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Next‑generation intelligent laboratories 
for materials design and manufacturing
Xiting Peng   and Xiaonan Wang* 

The contradiction between the importance of materials to modern society and their slow 
development process has led to the development of multiple methods to accelerate materials 
discovery. The recently emerged concept of intelligent laboratories integrates the developments 
in fields of high-throughput experimentation, automation, theoretical computing, and artificial 
intelligence to form a system that can autonomously carry out designed experiments and 
make scientific discoveries. We present the basic concepts and the foundations of this new 
research paradigm, demonstrate its typical application scenarios through case studies, and 
envision a collaborative human-machine meta laboratory in the future.
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Introduction
From clean energy to human welfare and even national secu-
rity, advanced materials are critical to the development of 
society. However, the fact is that the materials development 
process is very long. A new material needs to go through many 
steps from discovery to deployment, often taking decades.1 
For example, Li-ion batteries have been studied on a large 
scale since the early 1960s and were not commercialized until 
the 1990s.2  On the other hand, the complexity of the materi-
als is increasing with the continuous exploration of improved 
materials.3 The combination of just a few parameters can 
lead to a huge search space, which is impossible to be fully 
explored by traditional manual experiments.

A variety of technologies have been applied to acceler-
ate materials development, which encompasses the four 
paradigms of scientific research (Figure 1). High-throughput 
experimental techniques have led to continuous improvements 
in the scale and efficiency of experiments. Theoretical calcu-
lation methods with databases storing the calculation results 
allow screening to be performed rapidly on computers.4 Data 
science-related technologies, especially machine learning, 
have led to data-driven discoveries in materials science.5 
In this context, the concept of a self-driving laboratory or 

autonomous experimentation system has been proposed. It is 
an integration of the advances previously mentioned, and has 
already shown strong potential in fields such as drug discov-
ery,6–8 solar-energy materials,9–11 organic synthesis,7,12 etc.

Here, we reinterpret these efforts into a more general con-
cept of “intelligent laboratories.” In using this term, we are 
not focusing on a specific experimental method or facility, but 
on a system that combines all aspects of materials research to 
provide a systematic solution to the materials development 
process (Figure 1). True intelligence should be born out of 
the collaboration of humans and robots. A future intelligent 
laboratory involves not only the replacement of human hands 
with robotic arms, but, more importantly, the enhancement 
of the human brain with efficient algorithms and computing 
power. The experiments are designed and executed in a closed-
loop, autonomous manner, with the human effort focusing on 
initializing the system and analyzing the final results. This 
separation of labor allows researchers to devote more effort to 
the aspects that really require innovation and insight.

There are a variety of apparent benefits of an intelligent 
laboratory. It allows for uninterrupted, high-throughput paral-
lel experiments that are far more efficient than those performed 
by humans. It also minimizes operational faults and errors, 
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which can generate standardized, high-quality data. Consider-
ing a robot can use different vision and motion systems than 
a human, it is also more flexible for handling particular sub-
stances such as photosensitive materials and hazardous chem-
icals.11 In addition, researchers can be physically separated 
from the experimental equipment and conduct experiments in 
a remote, shared manner, making “cloud chemistry”13 or even 
“meta laboratories” possible, which is particularly relevant in 
the post-pandemic era.

This article aims to present the concept of future intelligent 
laboratories and to explain what an intelligent laboratory is 
and why it is important. We will demonstrate the current appli-
cation scenarios, advantages, and limitations of intelligent 
laboratories with several case studies, with an outlook on how 
they can further advance materials design and manufacturing.

Fundamentals of an intelligent laboratory
In 2009, a robot scientist named Adam was proposed to dis-
cover functional genes in Saccharomyces cerevisiae.14 It uses 
automated hardware combined with a software system to iter-
atively formulate hypotheses, design experiments, and inter-
pret results without human intervention. A mobile robotic 
chemist developed in 2020 takes a more advanced approach, 
using Bayesian optimization to guide a dexterous roaming 
robot through the laboratory to autonomously find improved 
photocatalysts for hydrogen production from water.11 Both 
cases follow the workflow described in Figure 2. First, the 
researcher searches for the area of interest and builds the 
required hardware and software environment. Then, for the 

task to be studied, the researcher defines the parameters and 
objectives to be optimized and selects a proper optimiza-
tion framework. The system is also provided with initial data 
or other a priori knowledge. After these initializations, the 
entire system begins to operate automatically. A model is 
used to infer the results of each test, and a planning algorithm 
incorporates the model to determine how the next experiment 
should be performed and then drives the automated device to 
perform the test. The results obtained are passed back to the 
computer to update the model and determine the next experi-
ment. After hours or days, the iterations are completed, and 
all the experimental data are aggregated into a conclusion. 
In another case, the initialization step can also be done by an 
AI model automatically reading and generalizing the existing 
human knowledge.15

The emergence of this research paradigm was not happen-
ing overnight, but was gradually transformed. Specifically, an 
intelligent laboratory often integrates the following compo-
nents that will be discussed next:

1.	 Automated, modular hardware facilities. It may be a set of 
modified commercial instruments, an in situ characteriza-
tion system, and/or a robotic arm;

2.	 A computational core (brain) of the intelligent laboratory 
for analyzing experimental results and planning the next 
experiments;

3.	 A software system to serve as an interface between the 
researcher, the computational tools, and the hardware 
facilities; and

Figure 1.   Demonstration of the four research paradigms linking to next-generation intelligent laboratories. The intelligent laboratory is not a new 
technology, but a system in which all aspects of materials research are involved.
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4.	 Other strategies to assist experiments, such as introducing 
the results of theoretical calculations to make predictions 
physics-informed.

High‑throughput experiment with experiment 
planning
Advanced experimental methods are the cornerstone of 
research, and intelligent laboratories are dedicated to how to 
do experiments smarter. Early research for materials design 
was often Edison-like. Researchers relied on personal experi-
ence and intuition to discover new materials by trial and error, 
which was often a time-consuming and unpredictable process. 
Starting in the 1990s, the combinatorial method emerged in 
the field of materials science,16 drawing on the idea of large-
scale synthesis and characterization in biological research.17 
The combined experiments mean to increase the speed of 
materials synthesis and testing through miniaturized and par-
allel synthesis methods and high-throughput characterization 
methods. A library containing a large number of materials with 
their properties is created, based on which one could select the 
best material or explore the relationship between structure and 
properties. This advancement has substantially increased the 
speed of discovery and deployment of new materials. How-
ever, if we rely only on blind and random testing with a large 
number of experiments, much of the experimental information 
obtained will be redundant and is still insignificant in the face 
of the vast possibility space. To improve the value of each test, 
some planning strategy should be used to explicitly choose the 
next experiment to be performed.

Statistical design of experiment (DOE) is an early method 
applied to experimental planning, which analyzes the interre-
lationships between multiple independent variables and their 

effects on the dependent variable by systematic sampling and 
testing. It is a powerful method when the number of indepen- 
dent variables is small and the relationships between them are 
relatively simple.18 Subsequently, early artificial intelligence 
(AI) methods and advanced optimization algorithms began to 
be applied to materials science for more complex problems. 
For example, the global single-objective optimization algo-
rithm SNOBFIT19 can perform optimization without a theoret-
ical model and has been used in the optimization of chemical 
reactions.12 Some multi-objective optimization methods, such 
as TSEMO20 and MOAL,21 have also been developed for the 
tradeoff between conflicting objectives. With the development 
of artificial intelligence, active learning22,23 and reinforce-
ment learning24 techniques have started to be used in mate-
rials research. Bayesian optimization is a popular black-box 
optimization method in recent times, which uses a surrogate 
function to approximate an unknown experimental response 
surface and an acquisition function to select the parameter for 
the next measurement. The selection of parameters takes into 
account the most promising regions and the regions with high 
uncertainty (i.e., the optimal solution is found while gradually 
improving the accuracy of the surrogate function). Several 
studies23,25,26 have demonstrated the effectiveness of these 
advanced planning methods. By using them, the number of 
experiments and time consumed were reduced significantly 
(by several to tens of times) compared to the traditional grid-
based approach or random search.

Theoretical calculation
The theoretical calculation can be considered as a further 
expansion of experimental throughput, and was highlighted in 
some national-level materials acceleration initiatives such as 
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Figure 2.   The general workflow of an intelligent laboratory. The definition of the system is done manually, whereas the process of 
experiment planning and conducting is fully autonomous.
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the Materials Genome Initiative (MGI).1 With high-throughput 
calculations,27 researchers can explore a larger range of chemi-
cal spaces without conducting experiments and perform virtual 
screening directly on the computer.28 Unlike the predictions 
given by data-driven machine learning models, the results of 
theoretical calculations are derived directly from fundamen-
tal physical principles and are considered to be more reliable 
and physically explainable, but also take longer to compute. 
Therefore, large computational materials databases29–31 have 
been created to store the results of theoretical calculations and 
reduce repetitive calculations. Machine learning methods are 
used by introducing surrogate models trained on the fly to 
speed up the search process carried out by theoretical calcula-
tions.32–34 In our previous work, theoretical calculations can 
also be added directly to the active learning loops to enable 
self-improving materials discovery.35

Also, the theoretical calculation can be combined with other 
techniques to develop new research methods, such as using the 
results of theoretical calculations as pretraining data for machine 
learning prediction models,29 or combing it with high-throughput 
screening to take advantage of both of their advantages.36

AI for intelligent laboratories
Artificial intelligence techniques can assist materials sci-
ence in many ways, including property prediction, molecu-
lar design, theoretical calculations acceleration, and more, 
which have been fully discussed in previous reviews.5,37,38 In 
addition, some advanced AI techniques can also be applied 
to materials discovery. Active learning and data augmenta-
tion can be used to cope with data scarcity and imbalance, 
and transfer learning enables fast and resource-saving learn-
ing on similar tasks, as we demonstrated respectively in the 
design of strain sensors and metal–organic framework-based 
membranes.39,40 The biggest contribution of AI for intelligent 
laboratories lies in AI planning, which exists as the “compu-
tational brain” of the system to guide the next experiment (as 
described in the section “High-throughput experiment with 
experiment planning”).

Considering that the deep learning (DL) method, another 
important part of AI, often involves building and training data-
intensive models that do not seem to match the goal of “more 
efficient experimentation,” it is difficult to directly apply it in 
intelligent laboratories.41 But it can still play a role in vari-
ous aspects. For example, we used machine vision to analyze 
scanning probe microscopy images, which can improve the 
speed and accuracy of chiral molecule detection and clas-
sification, allowing more characterization tools to be added 
to automated closed-loop experiments.42 Another example 
is machine reading for information sorting from literature. It 
allows integration of existing knowledge and suggests more 
promising hypotheses for experiments.15,43

Automated experimental hardware
Automation technology is the bridge between physical instru-
ments and the computational core, and it determines the scope 

of tasks to which we can apply the closed-loop autonomous 
research paradigm. It can be stressed that automation and digi-
tization make a lot of sense: standardized operation and com-
prehensive data recording. Materials are complex and small 
changes in synthesis conditions or some factors that may be 
overlooked during manual experimentation (e.g., laboratory 
temperature and humidity, sample purity) may have a large 
impact on the experiment. On the other hand, although only 
the most successful experimental results are reported in pub-
lications, failed experiments often contain chemical intuition, 
and the collection and use of this information can also aid 
in materials discovery.44,45 Therefore, the future laboratory 
needs to digitally record and integrate all information from 
experiments.

Although the robot operating system (ROS)46 has reached 
a mature level in the early years and automated platforms 
have been broadly applied in areas such as drug discovery, 
its full application to other fields is still limited by diverse 
methodology and costs. Sokol et al.46 evaluated the diffi-
culty of automating commonly used materials synthesis and 
characterization techniques for solar fuel production. More 
easily parallelized materials synthesis processes and more 
in-line characterization instruments still deserve to be devel-
oped.47 On the other hand, software packages such as Che-
mOs,48 ESCALATE,49 etc., have been developed to facilitate 
the deployment and operation of an intelligent laboratory for 
a wider range of people.

Application scenarios of an intelligent 
laboratory
Exploration of materials formulations and synthesis 
conditions
A classical application scenario for intelligent laboratories can 
be concluded as achieving the best property by optimizing 
the formulations or synthesis conditions of materials, whether 
they are carbon nanotubes,50 gold nanoparticles,51,52 quantum 
dots,53 thin-film materials,9 or metastable materials.22 The syn-
thesis-characterization cycle of materials is often fixed and can 
be done on a single robotic platform or even a single instru-
ment. The difficulty lies in the large number of processing 
parameters available with insufficient knowledge about their 
relationships, which can be explored more efficiently using an 
automated experimentation platform driven by AI.

In 2016, Nikolaev et al.50 reported the first Autonomous 
Research System (ARES) for controlling the growth rate of 
carbon nanotubes (CNTs). CNTs were synthesized using a 
chemical vapor deposition process on small pillars of silicon 
and were characterized by in situ Raman spectroscopy for 
the growth rate. Synthesis conditions, including temperature, 
pressure, and gas composition, were optimized by the sug-
gestion from a random forest model. It was observed that 
the predicted and experiment growth rate got closer as the 
number of completed experiments increased, and a target 
growth rate was achieved after 600 experiments without 
human intervention.
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A platform such as this not only allows for faster com-
pletion of specific experimental tasks, but its independence 
from a priori knowledge also allows for full exploration of 
previously unexplored design space, which may lead to more 
generalized results. For example, in the design of battery elec-
trolytes, it has been shown that mixing salts may have a posi-
tive impact on performance, but the huge design space brings 
difficulty to the experiment, and there is still no guarantee of 
fidelity of calculations from first principles. Dave et al.54 then 
applied the research framework of autonomous experiments, 
using pumping devices and electrochemical tools to form a 
simple and inexpensive platform for testing electrochemical 
performance. After 140 experiments with three- and four-salt 
aqueous electrolytes, an electrolyte that was contrary to the 
usual design principles was obtained. In another example, 
because crystal structure characterization using x-ray diffrac-
tion (XRD) is very expensive, Ament et al.22 used AI agents 
and an active learning strategy to establish a synthesis phase 
diagram of a Bi-O system with as few experiments as possible, 
thus discovering the conditions for stabilizing δ-Bi2O3 at room 
temperature.

Intelligent laboratories for organic synthesis
The research paradigm of intelligent laboratories can also be 
applied to organic synthesis. For each reaction, a large num-
ber of repetitive experiments are required to find the optimal 
reaction conditions in order to obtain the maximum yield and 
minimize the byproducts. Angello et al.55 devised a closed-
loop optimization process for general reaction conditions of 
the heteroaryl Suzuki-Miyaura coupling reaction. Substrates 
were first selected by data mining techniques, and then a com-
bination of uncertainty-minimizing ML and robotic experi-
mentation was used to perform iterative tests to optimize the 
reaction conditions. Reaction conditions that doubled the 
average yield of the currently widely used conditions were 
found, and the generality also showed statistically significant 
increases compared to the previously reported conditions. This 
workflow improves the efficiency of reaction optimization, 
whereas organic synthesis processes often involve different 
types of reactions, and the optimization of different reactions 
requires reconfigurability of the system. A plug-and-play, 
continuous-flow chemical synthesis system was developed 
by Bédard et al.12 This system is highly integrated, allow-
ing the selection and configuration of different modular unit 
operations and analytical methods as needed in a simple way. 
Optimization of reaction conditions was performed automati-
cally and a user-friendly interface was provided to reach high 
usability. The system’s capabilities have been demonstrated in 
several widely used single- and two-step reactions.

Another important task is the synthesis of organic com-
pounds on demand. Coley et al.7 first integrated advances in 
the computer-aided synthesis planning (CASP) and automated 
synthesis platforms to construct an automatic flow synthesis 
platform. Information from millions of published synthetic 
routes was extracted by data mining and machine learning 

methods to generate recommended synthetic routes. A self-
configurable system using a robotic arm for on-demand assem-
bly of unit operations and reagent lines is used to perform 
the experiments. Fifteen small molecules that vary greatly in 
structure and synthetic complexity were synthesized auto-
matically. It should be noted that the training of models in 
this system is still a one-time process that relies on historical 
data, whereas some specific reaction conditions need to be 
defined manually due to the lack of data. These limitations can 
hopefully be solved by the introduction of the previously men-
tioned closed-loop optimization process, which will enable a 
step further toward the automation of all aspects of organic 
synthesis.

Fully autonomous laboratory for catalyst design
Although building an autonomous experimentation platform 
for a specific task is not that challenging, the range of applica-
tions is limited. Several efforts aim to build a fully autonomous 
laboratory that can perform multiple research tasks. Build-
ing such a platform is certainly time-consuming, but once 
such a laboratory is fully operational, the benefits can still be 
significant.

Burger et al.11 presented a landmark work named mobile 
robotic chemist. A mobile robotic platform with a robotic arm 
was used to mimic human behavior. With the help of laser 
scanning combined with touch feedback for fine positioning, 
the platform can move freely in the laboratory like a human, 
grasp and transfer sample vials, and operate commercial 
instruments with no physical hardware modifications. The 
complete experimental process was performed by eight work-
stations. By using a batch Bayesian algorithm to optimize the 
catalyst formulations, a photocatalyst mixture with six times 
higher activity than the initial formulations was identified after 
688 experiments.

In 2022, Zhu et al.15 developed AI-Chemist, an AI chem-
istry laboratory that implements the whole process of scien-
tific research autonomously. For an exploration task, a large 
number of papers were first read and summarized by AI, and 
scientific hypotheses were generated. A computational module 
for performing theoretical calculations was used to provide 
physics-based data for the prediction model. A Bayesian algo-
rithm was used to guide the search space. Experiments were 
carried out by a mobile robot that shuttled between 14 modi-
fied workstations, including synthesis, characterization, and 
performance tests. The effectiveness of the platform was dem-
onstrated in the design of a non-noble metal oxygen evolution 
reaction electrocatalyst. AI-Chemist explored in a search space 
with 553,401 options and found a composition ratio that was 
far from the best samples of trial-and-error experiments but 
performed better.

Future directions of intelligent laboratories
Scientific research is always about the data obtained from 
the experiments, not the physical samples themselves. 
Thus researchers can be physically separated from their 
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experimental instruments and samples. The COVID-19 pan-
demic has impacted scientific research globally, and the need 
to digitalize laboratory operations in an era of social distance 
has become more urgent. The concept of intelligent laborato-
ries offers the prospect that we can redefine scientific research 
using digital technologies such as cloud computing, the Inter-
net of Things, and blockchain, building “meta laboratories” 
that fully map physical laboratories. Future experimental 
research can be conducted in large, well-resourced “virtual 
institutes” accessible to anyone without leaving home. The 
sharing of experiment resources and data will expand the use 
of experimental instruments and chemicals, making science 
more democratized, as in the astronomy and high-energy phys-
ics communities.41

As a preliminary stage, some commercial cloud laborato-
ries have been built, such as Strateos (https://​strat​eos.​com/), 
dedicated to drug discovery and synthetic biology, and Emer-
ald Cloud Lab (https://​www.​emera​ldclo​udlab.​com/), which 
can perform various in vitro biology or chemistry experi-
ments. Researchers can control multiple devices through a 
software interface or web browser without purchasing their 
own instruments. It makes biological and chemical experi-
ments more like computational experiments, with each step of 
the experimental operation being translated into explicit and 
detailed code and carried out in an invariable environment, 
which provides for reproducibility. Unlike contract research 
organizations (CROs), which provide research outsourcing in 
the biomedical field, how experiments are performed in this 
research mode is still user-defined. Although the founder of 
the Emerald Cloud Lab admits that access to its equipment is 
not cheap, he believes that it can be a money-saving option 
compared to the cost of purchasing the equipment.56 However, 
a research model in which robots are merely used to replace 
some operation processes is not the ultimate goal. Humans are 
good at causal analysis and reasoning, whereas robots are good 
at cognition and execution. In a future laboratory, humans and 
robots should collaborate to get the most out of each other.57 
Such a promising research paradigm would be applied more 
often in future materials development to provide solutions to 
current thorny problems.
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