well they will
respond to therapy [34, 35]. Recently, numerous studies have
discovered that the onset and growth of malignant tumors
are directly linked to the components that are present in the
microenvironment that surrounds tumor cells. For instance,
the chemokines and cytokines that are produced in the liver
can enhance angiogenesis as well as immune evasion and anti-
apoptotic responses and may activate a range of immune cells
inside the TME, assist T cells in entering the tumor, alter the
immune response of the tumor, and mediate the therapeutic
benefits of the treatment [36]. According to the findings of
our investigation, the expression of chemokines and the genes
that code for their receptors is significantly distinct across var-
ious metabolic subtypes. These differential expressions suggest
that various metabolic subgroups have varying levels of
immune infiltration, which might influence the progression
of tumors and patients’ immune response to them. Further-
more, tumor-associated chemokines and cytokines maymobi-

lize and polarize immunological subpopulations as well as
facilitate the differentiation of cells into protumor phenotypes,
thus promoting the progression of tumors. Tumor-associated
macrophages (TAMs) are among these immune subtypes and
can be polarized toM2 by IL-13, IL-4, TGF-β, or IL-10, within
the TME. Macrophages have a phenotype and are responsible
for the growth of tumors. Additionally, they stimulate angio-
genesis, which is necessary for the recruitment of regulatory
cells (Tregs) [37]. In most cases, an unfavorable prognosis
for a variety of cancers, including HCC, is linked to the accu-
mulation of TAMs in the area of the tumor.

Long-term strong exposure to reactive oxygen species can
induce chronic inflammatory disease progression and carcino-
genesis [38, 39]. ROS has been shown to be associated with can-
cers of the digestive system, such as gastrointestinal cancer,
cholangiocarcinoma, pancreatic cancer, andHCC [40, 41]. Rep-
resentative mechanisms of HBV- and HCV-related chronic
liver disease progression and hepatocellular carcinoma have
been shown to involve the function of viral proteins, such as
immune interference, tumor initiation or tumor suppression
interference, and oxidative stress response induction [42]. In
Figure 2(a), several oxidative stress-related pathway scores were
different in 3 MCs.

We observed that CD4+ T cells, macrophages, and CD8+
T cells are expressed at a high level in various metabolic sub-
types. Although the presence of cells such as Tem and Trm
is linked to the prognosis of patients with HCC, these cells
commonly express PD-1. Immune depletion markers
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Figure 8: Establishment of metabolic index coexpressed gene module. (a) A tree representing each sample’s clustering. (b) An investigation
of the scale-free fit indices for several different soft-thresholding powers (β). (c) An examination of the average degree of connectivity for
several different soft-thresholding powers. (d) A dendrogram showing the clustering of all genes and lncRNAs with differential
expression according to a dissimilarity measure (1-TOM). (e) Statistical information on the proportion of genes included in each
module. (f) The clinical information corresponds to each module’s content.
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Figure 9: Key genes identified in dark module. (a) An examination of the relationship between the LDA score and the metabolic feature
index. (b) Correlational analysis of prognostic factors linked to the immune feature index. (c) Prognostic KM analysis of key genes.
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including cytotoxic T lymphocyte-associated antigen-4
(CTLA-4) and lymphocyte activation gene 3 (LAG-3) are
inversely related to their function [43]. Therefore, these
depletion markers have become the primary targets for
the immune checkpoint blockade (ICB) to activate and
restore CD8+ T cell function [44]. Moreover, CD8+ T cells
within the TME may synthesize IFN-γ, thereby promoting
the upmodulation of IDO1 and PD-1/PD-L1 gene expres-
sion [45]. Research has illustrated that PD-L1 upregulation
in tumor cells, particularly when combined with PD-1 pro-
duced by tumor-infiltrating activated T cells, may cause
exhaustion and suppress the antitumor immunological
function of these effector cells, which allows tumor cells
to escape the immune system [46]. Additionally, the density
of CD8+ T cells with high inhibitory expression of PD-1 is
linked to a grim clinical prognosis for HCC [47]. IDO1
upregulation has been shown to have a favorable correla-
tion with not only a dismal prognosis but also tumor
advancement and metastasis [48, 49].

These existing research results have also been con-
firmed in our study. Our research evaluated the Th1/IFNγ
ratio, immune checkpoint-related genes, angiogenesis
score, and immune T cell lytic activity in the 3 metabolic
subtypes. Combined with the above findings, we discov-
ered that MC2 had a high score for immune T cell lysis
activity (Figure 3(d)), implying that this subtype possessed
more potent immunogenicity and a suitable TME, which
should bring better clinical results, but its prognosis was
worse than that of MC1. In the comparative study of the
expression of immune checkpoints in various subtypes,
we discovered that compared to that in MC1, the level
of expression of the majority of genes associated with
immunological checkpoints (HAVCR2, CD276, PDCD1,
CTLA4, and LAG3) was much higher in MC2, suggesting
that MC2 may be exhausted by T cells in the subtypes,
which might explain why MC2 had an elevated immune
microenvironment infiltration level but also an unfavor-
able prognosis.

In 2017, the TCGA team analyzed the histopatholo-
gical data of 196 cases of HCC and showed that 22% of
HCC exhibited moderate or high lymphocyte infiltration;
the team further analyzed the gene expression results of
66 immune markers [3]. Unsupervised hierarchical cluster-
ing identified 6 tumor sample clusters, two of which
showed high expression of immune markers, including
the following immune checkpoint genes: cytotoxic T
lymphocyte-associated protein 4 (CTLA4), procedural
death receptor 1 (PD-1), and programmed death ligand
1 (PD-L1). This may indicate that ICI treatment can sub-
stantially affect HCC with moderate or high lymphocyte
infiltration and high expression of immunosuppressive
molecules [50]. Combined with our research, it is sug-
gested that MC2 patients may have excellent responsive-
ness to ICI treatment during the treatment of HCC.
Furthermore, we screened 7 potential genetic markers.
To date, many studies have confirmed that multigene
markers have good predictive power for the metastasis,
progression, recurrence, and survival rate of HCC [51,
52]. Gene signatures are a potentially useful high-

throughput molecular identification tool via their use in
clinical practice, which is premised on gene expression
profiling. In short, this sort of combination model based
on clinical, pathological, and genetic traits has been
proven by accumulating research as having the potential
to be highly applicable in clinical settings [53].

There is accumulating evidence to suggest that epige-
netic alterations perform an instrumental function in carci-
nogenesis. Epigenetic alterations have been linked to the
clinical prognosis of HCC patients by several different
research investigations. This also complicates the molecular
classification of HCC. These findings expand the potential
therapeutic targets of HCC and enable us to have deeper
insights into the molecular classification of HCC by integrat-
ing this aspect of the molecular characteristics. In the future,
we plan to conduct experimental verification of the results of
this article and use more reasonable bioinformatic strategies
to improve the model. In addition, the HCC population has
undergone tremendous changes in the past few years. The
proportion of HCC and early HCC caused by nonhepatitis
viruses is gradually increasing [54]. Research on HCC
should pay more attention to this part of the population’s
molecular characteristics and molecular typing.

In summary, the results of this research established a
metabolic classification that is capable of independently
functioning as an HCC prognostic indicator of HCC. It mea-
sured the HCC patients’ prognosis risk by analyzing the dif-
ferences in the features of the TIME across subtypes in order
to help clinical diagnosis, staging, and personalized therapy.
In addition, prognostic prediction can be used to provide
support to HCC patients.
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