
Fast, Optimal, and Targeted Predictions using Parametrized 
Decision Analysis

Daniel R. Kowal* [Dobelman Family Assistant Professor]
*Department of Statistics, Rice University

Abstract

Prediction is critical for decision-making under uncertainty and lends validity to statistical 

inference. With targeted prediction, the goal is to optimize predictions for specific decision tasks 

of interest, which we represent via functionals. Although classical decision analysis extracts 

predictions from a Bayesian model, these predictions are often difficult to interpret and slow 

to compute. Instead, we design a class of parametrized actions for Bayesian decision analysis 

that produce optimal, scalable, and simple targeted predictions. For a wide variety of action 

parametrizations and loss functions—including linear actions with sparsity constraints for targeted 

variable selection—we derive a convenient representation of the optimal targeted prediction 

that yields efficient and interpretable solutions. Customized out-of-sample predictive metrics 

are developed to evaluate and compare among targeted predictors. Through careful use of the 

posterior predictive distribution, we introduce a procedure that identifies a set of near-optimal, 

or acceptable targeted predictors, which provide unique insights into the features and level of 

complexity needed for accurate targeted prediction. Simulations demonstrate excellent prediction, 

estimation, and variable selection capabilities. Targeted predictions are constructed for physical 

activity data from the National Health and Nutrition Examination Survey (NHANES) to better 

predict and understand the characteristics of intraday physical activity.
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1 Introduction

Prediction is a cornerstone of statistical analysis: it is essential for decision-making under 

uncertainty and provides validation for inference (Geisser, 1993). Predictive evaluations are 

crucial for model comparisons and selections (Gelfand et al., 1992) and offer diagnostic 

capabilities for detecting model misspecification (Gelman et al., 1996). More subtly, 

predictions provide an access point for model interpretability: namely, via identification 

of the model characteristics or variables which matter most for accuracy. However, the 

demands of many datasets—which can be high-dimensional, high-resolution, and multi-

faceted—often necessitate sophisticated and complex models. Even when such models 

predict well, they can be cumbersome to deploy and difficult to summarize or interpret.
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Our focus is targeted prediction, where predictions are customized for the decision tasks of 

interest. The translation of models into actionable decisions requires predictive quantities in 

the form of functionals of future or unobserved data. Predictions should be optimized for 

these decision tasks—and targeted to the relevant functionals. The target is fundamental for 

defining the correct (predictive) likelihood (Bjornstad, 1990). Absent specific functionals of 

interest, targeted prediction offers a path for interpretable statistical learning: the functionals 

probe the data-generating process to uncover the predictability of distinct attributes.

To illustrate these points, we display wearable device data from the National Health and 

Nutrition Examination Survey (NHANES) in Figure 1. Physical activity (PA) trajectories 

are modeled as functional data and accompanied by subject-specific covariates; descriptions 

of the data and the model are in Section 5. Scientific interest does not reside exclusively 

with these intraday profiles: we are also interested in functionals of the trajectories. Figure 

1 shows several such functionals: the average activity (avg), the peak activity level (max), 

and the time of peak activity (argmax). These functionals summarize daily PA and describe 

clear sources of variability in PA among the individuals. Other features are discernible, such 

as sedentary behavior and periods of absolute inactivity, and are investigated in Section 

5. However, Bayesian model-based point predictions alone do not explain what drives the 

variability among individuals and can be slow to compute out-of-sample.

Our goal is construct targeted predictions that improve accuracy, streamline decision 

making, and highlight the model attributes and covariates that matter most for prediction

—which notably may differ among functionals. Building upon classical decision analysis, 

we introduce parametrized actions that extract optimal, simple, and fast predictions under 

any Bayesian model ℳ. The parameterizations exploit familiar model structures, such as 

linear, tree, and additive forms, while the actions minimize a posterior predictive expected 

loss that is customized for each functional. For a broad class of parametrized actions and 

loss functions, we derive a convenient representation of the optimal targeted prediction 

that yields efficient and interpretable solutions. These solutions can be computed using 

existing software packages for penalized regression, which allows for widespread and 

immediate deployment of the proposed techniques. The targeted predictions are constructed 

simultaneously for multiple functionals based on a single ℳ, which avoids the need to 

re-fit a Bayesian model for each functional. While intrinsically useful for prediction, 

the elicitation of multiple targeted predictors is also informative for understanding and 

summarizing the model ℳ posterior.

A key feature of our approach is the use of the model ℳ predictive distribution to provide 

uncertainty quantification for out-of-sample predictive evaluation. We design a procedure to 

identify not only the most accurate targeted predictor, but also any predictor that performs 

nearly as well with some nonnegligible predictive probability. This strategy emerges as 

a Bayesian representation of the Rashomon effect, which observes that there often exists 

a multitude of acceptably accurate predictors (Breiman, 2001). The set of acceptable 
predictors is informative: it describes the shared characteristics and level of complexity 

needed for near-optimal targeted prediction. We do not require any re-fitting of ℳ and 

instead design an efficient algorithm to approximate the relevant out-of-sample predictive 
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quantities for each functional. The proposed methods are applied to both simulated and real 

data and demonstrate excellent prediction, estimation, and selection capabilities.

There is a rich literature on the use of decision analysis to extract information from a 

Bayesian model. Bernardo and Smith (2009) provide foundational elements, while Vehtari 

and Ojanen (2012) give a prediction-centric survey. MacEachern (2001) and Gutiérrez-Peña 

and Walker (2006) use decision analysis to summarize Bayesian nonparametric models. 

The proposed methods expand upon a line of research for posterior summarization, most 

commonly for Bayesian variable selection, advocated by Lindley (1968) and rekindled by 

Hahn and Carvalho (2015). These techniques have been adapted for seemingly unrelated 

regressions (Puelz et al., 2017), graphical models (Bashir et al., 2019), nonlinear regressions 

(Woody et al., 2020), functional regression (Kowal and Bourgeois, 2020), and time-varying 

parameter models (Huber et al., 2020). Alternative approaches combine linear variable 

selection with Kullback-Leibler distributional approximations (Goutis and Robert, 1998; 

Nott and Leng, 2010; Tran et al., 2012; Crawford et al., 2019; Piironen et al., 2020). In 

general, these methods focus on global summarizations of a particular model ℳ posterior 

distribution. By comparison, our emphasis on predictive functionals adds specificity and 

a direct link to the observables, which provides a solid foundation for (out-of-sample) 

predictive evaluations and broadens applicability among Bayesian models with different 

parameterizations.

The remainder of the paper is organized as follows. Section 2 introduces predictive decision 

analysis for optimal targeted prediction. Section 3 develops the methods and algorithms for 

predictive evaluations and comparisons. A simulation study is in Section 4. The PA data 

are analyzed in Section 5. Section 6 concludes. Online supplementary material includes 

methodological generalizations and further examples, computational details, additional 

results for the simulated and PA data, proofs, and R code to reproduce the analyses.

2 Targeted point prediction

Consider the paired data {xi, yi}i = 1
n  with p-dimensional covariates xi and m-dimensional 

response yi. The response variables yi may be univariate (m = 1), multivariate (m > 1), or 

functional data with yi =(yi(τ1,),…,yi(τm))′ observed on a domain T ⊂ ℝd. Suppose we have 

a satisfactory Bayesian model ℳ parametrized by θ with posterior pℳ(θ ∣ y). The requisite 

notion of “satisfactory” is made clear below, but fundamentally ℳ should encapsulate the 

modeler’s beliefs about the data-generating process and demonstrate empirically the ability 

to capture the essential features of the data. Although these criteria are standard for Bayesian 

modeling, they often demand highly complex and computationally intensive models. There 

is broad interest in extracting simple, accurate, and computationally efficient representations 

or summaries of ℳ, especially for prediction.

Our approach builds upon Bayesian decision analysis. First, we target the predictive 
functionals ℎ1(y), …, ℎJ(y), where each hj is a functional of interest and y ∼ pℳ(y ∣ y)

is the predictive distribution of unobserved data at covariate value x and conditional on 

observed data. Each hj reflects a prediction task: often the data (x, y) are an input to 
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a system hj, which inherits predictive uncertainty when y has not yet been observed. 

Alternatively, the functionals {hj} can be selected to provide distinct summaries of the 

model ℳ. Next, we introduce a parametrized action g(x; δ), which is a point prediction of 

ℎ(y) at x with unknown parameters δ. The role of g is to produce interpretable, fast, and 

accurate predictions targeted to h. Examples include linear, tree, and additive forms, but g is 

not required to match the structure of ℳ. The targeted predictions are not burdened by the 

complexity required to capture the global distributional features of pℳ(θ ∣ y) or pℳ(y ∣ y)—

which may be mostly irrelevant for predicting any particular ℎj(y)—yet use the full posterior 

distribution under ℳ to incorporate all available data. Lastly, we leverage the model ℳ
predictive distribution to quantify and compare the out-of-sample predictive accuracy of 

each parametrized action. Using this information, we assemble a collection of near-optimal, 

or acceptable targeted predictors, which offers unique insights into the predictability of 

ℎj(y).

For any functional hj = h, predictive accuracy is measured by a loss function 

ℒ0{ℎ(y), g(x; δ)}, which determines the loss from predicting g(x; δ) when ℎ(y) is realized. To 

incorporate multiple covariate values X ≔ {xi}i = 1
n , we introduce an aggregate loss function

ℒ0 {ℎ(yi), g(xi; δ)}i = 1
n ≔ n−1 ∑

i = 1

n
ℒ0{ℎ(yi), g(xi; δ)},

where each y i is the predictive variable at xi under model ℳ. The choice of X can 

be distinct from the original covariates {xi}i = 1
n , for example to customize predictions 

for specific designs or subpopulations of interest, yet still leverages the full posterior 

distribution under model ℳ. We augment the aggregate loss with a complexity penalty 

P on the unknown parameters δ:

ℒλ {ℎ(yi), g(xi; δ)}i = 1
n ≔ ℒ0 {ℎ(yi), g(xi; δ)}i = 1

n + λP(δ),

where λ ≥ 0 indexes a path of parameterized actions and determines the tradeoff between 

predictive accuracy (ℒ0) and complexity (P).

Since ℒλ depends on a random quantities {y i}i = 1
n , Bayesian decision analysis proceeds by 

optimizing for δ over the joint posterior predictive distribution pℳ(y1, …, yn ∣ y):

δA ≔ argmin
δ

E[y1, …, yn ∣ y]ℒλ {ℎ(y i), g(xi; δ)}i = 1
n . (1)

This operation averages the predictive loss over the joint distribution of future or unobserved 

values {ℎ(y i)}i = 1
n  at X under model ℳ, and then selects parameters δA that minimize 

this quantity. We define the parametrized action A ≔ (g, P, λ) as a triple consisting of the 
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targeted predictor g, the complexity penalty P, and the complexity parameter λ. Since we 

typically compare among parametrized actions for the same functional h, design points X, 

and Bayesian model ℳ, we suppress notational dependence on these terms.

The challenge is to produce optimal point prediction parameters δA for distinct parametrized 

actions A, and subsequently to evaluate and compare the resulting point predictions. 

A schematic is presented in Figure 2: given data {xi, yi}i = 1
n , a Bayesian model ℳ is 

constructed; for each functional h, one or more parametrized actions A are optimized for 

prediction; point predictions g(x; δA) are computed for ℎ(y) at x. The optimal parameters 

δA offer a summary of the posterior (predictive) distribution of model ℳ—akin to posterior 

expectations, standard deviations, and credible intervals—but specifically targeted to h.

By design, the optimal parameters δA depend on the loss function ℒ0. Generality of ℒ0 is 

desirable, but tractability is essential for practical use. A natural starting point is squared 

error loss ℒ0{ℎ(y), g(x; δ)} = ‖ ℎ(y) − g(x; δ) ‖2
2 with generalizations considered below. In this 

setting, we identify a representation of the requisite optimization problem (1) that admits 

fast and interpretable solutions for a broad class of parametrized actions:

Theorem 1. When E[yi ∣ y]‖ ℎ(y i)‖2
2 < ∞ at each xi ∈ X, i = 1, …, n , the optimal point 

prediction parameters in (1) under squared error loss are

δA = argmin
δ

n−1 ∑
i = 1

n
‖ℎi − g(xi; δ)‖2

2 + λP(δ) (2)

where ℎi ≔ E[yi ∣ y]ℎ(y i) is the posterior predictive expectation of ℎ(y i) at xi under model ℳ.

Theorem 1 establishes an equivalence between the solution to the posterior predictive 

expected loss (1) and a penalized least squares criterion, with important computational 

implications. First, estimation of ℎi is a standard Bayesian exercise, for example using 

posterior predictive samples: ℎi ≈ S−1∑s = 1
S ℎ(y i

s) for y i
s ∼ pℳ(y i ∣ y) at xi. Most commonly, 

posterior predictive samples are generated by iteratively drawing θs ∼ pℳ(θ ∣ y) from the 

posterior and y i
s ∼ pℳ(y i ∣ θs) from the sampling distribution. Second, the penalized least 

squares representation in (2) implies that the optimal point prediction parameters δA
can be computed easily and efficiently for many choices of A using existing algorithms 

and software. Third, the optimal parametrized actions produce fast out-of-sample targeted 

predictions: the prediction of ℎ(y) at any x is g(x; δA), which is quick to compute for many 

choices of g. Lastly, the optimal parameters from (2) can be computed simultaneously for 

many parametrized actions A and distinct functionals h—all based on a single Bayesian 

model ℳ.

Remark. Certain choices of h, such as binary functionals ℎ(y) ∈ {0, 1}, are incompatible 
with squared error loss. In the supplementary material, we discuss generalizations to 
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deviance-based loss functions. Importantly, the core attributes of the proposed approach 
are maintained: computational speed, ease of implementation, and interpretability.

We illustrate the utility of this framework with the following examples; an additional 

example with ℎ(y) ∈ {0, 1} is presented in the supplementary material.

Example 1 (Linear contrasts). Consider a (multivariate) regression model E[yi ∣ θ]yi = fθ(xi)

for yi = (yi,1,…, yi,m)′. The linear contrast ℎ(y) = Cy  is often of interest: the matrix 

C can extract specific components of y , evaluate differences between components of y , 

and apply a linear weighting scheme to y . For functional data with yi,j = yi(τj), the 

linear contrast can target subdomains Cy = {y(τ)}τ ∈ S for S ⊂ T and evaluate derivatives 

of y(τ). In this setting, the predictive target simplifies to the posterior expectation 

ℎ = E[θ ∣ y]{Cfθ(x)} = CE[θ ∣ y]fθ(x). Given an estimate fθ(x) of the posterior expectation 

of the regression function at x, the response variable ℎi ≈ Cfθ(xi) needed for (2) is easily 

computable for many choices of C. Notably, the predictive expected contrast Cfθ(xi) is 

distinct from the empirical contrast h(yi) = Cyi: the former can incorporate shrinkage, 

smoothness, and other regularization of the regression function fθ under ℳ. From a single 

Bayesian model ℳ, multiple parametrized actions A can be optimized for each contrast C.

Example 2 (Functional data summaries). Suppose h is a scalar summary of a curve 

{y(τ)}τ ∈ T, such as the maximum ℎ(y) = maxτ y(τ) or the point at which the maximum 

occurs ℎ(y) = arg maxτ y(τ), and let ℳ be a Bayesian functional data model (Section 5 

provides a detailed example). To select variables for optimal linear prediction of ℎ(y), we 

apply Theorem 1 with g(x; δ) = x′δ and an ℓ1-penalty, P(δ) = ‖ δ ‖1 = ∑j = 1
p ∣ δj ∣:

δA = argmin
δ

n−1 ∑
i = 1

n
‖ℎi − xi

′δ‖2
2 + λ ‖ δ‖1 , (3)

for example using the observed covariates X = {xi}i = 1
n . The optimal parameters δA are 

readily computable using existing software, such as glmnet in R (Friedman et al., 2010).

In practice, we apply an adaptive variant of the ℓ1-penalty. Motivated by the adaptive lasso 

(Zou, 2006), Kowal et al. (2020) introduce the penalty P(δ, θ) = ∑j = 1
p ωj ∣ δj ∣, where ωj =∣ 

βj ∣−1 and βj are the regression coefficients in a Gaussian linear model ℳ. For nonlinear 

or non-Gaussian models ℳ and targeted predictions, we use the generalized weights 

ω = ∣ δ0 ∣−1, where δ0 is the ℓ2-projection of the predictive variables ℎ(y i) onto the predictor 

g. Bayesian decision analysis requires integration over the unknown θ, so the requisite 

penalty in (2) becomes the posterior expectation P(δ) ≔ E[y ∣ y]P(δ, θ) = ∑j = 1
p ωj ∣ δj ∣ for 

ω = E[y ∣ y]( ∣ δ0 ∣−1 ), which is estimable using posterior predictive samples.
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The parameterized and targeted decision analysis from (1) features connections with 

classical decision analysis. Targeted prediction arises in classical decision analysis through 

the Bayes estimator ℎi = E[yi ∣ y]ℎ(y i), which is obtained from Theorem 1 as a special case:

Corollary 1. Let AB = (g(x; δ) = δ(x), λ = 0) denote an unrestricted and unpenalized action. 

The optimal point predictor parameters are δ (xi) = ℎi.

However, action parametrization and penalization are valuable tools: they lend 

interpretability to the targeted prediction, highlight the balance between accuracy and 

simplicity, and often produce faster—and more accurate—out-of-sample predictions via 

g(x; δA).

In some cases, the optimal actions δA can be linked to the underlying model parameters θ, 

such as when the parameterization A matches the form of ℳ and both are linear:

Corollary 2. Let AL = (g(x; δ) = x′δ, λ = 0) denote a linear and unpenalized action. For a 

model ℳ with E[yi ∣ θ]ℎ(y i) = xi
′θ and using the observed design points X = {xi}i = 1

n , the 

optimal point predictor parameters are δAL = Eθ ∣ yθ.

Corollary 2 is most familiar when ℳ is a linear model and h is the identity. By further 

allowing λ > 0 with a sparsity penalty P, we recover the decoupling shrinkage and selection 
approach for Bayesian linear variable selection (Hahn and Carvalho, 2015). Similar links to 

Woody et al. (2020) can be established for nonlinear regression.

Despite the potential connections to θ in certain cases, the parametrized actions are not 

bound by the parametrization of model ℳ. The full benefits of Theorem 1 are realized 

by the simultaneous generality of the model ℳ, the functionals h, and the parametrized 

actions A. Of course, we can shift the emphasis from prediction toward posterior 

summarization by replacing the predictive functional ℎ(y) with a posterior functional h(θ), 

such as ℎ(θ) = ℎ E[y ∣ θ]y . However, we prefer the predictive functionals: they correspond to 

concrete observables that are comparable across Bayesian models (Geisser, 1993).

3 Predictive inference for model determination

Decision analysis extracts an optimal δA by minimizing a posterior (predictive) expected 

loss function. However, this optimality is obtained only for a given parametrized action A. 

The key implication of Theorem 1 is that optimal point predictions can be computed easily 

and efficiently for many A (see Figure 2). To fully exploit these benefits, additional tools are 

needed to evaluate, compare, and select among the parametrized actions.

We proceed to evaluate predictive performance out-of-sample, which best encapsulates 

the task of predicting new data. The Bayesian model ℳ provides predictive uncertainty 

quantification for all evaluations and comparisons. These out-of-sample predictive 

comparisons serve to identify not only the best targeted predictor, but also those targeted 
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predictors that achieve an acceptable level of accuracy for out-of-sample prediction. The 

collection of acceptable targeted predictors illuminates the shared characteristics of near-

optimal models, such as the important covariates, the forms of g and P, and the level of 

complexity needed for accurate prediction of ℎ(y). This approach only requires a Bayesian 

model ℳ, an evaluative loss function L, and the design points at which to evaluate the 

predictions under some g.

3.1 Predictive model evaluation

The path toward model comparisons and selection begins with evaluation of a single targeted 

predictor. We proceed nominally using g(x; δA), but note that any point predictor of ℎ(y)
at x can be used. Let L(z, z) denote the loss associated with a prediction z when z has 

occurred. We consider both empirical and predictive versions of the loss: the former uses 

empirical functionals z = h(y) and relies exclusively on the observed data, while the latter 

uses predictive functionals z = ℎ(y) and inherits a predictive distribution under ℳ.

Out-of-sample evaluation necessitates a division of the data into training and validation sets: 

model-fitting and optimization are restricted to the training data, while predictive evaluations 

are conducted on the validation data. Dependence on any particular data split is reduced 

by repeating this procedure for K randomly-selected splits akin to K-fold cross-validation; 

we use K = 10. Let ℐk ⊂ {1, …, n} denote the kth validation set, where each data point 

appears in (at least) one validation set, ∪k = 1
K ℐk = {1, …, n}. We prefer validation sets that 

are equally-sized, mutually exclusive, and selected randomly from (1,…, n}, although other 

designs are compatible. Importantly, we do not require re-fitting of the Bayesian model ℳ
on each training set, and instead use computationally efficient approximation techniques 

based on a single fit of ℳ to the full data (see Section 3.3).

For each data split k, the out-of-sample empirical and predictive losses are

LA
out(k) ≔ 1

∣ ℐk ∣ ∑
i ∈ ℐk

L ℎ(yi), g(xi; δA
−ℐk) , LA

out(k)

≔ 1
∣ ℐk ∣ ∑

i ∈ ℐk
L ℎ(y i

−ℐk), g(xi; δA
−ℐk)

(4)

respectively, where δA
−ℐk ≔ arg minδE[y ∣ y−ℐk]ℒλ {ℎ(y i), g(xi; δ)}i ∉ ℐk  is optimized only 

using the training data y−ℐk ≔ {yi}i ∉ ℐk, and similarly y i
−ℐk ∼ pℳ(y i ∣ y−ℐk) is the 

predictive variate at xi conditional only on the training data. Although in-sample versions are 

available, there is an important distinction between the out-of-sample predictive distribution, 

pℳ(y i ∣ y−ℐk), and the in-sample predictive distribution, pℳ(y i ∣ y). The in-sample version 

conditions on both the training data y−ℐk and the validation data yℐk ≔ {yi}i ∈ ℐk, which 

overstates the accuracy and understates the uncertainty for a validation point i ∈ ℐk. 

The out-of-sample version avoids these issues and more closely resembles most practical 

prediction problems.
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Evaluation of A is based on the averages of (4) across all data splits,

LA
out ≔ K−1 ∑

k = 1

K
LA

out(k), LA
out ≔ K−1 ∑

k = 1

K
LA

out(k) .

The K-fold aggregation averages over two sources of variability in (4): variability in the 

training sets {xi, yi}i ∉ ℐk, each of which results in a distinct estimate of the coefficients 

δA
−ℐk, and variability in the validation sets {xi, yi}i ∈ ℐk, which evaluates predictions only 

at the validation design points {xi}i ∈ ℐk. The contrast between LA
out and LA

out is important: 

LA
out is a point estimate of the risk under predictions from A, while LA

out provides the 

distribution of out-of-sample loss under different realizations of the predictive variables 

ℎ(y i). Specifically, each h(yi) for i ∈ ℐk represents one possible realization of the out-of-

sample target variable at xi; the predictive variable ℎ(y i
−ℐk) for y i

−ℐk ∼ pℳ(y i ∣ y−ℐk)

expresses the distribution of possible realizations according to ℳ. The predictive loss 

LA
out incorporates this distributional information for out-of-sample predictive uncertainty 

quantification.

3.2 Predictive model selection

The out-of-sample empirical and predictive losses, LA
out and LA

out, respectively, provide the 

ingredients needed to compare and select among targeted predictors. Predictive quantities 

have proven useful for Bayesian model selection; see Vehtari and Ojanen (2012) for a 

thorough review. Our goal is not only to identify the most accurate predictor, but also to 

gather those targeted predictors that achieve an acceptable level of accuracy. In doing so, we 

introduce a Bayesian representation of the Rashomon effect, which observes that for many 

practical applications, many approaches can achieve adequate predictive accuracy (Breiman, 

2001).

The proposed notion of “acceptable” accuracy is defined relative to the most accurate 

targeted predictor, Amin ≔ arg minA ∈ ALA
out, which minimizes out-of-sample empirical loss 

as in classical K-fold cross-validation. The set A may include different forms for g and P
and usually will include a path of λ values for each (g, P) pair. We prefer relative rather 

than absolute accuracy because it directly references an empirically attainable accuracy 

level.

For any two actions A, A′ ∈ A, let DA, A′
out ≔ 100 × (LA

out − LA′
out) ∕ LA′

out be the percent increase 

in out-of-sample predictive loss from A′ to A. We seek all parametrized actions A that 

perform within a margin η ≥ 0% of the best model, DA, Amin
out < η %, with probability at least 

ε ∈[0,1]. The margin η acknowledges that near-optimal performance—especially for simple 

models—is often sufficient, while the probability level Ɛ incorporates predictive uncertainty. 

In concert, η and Ɛ provide domain-specific and model-informed leniency for admission 
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into a set of acceptable predictors. We formally define the set of acceptable predictors as 

follows:

Definition 1. The set of acceptable predictors is

Λη, ε ≔ A ∈ A :ℙℳ(DA, Amin
out < η) ≥ ε , wℎere DA, Amin

out ≔ 100 × (LA
out − LAmin

out ) ∕ LAmin
out .

The probability ℙℳ is estimated using out-of-sample predictive draws under model ℳ

(see Section 3.3). Each set Λη,ε is nonempty, since Amin ∈ Λη, ε for all η, ε, and nested: 

Λη,ε ⊆ Λη′,ε′, for any η′ ≥ η or ε′ ≤ ε, so increasing η or decreasing Ɛ can expand 

the set of acceptable predictors. The special case of sparse Bayesian linear regression 

was considered in Kowal et al. (2020). With similar intentions, Tulabandhula and Rudin 

(2013) and Semenova and Rudin (2019) define a Rashomon set of predictors for which the 

in-sample empirical loss is within a margin η of the best predictor. By comparison, Λη,ε 
uses out-of-sample criteria for evaluation and incorporates predictive uncertainty via the 

Bayesian model ℳ.

The set of acceptable predictors also can be constructed using prediction intervals:

Lemma 1. A predictor A is acceptable, A ∈ Λη, ε, if and only if there exists a lower (1 − ε) 

posterior prediction interval for DA, Amin
out  that includes η.

Viewed another way, A is not acceptable if the lower 1 − ε predictive interval for DA, Amin
out

excludes η. From this perspective, unacceptable predictors are those A for which there is 

insufficient predictive probability (under ℳ) that the out-of-sample accuracy of A is within 

a certain margin of the best predictor. This definition is similar to the confidence sets 

of Lei (2019), which exclude any A for which the null hypothesis that A produces best 

predictive risk is rejected. Lei (2019) relies on a customized bootstrap procedure, which adds 

substantial computational burden to the model-fitting and cross-validation procedures. By 

comparison, acceptable predictor sets are derived entirely from the predictive distribution of 

ℳ and accompanied by fast and accurate approximation algorithms (see Section 3.3).

Among acceptable predictors, we highlight the simplest one. For fixed (g, P), the simplest 

predictor has the largest complexity penalty: λη, ε ≔ max{λ : (g, P, λ) ∈ Λη, ε}. When P is a 

sparsity penalty such as (3), the simplest acceptable predictor contains the smallest set of 

covariates needed to (nearly) match the predictive accuracy of the best predictor—which 

may itself be Amin. Selection based on λη,ε resembles the one-standard-error rule (e.g., 

Hastie et al., 2009), which selects the simplest predictor for which the out-of-sample 

empirical loss is within one standard error of the best predictor. Instead, λη,ε uses the 

out-of-sample predictive loss with posterior uncertainty quantification inherited from ℳ.
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3.3 Fast approximations for out-of-sample predictive evaluation

The primary hurdle for out-of-sample predictive evaluations is computational: they require 

computing δA
−ℐk and sampling y i

−ℐk ∼ pℳ(y i ∣ y−ℐk) for each data split k = 1,…, K. Re-

fitting ℳ on each training set {xi, yi}i ∉ ℐk is impractical and in many cases computationally 

infeasible. To address these challenges, we develop efficient approximations that require 

only a single fit of the Bayesian model ℳ to the data—which is already necessary for 

standard posterior inference. Specifically, we use a sampling-importance resampling (SIR) 

algorithm with the full posterior predictive distribution as a proposal for the relevant out-

of-sample predictive distributions. The subsequent results focus on squared error loss, but 

adaptations to other loss functions are straightforward.

To obtain δA
−ℐk, we equivalently represent the optimal action as in Theorem 1:

δA
−ℐk = argmin

δ
(n − ∣ ℐk ∣ )−1 ∑

j ∉ ℐk
‖ℎj

−ℐk − g(xj; δ)‖2
2 + λP(δ) (5)

where ℎj
−ℐk = E[yj ∣ y−ℐk]ℎ(yj) is the out-of-sample point prediction at xj. As such, (5) is 

easily solvable for many choices of A : all that is required is an estimate of ℎj
−ℐk for each 

j ∉ ℐk in the training set. We estimate this quantity using importance sampling. Proposals 

{yj
s}s = 1

S ∼ pℳ(yj ∣ y) are generated from the full predictive distribution by sampling 

{θs}s = 1
S ∼ pℳ(θ ∣ y) from the full posterior and {yj

s}s = 1
S ∼ pℳ(yj ∣ θs) from the likelihood. 

The full data posterior pℳ(θ ∣ y) serves as a proposal for the training data posterior 

pℳ(θ ∣ y−ℐk) with importance weights wk
s ∝ 1 ∕ p(yℐk ∣ θs), with further factorization 

under conditional independence. The target can be estimated using ℎj
−ℐk ≈ ∑s = 1

S wk
sℎ(yj

s)

or based on SIR sampling. In some cases, it is beneficial to regularize the importance 

weights (Ionides, 2008; Vehtari et al., 2015), but our empirical results remain unchanged 

with or without regularization. Successful variants of this approach exist for Bayesian model 

selection (Gelfand et al., 1992) and evaluating prediction distributions (Vehtari and Ojanen, 

2012).

SIR provides a mechanism for sampling y i
−ℐk ∼ pℳ(y i ∣ y−ℐk) using the importance 

weights {wk
s}s = 1

S , which in turn provides out-of-sample predictive draws of LA
out and DA, A′

out , 

for any actions A, A′ ∈ A. The idea is to obtain the proposal samples {yj
s}s = 1

S ∼ pℳ(yj ∣ y)

from the full posterior distribution and then subsample from {yj
s}s = 1

S  without replacement 

based on the corresponding importance weights {wk
s}s = 1

S . The full SIR algorithm details are 

provided in the supplementary material.
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4 Simulation study

We evaluate the selection capabilities and predictive accuracy of the proposed techniques 

using synthetic data. For targeted prediction, these evaluations must be directed toward 

a particular functional of the response variable. Specifically, we generate functional data 

{Y i
∗(τ):τ ∈ [0, 1]} such that the argmax of each function, τi

∗ ≔ arg maxτY i
∗(τ) = ℎ(Y i

∗), is 

linearly associated with a subset of covariates, τi
∗ = xi′β

∗. The covariates are correlated and 

mixed continuous and discrete: we draw xi,j from marginal standard normal distributions 

with Cor(xi,j,xi,j′) = (0.75)∣j−j′∣ and binarize half of these p variables, xi, j I{xi, j ≥ 0}. 

The continuous covariates are centered and scaled to sample standard deviation 0.5. 

For the true coefficients {βj
∗}j = 1

p , we randomly select 5% for βj
∗ = 1, 5% for βj

∗ = − 1, 

and leave the remaining values at zero with the exception of the intercept, β0
∗ = 1. The 

coefficients {βj
∗}j = 0

p  are rescaled such that τi
∗ = xi′β

∗ ∈ [0.2, 0.8] to ensure that the argmax 

occurs away from the boundary; see the supplementary material. The true functions are 

computed as Y i
∗(τ) = a0, i + a1, iτ − (a1, i + a2, i)(τ − τi

∗)+, where a0, i ∼iid N(0, 1), a1, i, a2, i ∼iid χ5
2, 

and (x)+ ≔ xI{x ≥ 0}. By construction, Y i
∗ is piecewise linear and concave with a single 

breakpoint, τi
∗ = arg maxτ Y i

∗(τ), and therefore ℎ(Y i
∗) = xi′β

∗. Finally, the observed data yi 

are generated by adding Gaussian noise to Y i
∗(τ) at m equally-spaced points with a root 

signal-to-noise ratio of 5. Example figures are provided in the supplementary material.

The synthetic data-generating process is repeated 100 times for p = 50 covariates, m = 

200 observation points, and varying sample sizes n ∈{75, 100, 500}. For each simulated 

dataset {xi, yi}i = 1
n , we compute the posterior and predictive distributions under the Bayesian 

function-on-scalars regression model of Kowal and Bourgeois (2020), which models a 

linear association between the functional data response and the scalar covariates. We 

emphasize that this model ℳ does not reflect the true data-generating process, yet our 

targeted predictions are derived from the predictive distribution under ℳ. We consider 

linear actions g(x; δ) = x′δ with the adaptive ℓ1-penalty from Example 2 and computed using 

glmnet in R (Friedman et al., 2010). In this case, the set of parametrized actions A is 

determined by the path of λ values, which control the sparsity of the linear action δ. For 

benchmark comparisons, we use the adaptive lasso (Zou, 2006) and projection predictive 

feature selection (Piironen et al., 2020) on the empirical functionals {xi, ℎ(yi)}i = 1
n . Model 

sizes were selected using 10-fold cross-validation. Implementation of Piironen et al. (2020) 

uses the projpred package in R; for the requisite Bayesian linear model, we assume double 

exponential priors for the linear coefficients, but results are unchanged for Gaussian and 

t-priors.

To validate the proposed definition of acceptable predictor sets, we investigate a simple 

yet important question: does the true model belong to Λη,ε ? Specifically, we determine 

whether the true set of active variables {j:βj
∗ ≠ 0} matches the set of active variables for any 
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acceptable predictor A ∈ Λη, ε. This task is challenging: we do not assume knowledge of the 

active variables, so the true model only belongs to Λη,ε when it is both correctly identified 

along the λ path and correctly evaluated by DA, A′
out . Correct identification is only satisfied 

when all and only the true active variables {j:βj
∗ ≠ 0} are nonzero according to A.

For this task, we compute εmax(η) ≔ ℙℳ DA∗, Amin
out < η , which is the maximum probability 

level for which the true model A∗ is acceptable. The margin η corresponds to the percent 

increase in loss relative to Amin. By design, A∗ ∈ Λη, ε′, remains acceptable for any smaller 

probability level ε′ ≤ εmax(η). Most important, we set εmax(η) = 0 if A∗ is not on the λ 
path. For each simulated dataset, we compute εmax(η) for a grid of η% values. The results 

averaged across 100 simulations are in Figure 3. Naturally, εmax(η) uniformly increases with 

the sample size for each value of η. When η = 0, the average maximum probability levels 

are εmax(0) ∈{0.21, 0.39, 0.54} for n ∈{75, 100, 500}, respectively, which suggests that a 

cutoff of ε = 0.1 is capable of capturing the true model even when zero margin is allowed. 

Notably, εmax(η) does not converge to one as η increases for the smaller sample sizes n 

∈{75, 100}. The reason is simple: if A∗ is not discovered along the λ path, then εmax(η) = 

0 by definition—regardless of the choice of η. This result demonstrates the importance of 

the set of predictors under consideration A, which here is determined entirely by the selected 

variables in the glmnet solution path.

Next, we evaluate point predictions of ℎ(Y i
∗) and estimates of β* using root mean squared 

errors (RMSEs). The parametrized actions δλ and point predictions g(x; δλ) = x′δλ are 

computed for multiple choices of λ: the simplest acceptable predictor λ = λη,ε with 

η = 0 and ε = 0.1 (proposed(out)); the analogous choice of λ based on in-sample 
evaluations (proposed(in)); and the unpenalized linear action with λ = 0 (proposed(full)). 

For comparisons, we include the aforementioned adaptive lasso and projpred, the point 

predictions ℎi under model ℳ (h_bar; see Corollary 1), and the empirical functionals 

h(yi) (h(y)). The results are in Figure 4. In summary, clear improvements in targeted 

prediction are obtained by (i) fitting to ℎ(y i) (via ℎi) rather than h(yi), (ii) including covariate 

information, (iii) incorporating penalization or variable selection, and (iv) selecting the 

complexity λ based on out-of-sample criteria. The targeted actions A vastly outperform the 

model ℳ predictions—even though each A is based entirely on the predictive distribution 

from ℳ. Lastly, the accurate estimation of the linear coefficients is important: the estimates 

δλ describe the partial linear effects of each xj on targeted prediction of ℎ(y).

The supplementary material includes additional comparisons. Marginal variable selection 

is evaluated based on true positive and negative rates, with proposed(out) offering the 

best performance among these methods. Results for high dimensional data with p > 

n(n = 200, p = 500 and n = 100, p = 200) confirm the prediction and estimation 

advantages of the proposed approach. Sensitivity to ε ∈{0.05, 0.10, 0.20, 0.50} is also 

studied for prediction, estimation, and selection. Lastly, we evaluate the robustness in 

predictive accuracy among these methods. Specifically, we consider the setting in which 
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the distribution of the covariates differs significantly between the training and validation 

datasets. The parametrized actions offer superior targeted predictions, especially for small to 

moderate sample sizes.

5 Physical activity data analysis

We apply targeted prediction to study physical activity (PA) data from the National Health 

and Nutrition Examination Survey (NHANES). NHANES is a large survey conducted by 

the Centers for Disease Control to study the health and wellness of the U.S. population. 

We analyze data from the 2005-2006 cohort, which features minute-by-minute PA data 

measured by hip-worn accelerometers (see Figure 1). To date, the 2005-2006 cohort is 

the most recent publicly available NHANES PA data. These data are high-resolution and 

empirical measurements of PA, and offer an opportunity to study intraday activity profiles.

PA has been linked to all-cause mortality not only in total daily activity (Schmid et 

al., 2015) but also via other functionals that describe activity behaviors (Fishman et al., 

2016; Smirnova et al., 2019). Our goal is to construct targeted predictions that more 

accurately predict and explain the defining characteristics of PA. Specifically, we consider 

the following functionals ℎ(y) for intraday PA y = (y(τ1), …, y(τm))′ at times-of-day τ1,…, 

τm:

avg

∫ y(τ)d τ

tlac

∫ log{y(τ) + 1}d τ

sd

‖ y − ∫ y(τ)d τ ‖L2

sedentary

∫ I{y(τ) ≤ 100}d τ
max

maxτ y(τ)
argmax

arg maxτ y(τ)

where avg captures average daily activity, tlac is the total log activity count and measures 

moderate activity (Wolff-Hughes et al., 2018), sd targets the intraday variability in PA, 

sedentary computes the amount of time below a low activity threshold, max is the peak 

activity level, and argmax is the time of peak activity. In addition, we include a binary 

indicator of absolute inactivity during sleeping hours: zeros(1am−5am) ≔ I{y(τ) = 0 for all 

τ ∈[1am,5am]}. Individuals with zeros(1am-5am) = 1 likely removed the accelerometer 

during sleep in accordance with the NHANES instructions. Since we omit subjects with 

insufficient accelerometer wear time (< 10 hours), individuals with zeros(1am-5am) = 1 are 

active at other times of the day.

The PA data are accompanied by demographic variables (age, gender, body mass index 

(BMI), race, and education level), behavioral attributes (smoking status and alcohol 

consumption), self-reported comorbidity factors (diabetes, coronary heart disease (CHD), 

congestive heart failure, cancer, and stroke), and lab measurements (total cholesterol, HDL 

cholesterol, systolic blood pressure). Data pre-processing generally follows Leroux et al. 

(2019) using the R package rnhanesdata. We consider individuals aged 50-85 without 

mobility problems and without missing covariates. The continuous covariates are centered 

and scaled to sample standard deviation 0.5.

In accordance with the schematic in Figure 2, targeted predictive decision analysis begins 

with a Bayesian model ℳ. Since the PA data are intraday activity counts, we use a count-

Kowal Page 14

J Am Stat Assoc. Author manuscript; available in PMC 2023 February 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



valued functional regression model based on the simultaneous transformation and rounding 

(STAR) framework of Kowal and Canale (2020). STAR formalizes the popular approach of 

transforming count data prior to applying Gaussian models, but includes a latent rounding 
layer to produce a valid count-valued data-generating process. STAR models can capture 

zero-inflation, over- and under-dispersion, and boundedness or censoring, and provide a path 

for adapting continuous data models and algorithms to the count data setting.

For each individual, we aggregate PA across all available days (at least three and at most 

seven days per subject) in five-minute bins. Let yi,j and yi, jtot and denote the average and 

total PA, respectively, for subject i at time τj, where i = 1,…, n = 1012 and j = 1,…, m 
= 288. Total PA is count-valued and will serve as the input for the STAR model, while 

all subsequent functionals and predictive distributions use average PA. Model ℳ is the 

following:

yi, jtot = round(yi, j∗ ), zi, j∗ = transform(yi, j∗ ) (6)

zi, j∗ = b′(τj)θi + σϵϵi, ϵi ∼iid tv(0, 1) (7)

θi, ℓ = xi′αℓ + σγiγi, ℓ, γi, ℓ ∼iid N(0, 1) (8)

with αℓ, j ∼indep N(0, σαj
2 ) and σϵ−2, σγi

−2, σαj
−2 ∼iid Gamma(0.01, 0.01). In (6), round maps the latent 

continuous data yi, j
∗  to {0,1,…, ∞}, while transform maps yi, j

∗  to ℝ for continuous data 

modeling. We use round(t) = ⌊t⌋ for t > 0 and round(t) = 0 for t ≤ 0, so yi, j
tot = 0 whenever 

yi, j
∗ < 0, and set transform(t) = 2( t − 1) in the Box-Cox family. In the functional regression 

levels (7)-(8), b is a vector of spline basis functions with basis coefficients θi for subject 

i and aℓ is the vector of regression coefficients for each basis coefficient ℓ. The spline 

basis is reparametrized to orthogonalize b and diagonalize the prior variance of the basis 

coefficients, which justifies the assumption of independence across basis coefficients in (8). 

Heavy-tailed innovations (v = 3) are introduced to model large spikes in PA.

Posterior inference is conducted based on 5000 samples from a Gibbs sampler after 

discarding a burn-in of 5000 iterations; the algorithm is detailed in the supplementary 

material. Posterior predictive diagnostics (see the supplementary material) demonstrate 

adequacy of ℳ for the functionals of interest. These results are insensitive to v, but 

alternative choices of transform (e.g., logt) or b (e.g., wavelets) produce inferior results.

Targeted predictions for each functional were constructed using a linear action g(x; δ) = x′δ
with an adaptive ℓ1-penalty (see Example 2). Trees were also considered but were not 

competitive. The set of parametrized actions A is given by the path of λ values computed 

using glmnet in R (Friedman et al., 2010): we highlight the simplest acceptable action 

λ = λ0,0.1 (proposed(out)) and the unpenalized linear action λ = 0 (proposed(full)). For 

comparison, we fit an adaptive lasso to {xi, ℎ(yi)}i = 1
n  for each h. Squared error loss is used 
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for all but zeros(1am-5am) which uses cross-entropy. In the supplementary material, we 

consider quadratic effects for age and BMI and pairwise interactions for each of age and 

BMI with race, gender, the behavioral attributes, and the self-reported comorbidity factors.

The targeted predictions are evaluated out-of-sample using the approximations from Section 

3.3. For each functional h and complexity λ—which indexes the number of nonzero 

elements in δA —Figure 5 presents the percent increase in predictive and empirical loss 

relative to the best predictor Amin. The measures of vigorous PA (avg, sd, and max) produce 

nearly identical results, so we only include max here; avg and sd are in the supplement. The 

predictive expectations align closely with the empirical values, which suggests that model ℳ
is adequate for these predictive metrics.

For each functional, we obtain optimal or near-optimal predictions with only about 10 

covariates with better accuracy than the adaptive lasso. Many of the selected covariates are 

shared among functionals: age, BMI, gender, race, HDL cholesterol, and CHD are selected 

for all but argmax, while smoking status (avg, sd, max), diabetes (avg, sd, sedentary, max), 

and total cholesterol (tlac, sedentary) appear as well. The functionals measuring vigorous 

PA agree on the selected variables, including negative effects for diabetes and smoking. 

Most distinct is argmax: while Amin includes 11 covariates, the predictive uncertainty 

quantification from DA, Amin
out  indicates that linear predictors with as few as one covariate 

(race) are acceptable. These covariates are simply not linearly predictive of argmax: the 

difference between Amin and any other A ∈ A is less than 1%. Details on the selected 

covariates and the direction of the estimated effects are provided in the supplement.

Robustness to the choice of η is also illustrated in Figure 5. We select η = 0% for max and 

argmax and η = 1% for tlac and sedentary, which highlights the purpose of η: by allowing η 
> 0, we can obtain targeted predictors with fewer covariates. By comparison, increasing the 

margin to η = 1% for max and argmax does not change the smallest acceptable predictor.

To validate the approximations in Figure 5, we augment the analysis with a truly out-of-

sample prediction evaluation. For each of 20 training/validation splits, model ℳ and the 

adaptive lasso are fit to the training data and sparse linear actions are targeted to each h. We 

emphasize that this exercise is computationally intensive: the MCMC for model ℳ requires 

about 30 minutes per 10000 iterations (using R on a MacBook Pro, 2.8 GHz Intel Core 

i7), so repeating the model-fitting process 20 times is extremely slow. Comparatively, the 

approximations used for Figure 5 compute in under two seconds.

Point predictions were generated for the validation data using ℎ under ℳ (h_bar), 

the adaptive lasso, and sparse linear actions with λ = λ0,0.1 (proposed(out)), λ = 0 

(proposed(full)), and Amin. Since Amin is also the unique acceptable predictor when ε 
= 1, η = 0, it provides information about robustness to Ɛ and η. The point predictions 

under ℳ are highly inaccurate—and so excluded from Figure 6—and slow to compute: we 

draw y ∼ pℳ(y ∣ y) at each validation point x and then average ℎ(y) over these draws. The 

targeted actions simply evaluate g(x; δA) = x′δA, which is faster, simpler, less susceptible 
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to Monte Carlo error, and empirically more accurate. Predictions were evaluated on the 

empirical functionals h(yi) in the validation data using mean squared prediction error.

The results from the out-of-sample prediction exercise are in Figure 6. The smallest 

acceptable predictor proposed(out) performs almost identical to the best predictor Amin
despite using fewer covariates—which is precisely the goal of the acceptable predictor sets 

and the out-of-sample approximations in Figure 5. Both proposed(out) and proposed(full) 

outperform the adaptive lasso, in some cases by a large margin. The strength of this result is 

remarkable: the predictions are evaluated on the empirical functionals h(yi), which are used 

for training the adaptive lasso but not for the proposed methods. Instead, the parametrized 

actions are trained using ℎi—which is itself a poor out-of-sample predictor. However, the 

targeted actions only rely on the in-sample adequacy of ℎi and, unlike models trained to 

the empirical functionals, leverage both the model-based regularization and the uncertainty 

quantification provided by ℳ. In summary, the targeted predictors improve upon both the 

empirical predictor and the model-based predictor from which they were derived. Lastly, 

we note that the performance comparisons in Figure 6 confirm those in Figure 5, which 

validates the accuracy of the out-of-sample approximations from Section 3.3.

Since NHANES data are collected using a stratified multistage probability sampling design, 

it is natural to question the absence of survey weights from this analysis. Although it is 

straightforward to incorporate the survey weights into an aggregate loss function to mimic a 

design-based approach (e.g., Rao, 2011), the unweighted approach has its merits. By design, 

NHANES oversamples certain subpopulations to ensure representation in the dataset. So 

although our out-of-sample predictions are not evaluated on a representative sample of 

the U.S. population, they are evaluated on a carefully-curated sample that includes key 

demographic, income, and age groups within the U.S. population.

6 Discussion

Using predictive decision analysis, we constructed optimal, simple, and efficient predictions 

from Bayesian models. These predictions were targeted to specific functionals and 

provide new avenues for model summarization. Out-of-sample predictive evaluations were 

computed using fast approximation algorithms and accompanied by predictive uncertainty 

quantification. Simulation studies demonstrated the prediction, estimation, and model 

selection capabilities of the proposed approach. The methods were applied to a large 

physical activity dataset, for which we built a count-valued functional regression model. 

Using targeted prediction with sparse linear actions, we identified 10 covariates that provide 

near-optimal out-of-sample predictions for important and descriptive PA functionals, with 

substantial gains in accuracy over both Bayesian and non-Bayesian predictors.

A core attribute of the proposed approach is that only a single Bayesian model ℳ
is required. The model ℳ is used to construct, evaluate, and compare among targeted 

predictors for each functional h, and is the vessel for all subsequent uncertainty 

quantification. Although it is practically impossible for ℳ to be adequate for every 

functional, many well-designed models are capable of describing multiple functionals. We 
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only require that ℳ provides a sufficiently accurate predictive distribution for each ℎ(y), 
which is empirically verifiable through standard posterior predictive diagnostics (Gelman 

et al., 1996). When the predictive distribution of ℳ is intractable or computationally 

prohibitive, the proposed methods remain compatible with any approximation algorithm 

for pℳ{ℎ(y) ∣ y}.

Future work will establish uncertainty quantification for the optimal point prediction 

parameters δA. This task is nontrivial: frequentist uncertainty estimates for penalized 

regression are generally not valid, since the data have already been used to obtain the 

posterior (predictive) distribution under model ℳ. A promising alternative is to project the 

predictive targets ℎ(y) onto g(x; δ), which induces a predictive distribution for the resulting 

parameter δ. Similar posterior projections have proven useful for linear variable selection 

(Woody et al., 2020) with growing theoretical justification (Patra and Dunson, 2018).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Intraday physical activity (gray line) and fitted values (blue line) for two subjects under 

model ℳ in (6)-(8). The lines denote the empirical (solid gray) and predictive expected 

value (dashed blue) of avg (lower horizontal), max (upper horizontal), and argmax (vertical).
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Fig. 2. 

Given data {xi, yi}i = 1
n , a Bayesian model ℳ is constructed. For each functional ℎ(y) and 

using model ℳ, multiple parametrized actions A are optimized, evaluated, and compared. 

The optimal parameters δA are used to compute point predictions g(x; δA) of ℎ(y) at x.
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Fig. 3. 

The maximum probability level εmax(η) for which the true model is acceptable, A∗ ∈ Λη, ε, 

across values of η. For any smaller probability level ε′ ≤ εmax(A∗), the true model remains 

acceptable: A∗ ∈ Λη, ε′. The horizontal gray line is ε = 0.1.
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Fig. 4. 
RMSEs for the true functionals h(Y*) (left) and the true regression coefficients β* (right) 
for n = 100 (top) and n = 500 (bottom) across 100 simulated datasets. Non-overlapping 

notches indicate significant differences between medians. The parametrized actions with 

out-of-sample selection are most accurate for prediction and estimation.
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Fig. 5. 
Approximate out-of-sample squared error loss for sparse linear actions targeted to each 

functional. Results are presented for each size as a percent increase in loss relative to Amin. 

The predictive expectations (triangles) and 80% intervals (gray bars) are included with the 

empirical relative loss for each model size (x-marks) and the adaptive lasso (red lines). The 

horizontal black lines denote the choices of η and the vertical lines denote λη,0.1 (solid) and 

Amin (dashed).
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Fig. 6. 
Mean squared prediction error for each functional across 20 training/validation splits. 

Results are presented as a percent increase relative to Amin; values below zero (vertical line) 

indicate improvement over Amin. Non-overlapping notches indicate significant differences 

between medians. Point predictions from ℳ (h_bar) are noncompetitive and omitted. Both 

proposed(out) proposed(full) improve upon adaptive lasso and h_bar, while proposed(out) is 

most accurate and performs almost identical to Amin despite using fewer covariates.
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