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Abstract 
Flexible high-definition white-light endoscopy is the current gold standard in screening for cancer and its precursor lesions in the gastroin-
testinal tract. However, miss rates are high, especially in populations at high risk for developing gastrointestinal cancer (e.g., inflammatory 
bowel disease, Lynch syndrome, or Barrett’s esophagus) where lesions tend to be flat and subtle. Fluorescence molecular endoscopy 
(FME) enables intraluminal visualization of (pre)malignant lesions based on specific biomolecular features rather than morphology by 
using fluorescently labeled molecular probes that bind to specific molecular targets. This strategy has the potential to serve as a valuable 
tool for the clinician to improve endoscopic lesion detection and real-time clinical decision-making. This narrative review presents an 
overview of recent advances in FME, focusing on probe development, techniques, and clinical evidence. Future perspectives will also 
be addressed, such as the use of FME in patient stratification for targeted therapies and potential alliances with artificial intelligence.

Key Messages 
• Fluorescence molecular endoscopy is a relatively new technology that enables safe and real-time endoscopic lesion visuali-
zation based on specific molecular features rather than on morphology, thereby adding a layer of information to endoscopy, 
like in PET-CT imaging.
• Recently the transition from preclinical to clinical studies has been made, with promising results regarding enhancing detection 
of flat and subtle lesions in the colon and esophagus. However, clinical evidence needs to be strengthened by larger patient studies 
with stratified study designs.
• In the future fluorescence molecular endoscopy could serve as a valuable tool in clinical workflows to improve detection 
in high-risk populations like patients with Barrett’s esophagus, Lynch syndrome, and inflammatory bowel syndrome, where 
flat and subtle lesions tend to be malignant up to five times more often.
• Fluorescence molecular endoscopy has the potential to assess therapy responsiveness in vivo for targeted therapies, thereby 
playing a role in personalizing medicine.
• To further reduce high miss rates due to human and technical factors, joint application of artificial intelligence and fluo-
rescence molecular endoscopy are likely to generate added value.
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Introduction

Every year around 3.6 million people worldwide are diagnosed 
with cancer of the upper or lower gastrointestinal (GI) tract, 
resulting in nearly 2.2 million deaths annually [1]. Early detec-
tion of (pre)malignant conditions is key to improving patient 
prognosis. Most GI cancers are preceded by slowly progress-
ing precancerous dysplastic conditions, providing a window for 
effective intervention [2]. Intraluminal high-definition white-
light endoscopy (WLE) with flexible endoscopes is the gold 
standard in the screening and surveillance of cancer in the GI 
tract. WLE focuses on detecting morphological features of (pre)
malignant lesions; the diagnosis is subsequently confirmed by 
pathological analysis of obtained tissue biopsies. However, the 
miss rate of this approach remains high, especially with sub-
tle premalignant lesions in high-risk patients. The miss rate of 
dysplastic epithelium in Barrett’s esophagus is reported to be 
25% and miss rates as high as 28% are reported for (pre)malig-
nant lesions in the lower GI tract in high-risk populations such 
as patients with inflammatory bowel disease (IBD) or Lynch 
syndrome [3–7]. In these patients, mucosal inflammation and 
metaplasia hamper the detection of small, flat, and subtle dys-
plastic lesions which tend to be malignant up to five times more 
often than the more common polypoid lesions [8, 9].

Considerable effort has been dedicated to the develop-
ment of new imaging techniques to overcome this problem. 
Improving visualization of lesions based on their molecu-
lar features rather than morphology alone might aid in the 
early detection of lesions that are visually occult in white 
light. This technique is applied in fluorescence molecular 
imaging, which uses fluorescently labeled probes that bind to 
specific molecular structures or receptors expressed by (pre)
malignant lesions and are made visible with dedicated light 
sources and camera systems. Incorporating this technique 
into flexible gastrointestinal endoscopy systems resulted in 
fluorescence molecular endoscopy (FME). In the last decade, 
research in the field has transitioned from preclinical to clini-
cal studies, with promising results. Several early phase stud-
ies support FME as a successful way to detect (pre)malignant 
lesions, even before notable morphological changes appear 
[10–13]. Could this imaging strategy that highlights the 
undetectable be the solution to the current high miss rates?

In this narrative review, we will discuss the current status 
of FME in flexible gastrointestinal endoscopy (i.e., esoph-
agogastroduodenoscopy and colonoscopy). We review cur-
rent strategies including the selection of suitable molecular 
probes and available techniques and describe how they can 
be refined. We discuss the landmark clinical evidence, its 
gaps, and how these should be translated to clinical use. 
Finally, we address potential future applications of this 
promising diagnostic field, such as patient stratification for 
targeted therapies.

References for this review were identified by searching 
PubMed using the search terms “fluorescence,” “near-infra-
red fluorescence,” “optical imaging,” “molecular imaging,” 
“fluorescence molecular endoscopy,” “fluorescent tracer,” 
and “targeted fluorescent tracer.” Additionally, ClinicalTri-
als.gov and the Netherlands Trial Register were searched for 
ongoing clinical trials. References published on or before 
Sept 15, 2021 were considered. Articles were also identified 
through searches of the author’s files. Only papers published 
in the English language were reviewed. The final reference 
list was generated based on relevance to the broad scope of 
this Review.

Molecular Probes Fit for Fluorescence 
Molecular Endoscopy

Before the development of targeted probes, fluorescence 
studies were predominantly performed with non-targeted 
tracers like the fluorescent probe Indocyanine Green 
(ICG). The mechanism of these tracers relies largely on 
the enhanced permeability and retention (EPR) effect, by 
which large-sized molecules or molecule-protein complexes 
accumulate in tumors due to their increased vascular perme-
ability [14, 15]. Other probes like the heme precursor 5-ami-
nolevulinic acid (5-ALA) rely on enhanced metabolism and 
accumulation of its fluorescent metabolite protoporphyrin 
IX in malignant tissue [16]. Selective uptake of 5-ALA by 
transporters also seems to play a role in the tumor environ-
ment; as a result this probe is already more target specific 
than tracers like ICG [17]. However, because inflammatory 
cells can manifest these same features as malignant cells, 
both 5-ALA and tracers relying on the EPR effect are not 
highly specific [18, 19]. Another strategy thoroughly stud-
ied in colonoscopy is autofluorescence imaging. It is based 
on the principle that endogenous tissue fluorophores such 
as collagen and hemoglobin emit fluorescent signals when 
subjected to light of a specific wavelength, and therefore 
are label free. Nevertheless, this method seems to have no 
major additional value for polyp detection and therefore has 
no place in current endoscopy guidelines [20–22]. Aiming to 
improve upon these preceding strategies, more recently fluo-
rescent studies have used targeted probes that bind to spe-
cific molecular characteristics of (pre)cancerous lesions, the 
specific microenvironment or biological processes. Probe-
to-target binding that is strong and highly specific increases 
target visualization by enhancing the contrast. However, 
implementing fluorescent molecular probes is challeng-
ing and requires multidisciplinary teams and standardized 
procedures for the integration of clinical workflows in GI 
endoscopy. We will review these topics in the following 
paragraphs.
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Target and Probe Selection

Strong fluorescence signal in the (pre)malignant target area 
compared to the surrounding healthy tissue increases the 
target-to-background or tumor-to-background ratio (TBR) 
and enhances visualization of the lesion. This enables 
taking image-guided biopsies, which will direct clinical 
decision-making in terms of whether resection of a lesion 
is required, or other therapies are needed if the agent binds 
to specific target tissue or lesions of interest. A target for 
molecular detection should therefore comply with one or 
more of the following relevant features: (1) it is overex-
pressed in dysplastic or malignant cells, (2) it is minimally 
expressed in benign or inflamed tissue surrounding the tar-
get area, (3) it is upregulated in tumor-associated cells or 
structures, or (4) it is activated by the microenvironment 
specifically belonging to the target area [23, 24]. When 
FME is used following tumor treatment, such as (neoadju-
vant) chemoradiotherapy, it is important to be aware that 
these treatments might affect expression of the target or 
the surrounding tissue [25, 26]. Examples of targets used 
in FME are epidermal growth factor receptor (EGFR, over-
expressed in colorectal cancer) and vascular endothelial 
growth factor A (VEGFA, present in early stages of colo-
rectal neoplasms and Barrett’s dysplasia) [13, 23].

Selecting the appropriate molecular probe is of equal 
importance to target selection. Every probe has its own 
pharmacodynamic and pharmacokinetic profile, which 
affects biodistribution and tumor penetration. The half-life 
of probes generally correlates with their molecular size: 
the smaller the molecular size of the probe, the faster its 
distribution and accumulation in the targeted area and clear-
ance from the body. In order of size, the most well-known 
available molecular probes investigated (pre)clinically are 
antibodies, antibody fragments, nanobodies, small mol-
ecules, and peptides. The dose-to-imaging interval needs 
to be well-balanced for each probe, because any circulating 
unbound probe may cause unwanted background fluores-
cence [27]. A probe with a longer dose-to-imaging inter-
val, like antibodies, might be a disadvantage in the clini-
cal workflow of endoscopic procedures. This is because an 
additional patient visit needs to be scheduled up to 3 days 
before the endoscopy for an intravenous administration 
of the imaging agent. Smaller probes like peptides have 
remarkably shorter dose-to-imaging intervals; however, 
developing such specific peptides is a complex process. It 
requires methods such as phage display, where the precise 
binding sites are often unknown [28]. General properties, 
advantages, and disadvantages of probe categories are sum-
marized in Table 1. This table lists examples of probes and 
targets currently investigated in gastrointestinal FME, but 
also probes tested in abdominal fluorescence-guided sur-
gery studies. FME has benefited from the pharmacological, 

safety, and imaging results obtained in these studies. For 
example, certain surgical studies discovered that using frag-
mented antibodies as a probe leads to faster distribution 
without losing specificity [36, 37]. These findings could 
be eligible for FME translation and should be studied more 
in-depth.

Route of Administration and Feasibility

It is relevant to consider the pharmacological and opti-
cal properties of individual targets and probes. For some 
probes, the previously mentioned disadvantages regarding 
distribution and clearance can potentially be overcome by 
direct topical application of the probe instead of intrave-
nous administration [13, 39]. The probe is sprayed on the 
luminal surface of the entire colon or esophagus during 
the endoscopy and the unbound residue is rinsed off with 
water after a few minutes. This method no longer requires 
the additional patient visit and bypasses several other 
logistical challenges (e.g., clinical staff available for drug 
administration and room for the patient). Moreover, topi-
cal administration leads to lower systemic concentrations 
of the probe, reducing the risk of unwanted side effects 
and allergic reactions.

There are certain limitations to topical administration, 
as it requires spraying the entire surface to enable thor-
ough examination. The limited size and relatively clean 
mucosal surface of the esophagus facilitate complete 
coverage; however, larger volumes of spray are needed 
for the larger colon. Prior to a colonoscopy, patients 
need to “clean” their colon thoroughly using laxatives, 
since fecal remnants and physiologically present mucus 
can impair mucosal coverage. Systemic administration, 
on the other hand, ensures a more even distribution of 
the probe throughout the tissue and allows the tracer to 
penetrate deeper, which may also display submucosal 
lesions. Furthermore, dosing is easier to standardize. 
Lastly, while the additional time required for topical 
probe administration may not be a burden to the patient, 
it could reduce the daily number of procedures. Thus, 
it has to be ensured that the benefits of topical applica-
tion do not outweigh the potential advantages of systemic 
administration.

Visualization of Molecular Probes 
and Targets

Besides selecting the most suitable molecular probe and the 
most viable way to administer it, other steps need to be taken 
to make the target visible. We will discuss how this is per-
formed in current FME studies, as well as gaps in techniques 
and promising new strategies.
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Conjugated Fluorophores

In order to enable real-time and safe visualization, molec-
ular probes are conjugated to a fluorescent dye — or fluo-
rophore — which absorbs photons emitted by an external 
light source. Once a photon is absorbed, the fluorophore 
enters a state of excitation. Eventually, the fluorophore 
returns to its ground state, emitting the extra energy as 
light at a longer wavelength, creating a fluorescent signal 
[47, 48]. Currently, most fluorescent dyes used in FME 
studies emit in the near-infrared-I (NIR-I) spectrum, with 
a wavelength range from 780 to 900 nm (Fig. 1). This 
spectrum provides favorable properties for fluorescence 
imaging, as its longer wavelength allows for tissue pen-
etration up to approximately 1 cm [49, 50]. Moreover, it 
reduces interference from autofluorescence whose excita-
tion and emission wavelengths are mainly below 680 nm. 
Lastly, the fluorescence imaging at this wavelength does 
not interfere with the white light from the standard endo-
scope allowing the endoscopist to operate both white 
light and fluorescence simultaneously. More recently, 
fluorophores in the NIR-II spectrum (1000–1700 nm) 
have undergone preclinical testing. These fluorophores 
potentially improve image quality at deeper tissue levels 
due to increased penetration of the fluorescent signal [51]. 
Therefore, they could be of value in fluorescence-guided 
surgery, though there may be less benefit in flexible FME 
as most (pre)malignant lesions in the GI tract are located 
at the superficial mucosal layer. However, at present, it 
is not fully elucidated if wavelengths in the NIR-II spec-
trum are innocuous to tissues, and this should be studied 

further. We will focus on studies performed in the NIR-I 
spectrum further on in this review.

NIR Endoscopy Systems

Visualizing the emitted fluorescent signal requires a dedi-
cated NIR camera system to be incorporated in wide-field 
endoscopes. The standard charge-coupled device cameras 
are unable to translate the signal to the monitor due to their 
NIR filter systems. In contrast to surgical systems, the endo-
scopes used in GI endoscopy are flexible and long in order to 
be able to maneuver through the GI lumen (average length 
of 103–133 cm with an outer diameter of 8–12 mm). This 
long but narrow workspace complicates installation of the 
required optical hardware at the tip of the endoscope. Cur-
rently, there are no flexible NIR-imaging endoscopy systems 
on the market. Clinical studies are performed with modified 
fiber-based endoscopy systems, in which a fiber is inserted 
through the working channel of a conventional endoscope 
(mother-baby approach). This fiber conducts the excitation 
light to the endoluminal tissue of interest and leads the emit-
ted signal back to a NIR camera system (Fig. 2). Although 
easy to apply and relatively cheap, a major disadvantage is 
the fact that the working channel is occupied by the fiber. 
Due to this, the working channel cannot be simultaneously 
used to guide the biopsy forceps to a lesion of interest after 
identification with FME. Switching gear through the work-
ing channel could lead to sampling error. This problem 
underlines the urgent need for the development of integrated 
wide-field endoscopy systems with detection and excitation 
filters for different wavelengths.

Fig. 1  Light spectra and wavelengths. (a) The NIR spectrum lies 
between 780 and 2500 nm. Currently, almost all fluorescently labeled 
probes for FME are designed to emit in the NIR-I spectrum (780–
900 nm). This design choice addresses three fundamental challenges: 
photon scattering by tissues, tissue autofluorescence, and tissue dam-
age. First, the long wavelengths associated with both excitation and 
emission allow for deep-tissue imaging due to reduced scattering and 
increased penetration. Second: probes emitting in this spectral region 

benefit from high signal-to-background ratio, due to avoiding spec-
tral regions associated with tissue autofluorescence. Third: the lower 
photon energies result in reduced tissue damage. (b) Example of exci-
tation and emission spectra of the fluorescent dye IRDye 800CW. 
Due to vibrational relaxation in the excited or ground state orbitals, 
emitted photons must be equal to or lower in energy than the excita-
tion photons. The emission spectrum is therefore red-shifted to longer 
wavelengths
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Unlike macroscopic wide-field endoscopy systems, con-
focal laser endomicroscopy (CLE) enables in vivo micro-
scopic imaging of the intraluminal tissue with subcellular 
resolution. Tissue can be imaged with a thousand-fold 
magnification and tissue architecture can be evaluated dur-
ing endoscopy [52]. Clinical decision-making can follow 
the physician’s histological assessment, on the spot, dur-
ing endoscopy. By applying fluorescently labeled molecu-
lar probes and the required external light source, CLE can 
enable ad hoc assessment of lesions and cells based on their 
molecular signature, comparable to immunohistochemistry 
[28, 53]. This way, wide-field FME could serve as a mac-
roscopic “red-flag” technique and consecutive CLE could 
provide microscopic information of the flagged lesion. CLE 
has shown promising results in clinical studies regarding 
dysplasia detection in Barrett’s esophagus, surveillance of 
colorectal polyps, and phenotyping of inflammation in IBD 
[52]. However, the microscopic images are generally only 

300 × 300 µm, and peristaltic movements make it difficult 
to image and relocate the imaged area. Endoscopists also 
require additional training in interpretation of the micro-
scopic images.

Interpretation of Fluorescent Signals

“What you see is not always what you get”: as with many 
emerging imaging technologies, a combination of data pre-
processing steps is required to correct for issues associated 
with data acquisition. Fluorescence intensity is influenced 
by multiple non-pathological variables, like absorption and 
scattering of light in tissue, or reflectance on the smooth 
surface of the mucus-covered mucosa. Altering the distance 
and angle of the endoscope to the tissue can significantly 
change the detected optical signal. The variable intensity 
might lead to incorrect interpretation, especially if the 
endoscopist is unaware of these confounding variables. 

Fig. 2  Schematic overview of a NIR-FME system. This figure illus-
trates the integration of a fiber bundle and an external NIR-fluores-
cence camera with a clinical endoscope. The NIR-system fiber bun-
dle is inserted through the working channel of a standard clinical HD 
video endoscope (HDE). 750 nm laser light and short-pass filtered 
(SPF) white light from a LED are delivered through the illumination 

fibers of the fiber bundle to the distal end of the endoscope. Fluoro-
phore-emitted and reflected white light return through the imaging 
fibers of the fiber bundle and are subsequently split by a dichroic mir-
ror. Visible light is then detected by a color camera, and emitted fluo-
rescent light is passed through a band-pass filter before being detected 
by an NIR-fluorescence camera. Previously published in Gut [13]
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Proper training in signal interpretation and imaging tech-
nique is critical, as well as standardized clinical work-
flows. Fluorescence quantification is a way to objectify the 
obtained signals. In most early FME studies, quantification 
was performed ex vivo with algorithms to account for dif-
ferences in endoscope-tissue distance and geometry over 
the image field of view [10, 11, 13, 54, 55]. Although these 
methods could aid the endoscopist in correcting for some 
variables, a complete real-time correction is hard to achieve. 
Multi-diameter single-fiber reflectance (MDSFR) and sin-
gle-fiber fluorescence (SFF) spectroscopy were developed 
to apply these corrections in vivo, in order to refine fluores-
cence quantification [29, 39, 56]. In these combinable tech-
niques, the distal end of a fiber bundle is inserted through 
the working channel of the endoscope during endoscopy 
and placed onto the fluorescent lesion of interest. MDSFR 
spectroscopy measures signal absorption and scattering 
properties in tissue, while SFF spectroscopy measures tis-
sue fluorescence. When combined, the fluorescent signal 
can be corrected by these optical properties, thereby allow-
ing for quantification of fluorescence emitted by the fluo-
rescent agent on the lesion of interest [56]. Although this 
is a promising technique which is successfully applied in 
multiple pilot studies, quantification is still based on post-
procedural analysis and requires transitioning to real time 
to facilitate implementation in a clinical workflow [12, 29, 
39, 57]. Additionally, because signal intensity can differ 
between different fluorescently labeled molecular probes, 
it would be helpful to determine signal thresholds for each 
fluorescent probe that can reliably predict whether a lesion 
is (pre)malignant [29].

Clinical Evidence on Fluorescence Molecular 
Endoscopy in the Gastrointestinal Tract

Many probes in the NIR spectrum have been tested in 
preclinical settings for several purposes. In selected cases 
they made it through to patient studies, where they were 
found to be safe, feasible, and effective as well. We will 
illustrate the need for techniques to improve intralumi-
nal lesion detection in the GI tract and discuss promising 
results of probes targeting these lesions.

Fields of Interest for Fluorescence Molecular 
Endoscopy

Most studies on FME in the upper GI tract are performed in 
patients with Barrett’s esophagus. Barrett’s esophagus is a 
condition where the squamous epithelium of the esophagus 
is replaced with metaplastic columnar epithelium. Within 
this epithelium, precancerous dysplasia may arise. Because 

of this, Barrett’s esophagus is one of the most important 
risk factors for developing esophageal adenocarcinoma [58]. 
Although endoscopic surveillance programs have been set 
up for these patients, detection of dysplastic lesions with 
WLE remains challenging due to the often subtle morpho-
logical changes and patchy distribution. The current Seattle 
protocol recommends taking four-quadrant random biop-
sies every 2 cm, rather than only taking biopsies of visible 
lesions, to keep the miss rate as low as possible [59]. How-
ever, this method is prone to sampling error due to the fact 
that it is based on random biopsies, and because it is time-
consuming resulting in low adherence to the protocol [60, 
61]. Recent data shows that nearly 20% of endoscopists do 
not follow these guidelines for longer segments of affected 
Barrett’s esophagus [62]. This illustrates the urgent need for 
a more targeted approach, such as FME, in the surveillance 
of Barrett’s patients.

In the lower GI tract, the majority of FME studies are 
performed in the screening of colorectal cancer. This is one 
of the most common and lethal cancers worldwide, repre-
senting more than 9% of cancer-related deaths yearly [1]. 
Patients at a high risk for developing lower GI cancer, as 
in IBD, regularly undergo screening colonoscopies with 
the aim of early detection and timely intervention [63, 64]. 
However, the miss rate of dysplastic lesions is about three 
to five times higher in these patients compared with healthy 
individuals, as lesions are often non-polypoid (flat or non-
pedunculated) [5, 6, 8, 9]. Moreover, lesions in IBD patients 
are often camouflaged against the background of inflamed 
or otherwise impaired mucosa. Therefore, an endoscopic 
surveillance modality such as FME that focuses on molecu-
lar features rather than on morphology alone could be of 
additional value for high-risk patients.

Current Available Clinical Evidence on Lesion 
Detection

Several clinical trials have been conducted on FME with 
probes targeting (pre)malignant lesions of the GI tract. The 
current landmark studies are summarized in Table 2. As 
shown in this table, both affinity peptides and antibodies 
have been studied for enhancement of lesion detection in 
both patients with Barrett’s esophagus and patients at high 
risk for colorectal carcinoma. Burggraaf and colleagues per-
formed one of the first patient studies, in which they paved 
the way for future research on this topic [10]. In this pilot 
study, the c-Met targeting peptide EMI-137 was adminis-
tered intravenously 3 h prior to colonoscopy with NIR imag-
ing and detected colorectal neoplasms that would otherwise 
remain unnoticed [10]. High TBRs were found, which were 
determined ex vivo with algorithms to correct for distance 
and geometry over the image field of view. In a related study 
that uses the same peptide, the initial findings regarding 
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improved detection of colorectal neoplasms were confirmed 
[57]. Lower TBRs were found; however, these ratios were 
assessed in vivo by use of MDSFR/SFF spectroscopy. This 
underlines the importance of methods to correct for tissue 
absorbance and scattering properties for a more reliable 
interpretation of in vivo results. In addition, they performed 
subgroup analysis on different dose-to-imaging intervals 
from 3 h prior to endoscopy to 1 h, which showed no sig-
nificant differences. This implies that a clinically favorable 
interval of 1 h preceding endoscopy could be applied in fur-
ther studies.

Nagengast and colleagues were one of the first to use 
FME to improve dysplasia detection over standard WLE 
in patients with Barrett’s esophagus. They administered 
the fluorescently labeled monoclonal antibody bevaci-
zumab-800CW both topically and intravenously (2 days 
prior to endoscopy), which led to successful real-time 
visualization of dysplasia and adenocarcinoma (Fig. 3) 
[13]. The overall detection was improved by 25% over 
WLE and narrow-band imaging. Compared to intravenous 
administration, topical application resulted in favorable 
TBRs and enhanced detection by 33%. However, the 

Fig. 3  Overview of real-time VEGFA-targeted FME in Barrett’s 
esophagus. (a) Schematic overview and timeline of two NIR-FME 
approaches, i.e., intravenous administration and topical application. 
(b) Examples of results after intravenous administration of bevaci-

zumab-800CW, and (c) results after topical application. The first row 
in Fig.  3c displays a lesion that was not visible during white light 
endoscopy but turned out to be adenocarcinoma. Previously pub-
lished in Gut [13]
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sample size was small, with 14 patients, and TBRs were 
calculated ex vivo with algorithms. A larger phase II 
study in 60 patients is ongoing [30]. A similar study was 
performed with EMI-137. Administration of the tracer 
was switched from systemic to topical after an interim 
analysis of five patients where there were relatively low 
tracer concentrations in the lesions, leading to poor detec-
tion [39]. The quantified TBRs were modest; neverthe-
less, 89% of dysplastic lesions were identified correctly 
after topical application of the probe. However, stomach-
type epithelium also showed increased levels of c-Met 
membrane expression, which complicates lesion detection 
in the distal esophagus where most neoplastic Barrett’s 
lesions are found [39]. Although this study shows that 
c-MET may not be the most ideal probe for lesion detec-
tion in Barrett’s esophagus, it is an excellent example of 
an iterative translational process where interim analysis 
affects study design.

A last noteworthy clinical trial on lesion detection in 
Barrett’s esophagus was recently published by Chen and 
colleagues. In this first-in-human study, a new technique 
of multimodal FME was performed, using two excitation 
lasers of different wavelengths (638 and 785 nm) guided 
through a single flexible fiber. With this multiplexed imag-
ing tool and the topical application of two different fluores-
cently labeled peptides (QRH*-Cy5 specific for EGFR and 
KSP*-IRDye800 specific for ErbB2), 92% of the present 
neoplastic lesions were successfully visualized [40]. This 
study demonstrates the ability to simultaneously detect mul-
tiple targets in vivo, as well as detection of neoplasms that 
are molecularly heterogeneous.

Towards Personalized Medicine

Besides enhancement of lesion detection, FME could also 
play a role in personalizing treatment strategies. This is 
illustrated in a clinical study by Tjalma and colleagues, 
using FME and spectroscopy with bevacizumab-800CW 
on restaging locally advanced rectal cancer after neoadju-
vant chemoradiotherapy (nCRT) [29]. At present, nCRT is 
followed by surgical resection. However, in up to 27% of 
patients no residual cancer cells are found in the surgical 
specimen after nCRT; for example, they have a pathologi-
cal complete response and surgery could potentially have 
been avoided to reduce morbidity and increase survival 
rates [67–70]. However, distinguishing residual tumor from 
fibrosis is challenging in WLE and MR imaging, which are 
the current standard restaging methods. Results of restaging 
with FME were compared with results of standard clinical 
restaging (MRI and WLE), and were correlated with the 
histopathology of the surgical specimen. FME with spec-
troscopy resulted in a higher positive predictive value and 
accuracy compared to MRI and standard endoscopy [29]. 

This suggests that implementing FME in restaging could 
lead to better stratification and potentially less undertreat-
ment and overtreatment.

In vivo molecular characterization can also be used to 
evaluate drug delivery to targeted tissue and potentially pre-
dict therapy response. Goetz and colleagues conducted a 
preclinical study performing CLE with fluorescently labeled 
cetuximab: an antibody targeting EGFR, which is a com-
ponent of the multimodal chemotherapy regimen in meta-
static colorectal carcinoma. Human colorectal carcinoma 
cell lines were induced in mice and CLE was implemented 
before and after treatment with cetuximab. High fluores-
cence signal before treatment was related to significantly 
slower tumor progression, better overall survival, and better 
physical condition compared to low fluorescence signal [31]. 
This suggests that stronger fluorescence signal is related to 
increased presence of molecular targets for chemotherapy. 
The technique was translated to a clinical study where CLE 
was performed with fluorescently labeled adalimumab in 
patients with active Crohn’s disease, targeting mucosal 
TNFα (mTNFα). Patients with high counts of mTNFα-
expressing immune cells prior to subsequent treatment 
showed a better clinical response to adalimumab compared 
to patients with low cell counts. This effect was sustained 
over a 1-year follow-up period [33]. A similar pilot study 
was performed in Crohn’s patients unresponsive to anti-TNF 
treatment using fluorescently labeled vedolizumab, a gut-
selective monoclonal antibody directed towards the integrin 
α4β7 [71]. The mucosal cells of patients who responded 
well to vedolizumab showed significantly more fluorescence 
prior to therapy, compared to the non-responders that did not 
express any α4β7-positive fluorescence [34]. These results 
warranted the ongoing larger-sized clinical trial [72].

Current Gaps in Clinical Evidence

The clinical findings mentioned above include current land-
mark studies performed with FME. Although promising and 
high in quality, these are proof-of-concept studies with small 
sample sizes. Moreover, study designs and outcome meas-
ures differ strongly. This makes interpreting and comparing 
studies of a certain probe hardly possible, let alone compar-
ing different probes for a certain indication. For this reason, 
currently available clinical evidence need further validation 
with larger study populations and stratified study designs.

Another research gap is that no FME studies have been 
carried out in patients with active IBD. These patients have a 
high risk of developing colorectal carcinoma and encounter 
high miss rates due to the camouflaging effect of the 
inflamed background [8, 9]. Selecting a suitable FME probe 
for this population may be challenging, as it must distinguish 
(pre)malignant lesions from inflamed or scarred tissue which 
might have similar molecular features. Since potential 
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targets could differ greatly from non-IBD patients in terms of 
receptors and heterogeneity, ex vivo studies on the molecular 
signatures of IBD are essential for enhancing accuracy in the 
predictive capabilities of a molecular target [73, 74]. Promising 
preclinical results on colorectal neoplasm detection in active 
IBD are derived from the fluorescently labeled cathepsin-
activated probe 6QC-ICG, which enabled demarcation of 
premalignant GI lesions in a large animal model [41]. Being a 
“smart probe,” 6QC-ICG targets the tumor microenvironment 
as it is binding to system cathepsins which are highly abundant 
in tumor-associated macrophages and less in immune cells of 
benign or even inflamed mucosa [75]. Areas of dysplasia as 
small as 400 μm were successfully detected 12 to 18 h after an 
intravenous bolus dose in murine and human-scaled porcine 
models, and were clearly demarcated within inflamed and 
ulcerated mucosa. These preclinical results are promising for 
future clinical FME studies in patients with IBD who suffer 
from mucosal inflammation and are at high risk of progression 
to malignant lesions.

Translation From Clinical Evidence to Clinical 
Use

The recent transition from preclinical to clinical studies has 
shown that FME is able to visualize subtle, macroscopically 
invisible, or uncertain lesions in the upper and lower GI 
tract that are regularly missed during conventional flexible 
white-light endoscopy. FME might therefore be a very 
promising tool in GI endoscopy, addressing the high miss 
rates of (pre)malignant lesions in both upper and lower GI 
tract, and improving early detection. Moreover, endoscopic 
interventional options are rapidly increasing. Currently, 
premalignant or early-stage GI cancer can often be removed 
endoscopically. The combination of reliable early detection 
of (pre)malignant lesions and minimally invasive removal 
yields an interesting field of action for oncological care.

Moreover, the increasing number of unique probes or 
drugs for different molecular targets offers a wide range 
of potential future applications. FME could help deter-
mine the molecular characteristics of malignant lesions or 
inflammation, thereby paving the way for personalized tar-
geted therapy in gastroenterology. By using fluorescently 
labeled drugs as a molecular probe, drug distribution and 
pharmacodynamics can be visualized in vivo, allowing for 
the possibility of predicting drug responsiveness. As dis-
cussed, this would apply for patient stratification in IBD and 
oncological treatment, i.e., neoadjuvant therapy in several 
malignancies. It might help determine whether a patient is 
prone to respond to therapy or not. The ultimate goal would 
be to label different types of drugs with different fluorescent 
dyes, and visualize them in vivo with multispectral camera 
systems. This could help to identify the optimal treatment 

before administering it in a therapeutic dose, which improves 
patient stratification, safety, and (cost) efficiency. MDSFR/
SFF spectroscopy could measure mucosal concentrations, 
for optimizing the dose of the selected treatment.

Some obstacles need to be addressed before FME can be 
implemented in clinical practice. The most important one is 
the potentially confounding effect of the human factor: all the 
additional information that FME and accompanying modalities 
offer makes interpretation more complex and leads to inter-
observer variabilities. Adequate training of endoscopists is 
needed to benefit from the complementary input offered by 
FME. However, gaining experience takes time and may be costly. 
Furthermore, the attention span of the endoscopist — which can 
be lowered by distraction or tiredness — will still be of substantial 
influence on detection rates. Artificial intelligence (AI), and 
particularly deep learning, is increasingly used for computer-aided 
detection (CAD) of (pre)malignancies in endoscopic images. 
Multiple studies have shown that AI algorithms developed for 
image analysis in colonoscopy can successfully recognize (pre)
malignant colonic lesions, as well as grade the inflammation 
status in IBD patients [76–81]. These results have already been 
translated to the clinic with the launch of the first commercially 
available AI system for colonoscopy in 2019 (GI Genius, 
Medtronic). Recently the first randomized controlled trial on the 
use of CAD in upper GI endoscopy was published, showing that 
miss rates of gastric neoplasms were significantly lower in patients 
where CAD was applied compared to standard care [82]. These 
promising achievements substantiate that AI will play a substantial 
role in future endoscopy.

A recent meta-analysis by Spadaccini and colleagues 
showed that CAD-assisted colonoscopy significantly improves 
adenoma detection rates compared to high-definition WLE and 
available strategies that increase mucosal visualization, such 
as chromoendoscopy [76]. However, CAD mainly depends on 
morphological features of lesions and requires excellent images. 
Therefore, it still depends on the endoscopic capabilities of 
the operator. Unlike colonic polyps, lesions that resemble the 
surrounding mucosa, as in Barrett’s dysplasia, are more difficult 
to detect using CAD and require even higher quality images [78]. 
At present, no data is available to assess the value of CAD for 
FME images; however, this should be explored. The combination 
could reduce human error and technical factors by standardizing 
recognition and interpretation of fluorescence images based on 
molecular structures, while deep learning networks continuously 
refine their output. These two forces combined could be of 
substantial benefit in the battle against high miss rates.

Another obstacle that needs to be addressed is the extra 
procedure time that FME requires due to administering of 
the probes and switching fibers and camera systems. If FME 
were used in all procedures, it could reduce the total num-
ber of operations by 1/5th (assuming that 5 min is added to 
every 20-min procedure). Therefore, technological refine-
ment is required to streamline procedures. With integrated 
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NIR systems — eventually with multiple spectra for simul-
taneous use of multiple tracers — FME could be efficiently 
applied in wide-field endoscopy without the need for switch-
ing fibers through the working channel. Moreover, in cer-
tain patient populations FME might reduce procedure time 
because fewer biopsies have to be taken. All in all, in every 
particular procedure the extra time that FME requires has to 
be balanced against the possible (time) gain it could give. 
Patients who are at high risk for (pre)cancerous lesions like 
patients with Lynch syndrome, IBD, and Barrett’s esophagus 
will benefit most — healthwise, costwise, and timewise.

Conclusion

Fluorescence molecular endoscopy is a rapidly emerging 
field in flexible GI endoscopy that enables the visualization of 
lesions by detecting molecular changes rather than morpho-
logical changes. As molecular alterations in oncogenesis can 
appear before lesions become visible to “the naked eye,” FME 
can serve as a modality for early intraluminal detection of dys-
plastic lesions or GI cancer. It has the potential of improving 
screening programs for at-risk populations, as well as playing 
a part in personalizing medicine. Although work must be done 
to refine strategies and strengthen clinical evidence, we believe 
that FME might have an important role in GI endoscopy in 
the near future. Cooperation between clinicians, pharmacists, 
biologists, chemists, and engineers will give rise to this promis-
ing new imaging strategy in gastrointestinal endoscopy with 
great impact on both diagnostics and personalized medicine.
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