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Abstract

Partly interval-censored data often occur in cancer clinical trials and have been analyzed as right-

censored data. Patients’ geographic information sometimes is also available and can be useful 

in testing treatment effects and predicting survivorship. We propose a Bayesian semiparametric 

method for analyzing partly interval-censored data with areal spatial information under the 

proportional hazards model. A simulation study is conducted to compare the performance of the 

proposed method with the main method currently available in the literature and the traditional Cox 

proportional hazards model for right-censored data. The method is illustrated through a leukemia 

survival data set and a dental health data set. The proposed method will be especially useful for 

analyzing progression-free survival in multi-regional cancer clinical trials.

Keywords

partly interval-censored data; spatial frailty; proportional hazards model; conditionally 
autoregressive prior; Bayesian semiparametric

1. Introduction

Partly interval-censored data often occur in medical and epidemiological studies that include 

periodic examinations. With partly interval-censored data, the event times are exactly 

observed for some subjects, while only known to be within certain time intervals for the 

rest. It is a combination of exact event times and general interval-censored (Huang and 

Wellner 1997; Bogaerts, Komárek, and Lesaffre 2017, p.5) event times; or equivalently, 

a combination of exact, left-censored, interval-censored, and right-censored event times. 

For instance, in cancer clinical trials, progression-free survival, defined as time from study 

entry to disease progression or death due to any cause, is actually partly interval-censored. 

Also disease-free survival, defined as the length of time a patient stays free of a disease 

or cancer after a particular treatment, is also partly interval-censored. Some of the main 

methodological publications for partly interval-censored data are Huang (1999), Kim (2003), 

Komárek and Lesaffre (2007), Zhao et al. (2008), Gao, Zeng, and Lin (2017), and Zhou and 

Hanson (2018).
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Depending on the type of geographic information available for each subject (geostatistical 

data vs. lattice data), the spatial dependency among them are commonly modeled in two 

ways: geostatistical models, when the exact geographic location (e.g. latitude and longitude) 

of the centroid of each area or of each subject is available; lattice models, when the 

adjacency of areas rather than any type of continuous distance metric is available (Banerjee, 

Wall, and Carlin 2003). For geostatistical data, the conventional model is a multivariate 

normal distribution whose variance-covariance matrix depends on the distances between 

locations through some function. For lattice data, which is the focus of this paper, the 

conventional model is the conditionally autoregressive (CAR) distribution which only uses 

the proximity information between areas, initially developed by Besag (1974). Some of the 

good references for CAR model are Besag (1974), Besag and Kooperberg (1995), Banerjee, 

Wall, and Carlin (2003), Carlin and Banerjee (2003), Hodges, Carlin, and Fan (2003), and 

Banerjee, Carlin, and Gelfand (2014).

Partly interval-censored data have been treated as right-censored data and analyzed with 

classic suvival analysis tools (e.g., Kaplan-Meier curve, log-rank test, and Cox proportional 

hazards model); and spatial dependency, if exists, is often ignored. Current literature for 

spatially correlated partly interval-censored data is very limited. The main method available 

is Zhou and Hanson (2018) who developed a unified approach that fits proportional hazards 

(PH), proportional odds, and accelerated failure time models to partly interval-censored 

and left-truncated spatial data. The R function that implements their method for partly 

interval-censored spatial data is survregbayes in the spBayesSurv package (Zhou, Hanson, 

and Zhang 2018).

The proposed method differs from Zhou and Hanson (2018) from the following 

perspectives: (1) The survregbayes function needs to obtain initial values either from its 

centering parametric frailty model by running an initial chain or from a parametric non-

frailty model by the survreg function in the survival package (Therneau et al. 2020). While 

the proposed method does not rely on another function, but just simply sets noninformative 

initial values; (2) The survregbayes function performs standardization (subtracting sample 

mean and dividing by sample standard deviation) for all covariates together. While the 

proposed method allows one to choose which covariates to standardize so as to improve the 

Markov chain Monte Carlo (MCMC) mixing. This provides flexibility as standardizing a 

binary covariate does not quite make sense.

The remainder of the paper is outlined as follows. Section 2 describes the proposed method 

including spline approximation, data augmentation, CAR model, and posterior computation. 

Section 3 presents a simulation study that evaluates the performance of the proposed method 

and compares it with Zhou and Hanson (2018) and coxph in the survival package. In 

Section 4, we apply the proposed method, Zhou and Hanson (2018), and coxph to the spatial 

leukemia survival data contained in the spBayesSurv package and the spatial dental health 

data in the bayesSurv package (Komárek 2020). Finally Section 5 provides conclusions and 

discussions.
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2. Statistical method

2.1. Data

Let there be i = 1, …, I spatial areas. In area i, suppose failure times are exactly known for 

the first ni1 subjects, denoted as Tij, j = 1, …, ni1. But failure times are only known to be 

within a time interval for the other ni − ni1 subjects, denoted as (Lij, Rij], j = ni1 + 1, …, ni. 

Here Lij can be 0 and Rij can be ∞. We assume that failure time and examination times are 

independent given covariates.

2.2. Model

The Cox proportional hazards model with spatial frailty for the jth subject in the ith area 

(denoted as subject [i, j]) is:

λ tij ∣ xij, ϕi = λ0 tij exp β′xij + ϕi , (1)

where λ0(·) is the baseline hazard function, β the p × 1 regression coefficient vector, xij the 

covariate vector, and ϕi the spatial frailty for area i.

For an exact observation, Tij is directly observed, and its likelihood function is

L1ij λ0( ⋅ ), β, ϕi = f tij ∣ xij = λ0 tij exp β′xij + ϕi exp
−Λ0 tij exp β′xij + ϕi , (2)

where Λ0(·) is the cumulative baseline hazard function.

For a general interval-censored observation, (Lij, Rij] is the observed time interval, and its 

likelihood function is

L2ij λ0( ⋅ ), β, ϕi
= F Rij ∣ xij

δ1ij F Rij ∣ xij − F Lij ∣ xij
δ2ij 1 − F Lij ∣ xij

δ3ij,
(3)

where F(·|x) is the cumulative distribution function given x and δ1, δ2, δ3 are the left-, 

interval-, and right-censoring indicators.

So the overall likelihood function is:

L λ0( ⋅ ), β, ϕi = ∏
i = 1

I
∏
j = 1

ni1
L1ij λ0( ⋅ ), β, , ϕi ∏

j = ni1 + 1

ni
L2ij λ0( ⋅ ), β, ϕi . (4)

2.3. Estimation of Λ0(t) and λ0(t)

Given that the cumulative baseline hazard function Λ0(t) is non-negative and non-

decreasing, we approximate it with a linear combination of a set of basis I-splines which are 

non-negative, non-decreasing, and range from 0 to 1 (Ramsay 1988). Specifically, we model 

Λ0(t) as
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Λ0(t) = ∑
l = 1

K
γlIl(t), (5)

where {γl} is a set of non-negative coefficients and {Il(t)} is a set of basis I-splines. 

The number of basis I-splines (K) equals the degree of each basis spline (1 = linear, 2 = 

quadratic, 3 = cubic, etc.) plus the number of interior knots.

For the baseline hazard function λ0(t), since it is the derivative of Λ0(t), we model it as

λ0(t) = ∑
l = 1

K
γlMl(t), (6)

where {Ml(t)} is a set of basis M-splines. We are able to do so because a basis I-spline 

is the integral of its corresponding basis M-spline by definition in Ramsay (1988), i.e., 

Il t = ∫0
tMl(s)ds.

2.4. Data augmentation

It would be difficult to draw MCMC samples from the posteriors derived directly based 

on the observed data likelihood (4). To facilitate posterior computation, we construct the 

following data augmentations in order to obtain more posterior distributions of standard 

forms.

2.4.1. Data augmentation 1—For the general interval-censored observations part, 

suppose {N(t): t > 0} is a non-homogeneous Poisson process with cumulative intensity 

function Λ0(t)exp(β′x + ϕ). Then T = inf{t: N(t) > 0}, time of the first occurrence in the 

Poisson process, follows our model in (1). Define two time points t1 < t2 wherein for left-

censoring, t1 = R; for interval-censoring, t1 = L and t2 = R; and for right-censoring, t2 = L. 

Then two latent variables Z = N(t1) and W = N(t2) − N(t1) are independent Poisson random 

variables. Furthermore, decompose Z and W respectively into K independent Poisson latent 

variables {Zl} and {Wl}. Then the augmented data likelihood for a general interval-censored 

subject [i, j] is as below. A similar but more detailed derivation can be found in Pan, Cai, and 

Wang (2020).

L2augij λ0( ⋅ ), β, ϕi ∣ Zijl′ s, W ijl′ s = ∏
l = 1

K
Poi Zijl Poi W ijl

δ2ij + δ3ij

× 1 Zij > 0 δ1ij 1 Zij = 0 1 W ij > 0 δ2ij 1 Zij = 0 1 W ij = 0 δ3ij .

2.4.2. Data augmentation 2—For the exact observations part, introduce latent variables 

uij = uij1, uij2, …, uijK  Multinomial  1; 1
K , 1

K , …, 1
K  so as to convert ∑l = 1

K γlMl(t) in (6) to 

K∏l = 1
K γlMl tij

uijl. This enables us to extract the portion involving γl directly in its 

posterior computation.
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2.5. CAR model

For the spatial frailty ϕi, we assume a conditionally autoregressive (CAR) prior (Besag 

1974):

ϕi ∣ ϕj: j ≠ i N ∑
j

wijϕj/wi + , 1
τwi +

, i = 1, …, I, (7)

where wij = 1 if areas i and j are neighbors, 0 otherwise, and wii = 0.wi + = ∑jwij is the 

number of neighbors of area i. τ is the spatial precision parameter.

Then by Brook’s Lemma (Brook 1964), the joint distribution of ϕ = (ϕ1, …, ϕI)′ is:

p ϕ1, …, ϕI ∝ exp − τ
2ϕ′ Dw − W ϕ , (8)

where W is the adjacency matrix with elements (W)ij = wij and Dw is a diagonal matrix with 

diagonals (Dw)ii = wi+.

Note that (Dw − W)1 = 0, so Dw − W is singular. Theoretically, the impropriety in (8) can 

be remedied by either adding a sum-to-zero constraint ∑iϕi = 0 or replacing Dw − W with 

nonsingular Dw − ρW, where ρ ∈ (0, 1) (Gelfand and Vounatsou 2013; Banerjee, Carlin, and 

Gelfand 2014, p.81). However, a consequential spatial correlation still requires ρ to be close 

to 1 (Besag and Kooperberg 1995; Banerjee, Carlin, and Gelfand 2014, p.82), so normally 

we would employ the improper prior with the sum-to-zero constraint.

To include the spatial precision parameter τ in the Bayesian analysis, we need to 

multiple the kernel in (8) by τκ for some κ. Hodges, Carlin, and Fan (2003) derived 

κ =
rank Dw − W

2 = I − g
2  where g is the number of disconnected groups of areas. The more 

complete prior for ϕ thus becomes p(ϕ) ∝ τ
I − g

2 exp − τ
2ϕ′ Dw − W ϕ . For a map where all 

areas are connected, we have g = 1.

2.6. Posterior computation

For spline coefficients, an Exponential prior γl ~ Exp(η) and a Gamma hyperprior η ~ 

Ga(aη, bη) are assumed. This leads to conjugate posteriors for both γl and η. For βr of a 

numeric covariate, a Normal prior N 0, σ0
2  is assumed. The corresponding posterior is not 

conjugate and the Metropolis-Hastings algorithm (Hastings 1970) is used for sampling from 

the posterior. For a categorical covariate with c levels, we denote it using c − 1 dummy 

variables and sample the exponentiated parameter ζr = exp(βr) for each dummy variable. A 

Gamma prior ζr ~ Ga(aζ, bζ) delivers a conjugate posterior. Then we transform ζr back to 

βr. For spatial frailties ϕi, the CAR prior in (7) is assumed. The posterior is not conjugate 

and the Metropolis-Hastings algorithm is used. For spatial precision parameter, a Gamma 

prior τ ~ Ga(aτ, bτ) with mean 
aτ
bτ

 and variance 
aτ
bτ2

 also leads to a conjugate posterior.
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For detailed posterior formulations, please refer to Appendix.

3. A simulation study

We evaluate the performance of the proposed method through a simulation study. We fit the 

proposed method, Zhou and Hanson (2018) method with the survregbayes function in the 

spBayesSurv package, and the traditional Cox PH model for right-censored data with the 

coxph function in the survival package. For coxph, we convert the partly interval-censored 

data to right-censored data as conventionally done by practitioners, i.e. take right endpoints 

of finite time intervals (left-censored and interval-censored observations) as the observed 

event times. The purpose is to see how the conventional approach can introduce bias in the 

estimation of fixed effects and survival function.

A total of 100 data sets are generated. The spatial layout is based on the 46 counties in 

South Carolina, with ni = 20 subjects within each county. For each data set, failure times are 

generated from a PH model with spatial frailty:

S t ∣ xij1, xij2, ϕi = exp −Λ0(t)exp β1xij1 + β2xij2 + ϕi ,

where Λ0(t) = log(1 + t), β1 = β2 = 1, xij1’s ~ Bernoulli(0.5), and xij2’s ~ N(0, 0.52). The 

spatial precision parameter τ is set to be 4. The number of medical examinations performed 

for each person is generated from Poi(2) + 1. The gap times between adjacent examinations 

are generated from Exp(1). The observed intervals are the ones that contain the true failure 

times. In each data set, there are N = 920 subjects, around 20% of which are set to have 

exact event times observed.

We set the degree of basis I-splines as 2 and choose knots = (0, 2, 6, max(L, R, T)+1), 

where L, R, and T are observed timepoints. For hyperparameters, we set σ0
2 = 1, aη = bη = 

1, aζ = bζ = 1, and aτ = bτ = 0.1. Fast convergence and good mixing were observed for 

all key parameters. For fair comparison, we set aτ = bτ = 0.1 in survregbayes too. Other 

hyperparameters in survregbayes are set to their default values. For each MCMC chain of 

both methods, we set total number of iterations = 6,000, burn-in = 1,000, and thin = 1.

Table 1 summarizes the simulation results. For each parameter, the point estimate is the 

average of the 100 posterior means, SSD is the sample standard deviation of the 100 

posterior means, ESE is the average of the 100 empirical standard errors, 95CP is the 

coverage probability of the 100 95% credible intervals, and ESS is the effective sample 

size computed using the coda package (Plummer et al. 2019). Two model selection criteria 

are considered: log psuedo marginal likelihood (LPML) (Geisser and Eddy 1979; Dey, 

Chen, and Chang 1997) and deviance information criterion (DIC) (Spiegelhalter et al. 

2002, 2014). LPML is the sum of log conditional predictive ordinates and measures model 

cross-validation predictive performance and DIC equals posterior mean of deviance plus 

model effective number of parameters. Smaller absolute values of LPML and DIC indicate 

better model fit.
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As seen in Table 1, both the proposed method and survregbayes provide very good 

estimation for the regression coefficients, with small bias, sample standard deviation close to 

empirical standard error, and coverage probability close to nominal level. The overall model 

goodness-of-fits are similar too as indicated by the model selection criteria: LPML and DIC. 

The coxph function performs badly with large bias, coverage probability close to 0, and very 

small log-likelihood.

Figure 1 presents the true baseline survival function S0(t) versus the ones estimated using the 

proposed method, survregbayes, and coxph, averaged over the 100 simulated data sets. Both 

the proposed method and survregbayes provide very close approximations. However, the one 

from coxph differs from the true curve significantly.

To study the sensitivity of the model to the prior of τ, we further try the other two more 

informative priors: Ga(1, 1) and Ga(4, 4). The prior mean is kept as 1 but the prior 

variance decreases from 10 to 1 and 0.25 respectively. We find that the estimation for 

regression coefficients, baseline survival, and model fitting criteria remain virtually the 

same. However, the point estimate, sample standard deviation, empirical standard error, 

and coverage probability for τ itself change greatly. Especially, the coverage probability 

decreases from 0.95 to 0.81 for Ga(1, 1) and 0 for Ga(4, 4). This observation also holds 

true for the survregbayes function. The potential reason might be that Gamma priors are 

hyperpriors for τ, resulting in that τ updates do not directly use the data information. 

The sensitivity analysis confirms the robustness of the proposed method and informs our 

recommendation of using a noninformative prior for τ. Similarly, Hodges, Carlin, and Fan 

(2003) also tried priors τ ~ Ga(0.001, 0.001) and Ga(0.1, 0.1) for a periodontal data and 

noticed great differences in the estimation for τ. It is also of interest to note that Banerjee, 

Carlin, and Gelfand (2014, p.82) have pointed out that the magnitude of τ should not be 

viewed as quantifying the strength of spatial association. The reason is that if all ϕi’s are 

multiplied by a constant a, then τ becomes τ
a  but the strength of spatial association stays the 

same.

4. Leukemia survival data

We apply the proposed method, survregbayes, and coxph to a data set maintained by the 

North West Leukemia Register in the UK on the survival of N = 1,043 acute myeloid 

leukemia patients where patients’ district information is available (Henderson, Shimakura, 

and Gorst 2002). The purpose of the analysis is to examine possible spatial variation in 

survival after accounting for known subject-specific prognostic factors. The data set contains 

observed survival time, censoring indicator, and four covariates: age, white blood cell count 

at diagnosis (wbc), Townsend deprivation index (tdi) for which higher values indicate more 

deprived areas, and sex (0 = F, 1 = M). The data set is actually right-censored with around 

16% cases censored. There are 24 administrative districts.

Table 2 presents the estimation results. We choose the degree of basis I-splines as 2 

and knots = (0, 1000, 3000, 5000). The hyperparameter values are the same as in the 

simulation study. We standardize the continuous covariates age, wbc, and tdi for the 

proposed method as it noticeably improves MCMC mixing. The regression coefficient 
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estimation results from all three methods are quite similar. We can see that age, wbc, and 

tdi all have significant effects on survival in patients. The proposed method has higher 

ESS for regression coefficients and lower ESS for spatial precision parameter, compared to 

survregbayes. This is because the auto-correlation in the MCMC chains has been reduced 

and hence the efficiency of MCMC sampling improved after standardization.

We also estimate the survival functions for female patients with wbc = 38.59, tdi = 0.3398, 

and age = 49, 65, and 74 as in Zhou, Hanson, and Zhang (2020). As seen in Figure 2, the 

three methods result in similar estimated survival curves for all of the three age groups.

To explore the residual spatial pattern, the posterior means of spatial frailty ϕi’s for the 24 

districts from the proposed method and survregbayes are mapped (Figure 3). The spatial 

patterns detected by the two methods are the same. There are noticeable spatial patterns 

after accounting for the diagnostic factors age, wbc, tdi, and sex. For instance, the top north 

district shows a higher than average risk of dying from the disease, and the six districts 

below it show lower than average risks.

For this data, coxph performs well for both fixed effects estimation and survival curve 

estimation, the reason is because the data itself is right-censored and we suspect the spatial 

variation is less strong here as the districts are small local authority units. This similarity in 

results on the other hand verifies that the proposed method and survregbayes perform well 

for right-censored data, even though they are designed for spatial partly interval-censored 

data.

As in the simulation study, besides Ga(0.1, 0.1), we try the other two priors for τ: Ga(1, 1) 

and Ga(4, 4), and observe the same phenomenon. The estimation for fixed effects, survival 

curves, and LPML and DIC are unaffected while the estimation for τ varies significantly 

with the prior. For example, the point estimate for τ changes from 7.71 for Ga(0.1, 0.1) to 

3.86 for Ga(1, 1) and 2.17 for Ga(4, 4).

5. Dental health data

The Signal Tandmobiel study is a longitudinal dental study conducted in North Belgium on 

4, 468 first-year school children born in 1989. Each child was examined annually by one of 

16 trained dentists from age 7 to age 12 (i.e. from year 1996 to year 2001). The tandmob2 

data set in the bayesSurv package contains interval-censored emergence time and caries 

time of each permanent tooth, some baseline covariates, and residential provinces for N = 

4,430 children of the study (38 sampled children did not come to any of the designed dental 

examinations). We pick Tooth 16 (the permanent first molar in the upper right quadrant) and 

investigate how its caries time (T = age when caries appear) can be affected by STARTBR 

(the starting age of teeth brushing) and T55.DMF (1 if Tooth 55 was decayed or missing 

due to caries or filled, 0 if not). Tooth 55 is the deciduous second molar in the upper right 

quadrant. It sheds around age 10–12 and Tooth 16 emerges next to Tooth 55 around age 6–7. 

We include Tooth 55 to see if a permanent first molar’s condition would be affected by the 

deciduous molar next to it. Since the data set contains the five provinces in North Belgium: 
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Antwerpen, Limburg, Oost-Vlaanderen, Vlaams Brabant, and West-Vlaanderen, we are able 

to treat the children as clustered by their residential provinces.

We fit the proposed model, survregbayes, and coxph (Table 3). The estimation results for 

the fixed effects are similar. Both starting age of teeth brushing and condition of Tooth 55 

significantly affect the caries time of the permanent first molar Tooth 16. Interestingly, the 

log-likelihood from coxph is much smaller. This indicates the existence of spatial pattern, 

and the inclusion of spatial frailty has improved model fitting by accounting for a significant 

amount of unexplained variation in the failure time.

Figure 4 presents the survival curves for children who start brushing at age 4 and without 

caries in Tooth 55 versus with caries. We can see that a permanent first molar can have 

caries as early as around age 6–7, i.e. right after it erupts. If next to a decayed primary 

molar, Tooth 16 is obviously more likely to have caries. Also the estimated survival curves 

from coxph are somewhat different from the curves estimated by the proposed method and 

survregbayes.

The estimated spatial frailty ϕi’s from the proposed method and survregbayes are plotted 

in Figure 5. The two methods detect the same spatial patterns. As we can see, children 

in Limburg have a significantly higher risk of cavities while children in West-Vlaanderen 

have a significantly lower risk, given the same teeth brushing age and primary second molar 

condition.

Again we try different priors for τ: Ga(0.1, 0.1), Ga(1, 1) and Ga(4, 4). The corresponding 

point estimates for τ are 11.64, 2.66, and 1.46, while the estimation for fix effects, survival 

curves, and LPML and DIC do not change.

6. Conclusions

There has been exciting development for survival models with spatial frailty which mainly 

focused on right-censored data and later with additions for general interval-censored data 

during the past 20 years. Partly interval-censored data have received limited attention, 

even though they occur as often as general interval-censored data, for instance, progression-

free survival and disease-free survival which are important endpoints in clinical trials. 

There might be unexplained heterogeneity in the data, after accounting for certain risk 

factors (fixed effects). With geographic information recorded for patients/subjects, the 

inclusion of spatial frailty can (1) improve model fitting by acting as a surrogate of 

unmeasured characteristics that vary by region (e.g. socioeconomic status, health care 

quality, environmental exposure); (2) improve the precision of inference for fixed effects 

by reducing random error; (3) identify spatial pattern that can inform us of differences in 

clinical practice among medical centers or inform further epidemiological studies.

Our simulation and real data analysis show that the proposed method performs comparably 

well as Zhou and Hanson (2018) for the fixed effects and survival curve estimation. 

Both methods significantly outperform the conventional approach when the data are partly 

interval-censored and with spatial dependency. This gives us the motivation to consider these 

new methods when analyzing progression-free survival from cancer clinical trials which 
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are commonly conducted in multiple regions (e.g., states, nations). The inclusion of spatial 

frailty is especially important when the regions differ greatly while there are no predictors in 

the data to account for such differences.
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Appendix

After initializing values for the parameters, the proposed MCMC algorithm proceeds in the 

following steps.

i. Let Zij = 0 and Wij = 0 for all i and j, Zijl = 0 and Wijl = 0 for all i, j, and l. If δ1ij 

= 1, then sample

Zij Poi(Λ0(Rij)eβ′xij + ϕi)1(Zij > 0),

(Zij1, …, ZijK) Multinomial(Zij; γ1I1(Rij), …, γKIK(Rij)) .

If δ2ij = 1, then sample

W ij Poi({Λ0(Rij) − Λ0(Lij)}eβ′xij + ϕi)1(W ij > 0),

W ij1, …, W ijK Multinomial W ij; γ1 I1 Rij − I1 Lij , …, γK IK Rij − IK Lij .

ii. Sample (uij1, …, uijK) ~ Multinomial(1; γ1M1(tij), …, γKMK(tij)).

iii. For βr corresponding to a numeric covariate, use the Metropolis-Hastings 

algorithm to sample from its full conditional distribution

p βr ∣ Zij′ s, W ij′ s) ∝ exp[ ∑
i = 1

I
∑

j = 1

ni1
{xijrβr − Λ0(tij)eβ′xij + ϕi}

+ ∑
i = 1

I
∑

j = ni1 + 1

ni
{xijrβr(Zijδ1ij + W ijδ2ij) − eβ′xij + ϕi(Λ0(Rij)(δ1ij + δ2ij) + Λ0(Lij)δ3ij)}

]e−
βr2

2σ0
2 .
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iv. For βr corresponding to a binary covariate, let ζr = exp(βr), sample ζr from

Ga(aζ + ∑
i = 1

I
∑

j = 1

ni1
xijr + ∑

i = 1

I
∑

j = ni1 + 1

ni
xijr Zijδ1ij + W ijδ2ij ,

bζ + ∑
i = 1

I
∑

j = 1

ni1
Λ0 tij eβ−r′ xij, − r + ϕixijr + ∑

i = 1

I
∑

j = ni1 + 1

ni
eβ−r′ xij, − r + ϕi

Λ0 Rij δ1ij + δ2ij + Λ0 Lij δ3ij xijr),

where β−r = {βk : k ≠ r} and xij,−r = {xijk : k ≠ r}.

v. Sample γl, l = 1, …, K, from

Ga(1 + ∑
i = 1

I
∑

j = 1

ni1
uijl + ∑

i = 1

I
∑

j = ni1 + 1

ni
Zijlδ1ij + W ijlδ2ij ,

η + ∑
i = 1

I
∑

j = 1

ni1
eβ′xij + ϕiIl tij + ∑

i = 1

I
∑

j = ni1 + 1

ni
eβ′xij + ϕi Il Rij δ1ij + δ2ij + Il Lij δ3ij

) .

vi. Sample η from Ga aη + K, bη + ∑l = 1
K γl .

vii. Sample ϕi, i = 1, …, I, using the Metropolis-Hastings algorithm from its full 

conditional distribution

p ϕi ∣ Zij′ s, W ij′ s, θ, ϕ−i ∝ exp[ ∑
j = 1

ni1
β′xij + ϕi − ∑

j = 1

ni1
Λ0 tij eβ′xij + ϕi]

exp[ ∑
j = ni1 + 1

ni
ϕi Zijδ1ij + W ijδ2ij − ∑

j = ni1 + 1

ni
eβ′xij + ϕi

Λ0 Rij δ1ij + δ2ij + Λ0 Lij δ3ij ]

exp(−
wi + τ

2 (ϕi − ∑
j

wijϕj/wi + )2) .
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viii. Sample τ from Ga aτ + I − g
2 , bτ + 1

2ϕ′ Dw − W ϕ .
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Figure 1: 
Simulation - Plot of estimated S0(t) based on 100 simulated data sets using the proposed 

method, survregbayes, and coxph, compared to true S0(t) curve.
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Figure 2: 
Acute myeloid leukemia data - Estimated survival curves using the proposed method, 

survregbayes, and coxph for female patients with wbc = 38.59, tdi = 0.3398, and age = 

49, 65, 74.

Pan and Cai Page 15

Commun Stat Simul Comput. Author manuscript; available in PMC 2023 February 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: 
Maps of the posterior means of spatial frailty ϕi’s over the 24 districts in north west UK 

based on the proposed method and survregbayes.
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Figure 4: 
Signal Tandmobiel data - Estimated survival curves using the proposed method, 

survregbayes, and coxph for children with STARTBR = 4 and T55.DMF = 0, 1.
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Figure 5: 
Maps of the posterior means of spatial frailty ϕi’s over the five provinces in North Belgium 

based on the proposed method and survregbayes.
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Table 1:

Simulation - Estimation of regression coefficients, ESS, LPML, and DIC based on the proposed method, 

survregbayes, and coxph.

R function True Estimate SSD ESE 95CP ESS LPML DIC

Proposed method β1 = 1 1.021 0.088 0.094 0.97 254 −683 1364

β2 = 1 1.020 0.087 0.090 0.96 380

τ = 4 4.733 2.515 2.550 0.95 161

survregbayes β1 = 1 1.014 0.089 0.094 0.96 427 −682 1362

β2 = 1 1.018 0.091 0.089 0.94 208

τ = 4 4.862 2.376 2.591 0.98 266

coxph β1 = 1 0.636 0.065 0.076 0.00 −4068

β2 = 1 0.672 0.074 0.078 0.01
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Table 2:

Acute myeloid leukemia data - Estimation of regression coefficients, ESS, LPML, and DIC based on the 

proposed method, survregbayes, and coxph.

R function Estimate SE 95% CI ESS LPML DIC

Proposed method age 0.0349 0.0022 (0.0306, 0.0394) 808 −6020 12030

wbc 0.0035 0.0005 (0.0025, 0.0043) 752

tpi 0.0342 0.0103 (0.0140, 0.0544) 454

sex 0.0718 0.0704 (−0.0670, 0.2096) 1460

τ 7.7090 4.1733 (2.5611, 17.9981) 368

survregbayes age 0.0315 0.0021 (0.0274, 0.0357) 343 −5945 11886

wbc 0.0031 0.0005 (0.0023, 0.0040) 300

tpi 0.0297 0.0091 (0.0125, 0.0477) 365

sex 0.0680 0.0674 (−0.0726, 0.1949) 311

τ 10.3457 5.7867 (3.2822, 25.4528) 539

coxph age 0.0296 0.0021 (0.0255, 0.0338) −5326

wbc 0.0031 0.0004 (0.0022, 0.0039)

tpi 0.0293 0.0090 (0.0116, 0.0470)

sex 0.0522 0.0678 (−0.0807, 0.1850)
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Table 3:

Signal Tandmobiel data - Estimation of regression coefficients, ESS, LPML, and DIC based on the proposed 

method, survregbayes, and coxph.

R function Estimate SE 95% CI ESS LPML DIC

Proposed method STARTBR 0.1109 0.0326 (0.0473, 0.1741) 112 −3375 6751

T55.DMF 1.0128 0.0745 (0.8685, 1.1602) 870

τ 11.5778 8.4667 (1.3079, 32.7055) 2944

survregbayes STARTBR 0.1243 0.0286 (0.0655, 0.1776) 70 −3382 6763

T55.DMF 1.0490 0.0713 (0.9155, 1.1992) 272

τ 11.6408 8.8068 (1.3688, 34.8549) 4565

coxph STARTBR 0.1179 0.0295 (0.0601, 0.1756) −6990

T55.DMF 1.0504 0.0722 (0.9088, 1.1919)
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