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Abstract

Background—Short-term mobile monitoring campaigns to estimate long-term air pollution 

levels are becoming increasingly common. Still, many campaigns have not conducted temporally-

balanced sampling, and few have looked at the implications of such study designs for 

epidemiologic exposure assessment.

Objective—We carried out a simulation study using fixed-site air quality monitors to better 

understand how different short-term monitoring designs impact the resulting exposure surfaces.

Methods—We used Monte Carlo resampling to simulate three archetypal short-term monitoring 

sampling designs using oxides of nitrogen (NOx) monitoring data from 69 regulatory sites in 

California: a year-around Balanced Design that sampled during all seasons of the year, days of 

the week, and all or various hours of the day; a temporally reduced Rush Hours Design; and a 

temporally reduced Business Hours Design. We evaluated the performance of each design’s land 

use regression prediction model.
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Results—The Balanced Design consistently yielded the most accurate annual averages; while the 

reduced Rush Hours and Business Hours Designs generally produced more biased results.

Significance—A temporally-balanced sampling design is crucial for short-term campaigns such 

as mobile monitoring aiming to assess long-term exposure in epidemiologic cohorts.

Graphical Abstract

1  Introduction

An increasing number of studies are using short-term monitoring campaigns to assess 

long-term air pollution levels (1–7). Short-term mobile monitoring campaigns typically 

equip a vehicle with air monitors and collect samples while in motion (non-stationary 

sampling) and/or while stopped (stationary sampling). The focus of this analysis is on 

the latter mobile monitoring design. A single monitoring platform can be used to collect 

samples at many specified locations within a relatively short period of time, making it a 

time and cost-efficient sampling approach. Mobile campaigns are particularly well-suited 

for multi-pollutant monitoring of less frequently monitored traffic-related air pollutants 

that require expensive instruments or instruments that need frequent attention during the 

sampling period. And while a few studies have investigated the number of sampling 

locations and repeat samples needed to improve the resulting exposure surfaces from 

mobile monitoring campaigns (8,9), to the best of our knowledge, none have considered the 

importance of conducting temporally-balanced sampling when the goal is estimation of an 

unbiased long-term average. This is particularly relevant for traffic-related pollutants since 

many experience strong diurnal and seasonal concentration trends (10,11). In general, many 

mobile monitoring campaigns have been short, lasting from a few weeks to months and with 

few repeat visits to each location spanning one to three seasons (1,2,6,8,11–34). Most of 

these campaigns have conducted sampling during weekday business or rush hours, ignoring 

the surrounding hours, when air pollution concentrations can be drastically different.

The goal of this paper is to shed light on the temporal design of a short-term monitoring 

campaign for application to mobile monitoring for epidemiologic cohort studies. We carry 

out a set of simulation studies to better understand the role of monitoring design on the 

prediction of annual average surfaces. We use existing monitoring data from California to 

compare the primary, annual site averages when all the data are included to subsequent 

analyses utilizing subsets of the data. These data provide a unique opportunity to explore 

how short-term stationary sampling strategies can influence the resulting estimated annual-

average concentration. Our analysis requires having a long-term, comprehensive set of 
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measurement data, which therefore necessitates using fixed-site measurements rather than 

mobile measurements, to shed light on an aspect of study design for short-term stationary 

mobile monitoring.

2 Methods

2.1 Data

We simulate three sampling designs (see below) using hourly observations for oxides of 

nitrogen (NOx) collected during 2016 from regulatory Air Quality System (AQS) sites in 

California. NOx was selected since it is a spatially and temporally variable traffic pollutant 

with a strong diurnal pattern (2,35,36), and it is measured at many regulatory monitoring 

sites in California, providing a large enough dataset for this analysis (37). In sensitivity 

analyses we also consider NO and NO2.

We included 69 of 105 California AQS sites that met various criteria (SI Figure S3). First, 

sites needed to have readings at least 66% of the time (5,797/8,784 hourly samples; 2016 

was a leap year). Second, sites needed to have sampling throughout the year, such that data 

collection gaps were a maximum of 45 days long. These two criteria are similar to other 

air quality studies (38–40). Third, sites were required to have sampled for at least 40% of 

the time during various two-week periods that were used in two of our “common” designs 

(described below). This sample size ensured that we could sample during these periods 

without replacement. Fourth, sites were required to have positive readings (> 0 ppb) at least 

60% of the time, thus ensuring that sites had sufficient variability in their concentrations 

and allowing us to model annual averages on the natural log scale. Finally, sites in rural 

and industrial settings (as determined by the US EPA)(41) were excluded since these do not 

represent where the majority of people reside. The resulting sites were in both urban and 

suburban settings, in residential and commercial areas.

2.2 Sampling Designs

We conducted simulation studies to characterize the properties of three sampling designs 

(Table 1, Supplementary Information [SI] Figure S1). Each design has a long- and a 

short-term sampling approach. Long-term approaches use all of the data that meet each 

design’s definition to estimate site annual averages and are analogous to traditional, fixed-

site sampling approaches where sampling at a given location occurs over an extended period 

of time. Short-term approaches only collect 28 samples per site (distributed evenly during 

each sampling season) and are analogous to mobile monitoring campaigns that collect a 

few repeat samples per site. (The cut-off of 28 samples reflects our preliminary analyses 

showing that 28 hourly NOx samples are sufficient to estimate a site’s annual average within 

about 25% error or less [SI Figure S2].) Each design has multiple versions where samples 

are collected at slightly different times. The various design versions are intended to reflect 

the bias produced if only certain times are included in the measurements. We simulated 

each short-term sampling approach 30 times (Monte Carlo resampling), and hereafter refer 

to each of these simulations as a “campaign” since each represents a potential mobile 

monitoring study.
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The Year-Around “Balanced” Design represents an “ideal” sampling scheme: sampling is 

conducted during all seasons, days of the week, and all or most hours of the day. Version 

1 collects samples during all hours of the day. Versions 2–3 reduce the sampling hours to 

reflect the logistical constraints of executing an extensive campaign: samples occur during 

most hours of the day (5 AM – 12 AM only; “Version 2”) or during 6–9 AM, 1–5 PM 

and 8–10 PM (“Version 3”). Estimates from the long-term Balanced Design Version 1 are 

analogous to what might be collected from a traditional, year-around, fixed-site sampling 

scheme. For simplicity, we interchangeably refer to these as the “true” estimates or the “gold 

standard” hereafter, though we acknowledge that some error exists (e.g., due to missing 

hours or instrument accuracy).

The Two-Season Weekday “Rush Hours” and “Business Hours” Designs reflect common 

designs in the literature (2,3,11,23,33,34,42,43). Samples are collected either during summer 

and winter (Versions 4–5) or spring and fall (Versions 6–7). Sampling for each version 

occurs on weekdays during the same two-week period for all sites during each relevant 

season (See SI Table S1 for each version’s exact sampling periods). Sampling is restricted to 

the hours of 7–10 AM and 3–6 PM (Rush Hours Design) or 9 AM – 5 PM (Business Hours 

Design). The short-term approach collects 14 random samples during each season.

2.3 Prediction Models

We estimated unweighted site annual averages based on the data collected during each 

campaign. We log-transformed these before using them as the outcome variable in partial 

least squares (PLS) regression models, which summarized hundreds of geographic covariate 

predictors (e.g., land use, road proximity, and population density; see SI Table S2 for the 

covariates considered) into two PLS components (using the plsr function in the pls package 

in R). We evaluated the performance of each campaign using ten-fold cross-validated (CV) 

predictions on the native scale, incorporating re-estimation of the PLS components in each 

fold. The cross-validation groups were randomly selected and, importantly, fixed across all 

campaigns to allow for consistent model performance comparisons across designs.

To best understand the role of design, we present results for annual average estimates, 

predictions, and model performance statistics. In descriptive analyses, we compare design-

specific annual average estimates and predictions to the gold standard. We compare 

predicted site concentrations against predictions from the gold standard since epidemiologic 

air pollution studies often rely on predicted exposure, and the gold standard prediction 

represents the best possible prediction of annual-average concentrations that a study could 

hope to achieve. We complement this approach with model assessment evaluations of 

design-specific site predictions against two different references: an assessment against 

the true averages, and a traditional model assessment evaluation against the respective 

design-specific annual average estimates. The traditional assessment compares the predicted 

exposures to the observed site measurements from which they were derived. This allows 

us to document the quantities that would normally be available from modeling the data 

measured from any specific campaign. We summarize the model performance in terms of 

cross-validated mean squared error (MSE)-based R2 (R2
MSE), regression-based R2 (R2

reg), 

and root mean squared error (RMSE). R2
MSE assesses whether two sets of measurements 
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such as estimates and predictions are the same (along the 1–1 line), and thus reflects both 

bias and variation around the one-to-one line (see SI Equations 1–3 for definitions). R2
reg, 

on the other hand, assesses whether observations are linearly associated (based on the best fit 

line though not necessarily the 1–1 line) and thus adjusts for bias and slopes different than 

one. R2
reg is defined as the squared correlation between two sets of measurements.

In sensitivity analyses, we repeated these simulations for nitrogen dioxide (NO2) and 

nitrogen monoxide (NO), adding a two ppb constant to all of the hourly NO readings 

before log-transforming to eliminate negative and zero concentration readings. Furthermore, 

we conducted NOx simulations for a subset of sites (N=17) within the Los Angeles (LA) 

and San Diego Counties, refitting PLS models to these sites alone. This region was meant 

to represent a potential area of interest for epidemiologic exposure assessment and one that 

could be more feasibly covered by a mobile monitoring campaign, though it had a reduced 

sample size.

Computing details are in SI Note S1.

3 Results

3.1 Hourly Readings

Sites (N=69) had on average (SD) of 8,090 (361) hourly readings, the equivalent of 337 

(15) days of full sampling (See SI Table S3; note that this and many of the subsequent 

SI figures and tables also include results for NO and NO2). Average (SD) hourly NOx 

concentrations were 16 (21) ppb (See SI Table S4). Sites had seasonal, daily, and hourly 

concentration patterns, with trends being more pronounced at some sites than others (See SI 

Figure S4–S6).

3.2 Annual Average Estimates

Across the 69 monitor locations, gold standard annual average NOx concentrations had a 

median (IQR) of 14 (10 – 21) ppb and ranged from 3–56 ppb. Overall, the long-term and 

short-term sampling approach for each design had very similar distributions. The Balanced 

Design generally resulted in similar estimates as the true average; while the Rush Hours 

Design resulted in slightly higher annual averages; and the Business Hours Design resulted 

lower annual averages. See SI Table S5 and Figure S7 for details.

3.3 Model Predictions

The PLS model of the true annual average had a root mean square error (RMSE) of 7.2 ppb 

and a mean square error-based coefficient of determination (R2
MSE) of 0.46.

We compared PLS model predictions from each short-term design to the gold standard 

model predictions. SI Figure S9 shows the relative standard deviations of predictions 

by design, with 1 indicating that design predictions have the same standard deviation 

as the gold standard model predictions. Overall, the Balanced Design predictions have 

similar variability to those of the gold standard (range: 0.87–1.28), the Rush Hours Design 

predictions are more variable (range: 0.90–1.74), and the Business Hours Design predictions 

are mixed: some less and some more variable (range: 0.73–1.54). Figure 1 displays these 
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comparisons as best fit lines. The scatterplots show that there are a few sites that have 

variable predictions in all designs. From the best fit lines, we observe that the short-term 

Balanced Design resulted in the most accurate predictions on average, as indicated by their 

overlapping general trends along the one-to-one line. The Rush Hours Design was more 

likely to have a positive general trend, while the Business Hours Design was more likely to 

have a negative general trend, indicating, for example, that higher concentrations were more 

likely to be over- or under-estimated, respectively. However, there was heterogeneity in this 

overall pattern across the various Rush and Business Hours Design versions. Furthermore, 

there was additional heterogeneity across individual campaigns. The SI contains comparable 

figures comparing design predictions to the gold standard and additional figures for NO and 

NO2 (SI Figures S10–S13).

Figure 2 shows site-specific comparisons of predictions across 30 short-term campaigns 

relative to the gold standard predictions for a stratified random sample of 12 sites in order to 

characterize relative bias (see SI Figure S14 for all sites). Overall, the short-term Balanced 

Design predictions had a median (IQR) bias of 0.2 (−1 – 1.4) ppb relative to the gold 

standard predictions (see SI Table S7 for details). All Balanced Design predictions were very 

similar to the gold standard predictions, though some sites frequently had larger biases. The 

Rush Hours and Business Hours Designs were more likely to consistently produce biased 

site predictions, with a median (IQR) bias of 1.2 (−1.2 – 4) ppb and −3.8 (−6.6 – −1.4) 

ppb, respectively. While the Rush Hours Designs generally resulted in higher predictions 

across sites (with some inconsistency across versions and sites), the Business Hours Design 

generally resulted in predictions that were lower than the gold standard predictions. There 

were also a few sites that tended to have more biased and/or more variable predictions 

relative to the gold standard across all designs. We observed similar patterns when looking at 

estimate (rather than prediction) biases (See SI Figure S8).

3.4 Model Assessment

Figure 3 shows the out-of-sample prediction performances relative to the observations from 

the true averages (left column) and the specific design (right column), for both the long-term 

and short-term approaches. The boxplots quantify the distribution of performance statistics 

across all 30 short-term campaigns while the squares show the performance of the long-term 

approach of the same design. When assessed against the true averages, the Balanced Design 

generally performs better than either the Rush Hours or Business Hours Design with higher 

CV R2
MSE and CV R2

reg, and lower CV RMSE estimates. This is particularly apparent 

for the long-term approach. Furthermore, within design, the long-term approach generally 

performs better than the majority of the short-term campaigns. There is considerable 

heterogeneity in performance across the Rush Hours and Business Hours Design versions. 

In contrast, when assessed against observations from the same design, as would typically be 

done in practice, the role of sampling design on prediction performance is not as evident. 

The superior performance of the Balanced Design is not as apparent, and some of the 

Rush Hours and Business Hours Design versions appear to perform better. There are also 

a few campaigns that show poor performance, even under the Balanced Design. SI Figure 

S15–S16 show similar results for NO2 and NO, with NO showing more variability and some 

lower performing statistics. Stratifying by whether sites were considered to have high or 
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low variability (based on hourly standard deviation estimates) showed similar R2 and RMSE 

patterns (data not shown).

3.5 Sensitivity Analyses

Findings were similar for sensitivity analyses for two other pollutants (see the SI for NO 

and NO2 results presented alongside the NOx results) as well as within the smaller Los 

Angeles-San Diego region (see SI Figure S20 and Table S8).

4 Discussion

In this paper we have used existing regulatory monitoring data to deepen our understanding 

of the importance of short-term monitoring study design for application to stationary mobile 

monitoring for epidemiologic cohort studies. Others have shown that short-term data can 

be used to estimate long-term averages (2,3). What has been missing from the literature 

until now, however, is the impact of short-term monitoring study design on the accuracy 

and precision of long-term exposure estimates and model predictions. Our results indicate 

that for designs with a sufficient number of short-term samples at each location (about 28 

or more), the design rather than the sampling approach (i.e., long- vs short- term) has the 

largest impact on the estimated annual averages. We focus the rest of this discussion on 

the short-term approaches for each design, which resemble mobile monitoring, though the 

long-term approaches produced similar results.

In terms of specific design, we found that the Balanced Design resulted in similar annual 

average predictions as those from the gold standard campaign. The similarity in annual 

averages and predictions across all of the Balanced Design versions suggests that campaigns 

with slightly reduced sampling hours (for example, due to logistical constraints) should to 

a large degree still produce unbiased annual averages at most sites. On the other hand, 

the Rush Hours Design was more likely to overpredict, while the Business Hours Design 

was more likely to underpredict site averages. These differences in results were likely 

because the Balanced Design captured much of NOx’s temporal variability by allowing 

for samples to be collected during each season, day of the week, and all or most times 

of the day, all periods during which meteorology and traffic activity patterns impact air 

pollution concentrations (SI Figure S4–S6). On the other hand, the Rush Hours Design was 

more likely to sample during high concentration times, while the Business Hours Design 

was more likely to sample during low concentration times (i.e., miss the rush hour times). 

Furthermore, we observed some prediction variability across the Rush Hours and Business 

Hours version, suggesting that the degree and direction of error is heavily impacted by the 

sampling window that happens to be selected. These conclusions were the same in the Los 

Angeles-San Diego sensitivity analysis, a geographic area that could more realistically be 

sampled by a mobile campaign.

At the site level, we saw that while any individual study campaign had the potential to 

produce biased estimates and predictions, the Rush Hours and Business Hours Designs 

were more likely to do so than the Balanced Design. The direction and magnitude of bias 

for each sampling design varied by site. This suggests a simple correction factor to adjust 

short-term measurements based on long-term observations at a small number of reference 

Blanco et al. Page 7

J Expo Sci Environ Epidemiol. Author manuscript; available in PMC 2023 June 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



sites (for example using regulatory fixed sites), is unlikely to fully adjust for bias at the site 

level (44). While many past campaigns have taken this approach to account for the fact that 

short-term stationary mobile sampling inherently misses some observations, this approach 

makes a strong assumption that all sites have the same temporal trends. SI Figures S17–S19 

illustrate the temporal trends for sites included in the Los Angeles-San Diego analysis and 

clearly shows how lower concentration “background” sites are also more likely to have 

less temporal variation when compared to other sites. Using these “background” sites (or 

any other site for that matter) to adjust readings at other sites would not substantially 

reduce the bias from an unbalanced sampling design. This may be especially pertinent for 

mobile monitoring campaigns since their increased spatial coverage is more likely to capture 

localized pollution hotspots that may have even more temporal variation. Sampling design 

should be prioritized, while temporal adjustment factors should be deemphasized or at least 

further investigated to establish their true value given their strong assumptions.

Furthermore, non-balanced designs may misrepresent some sites more than others and lead 

to differential exposure misclassification in epidemiologic studies since higher concentration 

sites were more likely to have greater degrees of bias and variation (Figure 1, Figure 2). 

While non-balanced designs may be appropriate for non-epidemiologic purposes including 

characterizing the spatial impact of traffic-related air pollutants during peak hours for urban 

planning and policy purposes, these could be misleading in epidemiologic applications.

In this study we were able to evaluate prediction model performance against the true annual 

average NOx exposure as well as against the observations typically available for model 

performance assessment. Performance assessment against the true averages indicates that the 

Balanced Design is clearly the best, and that there is little degradation in performance across 

versions of this design. This means it is possible to design high quality short-term stationary 

mobile monitoring studies that accommodate some measure of logistical feasibility, for 

example, by not requiring sampling in the middle of the night. In contrast, the performance 

of the Rush Hours and Business Hours Designs is comparatively worse, indicating that 

logistically appealing temporally limited sampling campaigns are inadequate for providing 

high quality annual averages. Further, the performance of these designs varies considerably 

and unpredictably depending upon the specific pair of two-week periods that are selected for 

sampling. Additionally, comparison of the two R2 estimates (R2
MSE and R2

reg) indicates that 

not all of their poor performance is due to the inability to predict the same value as the truth 

(R2
MSE), but due to systematic bias in the design. As noted earlier, R2

MSE assesses whether 

two measurements are the same - along the 1–1 line, whereas R2
reg simply assesses whether 

they are linearly associated.

Further, it is notable that the standard approach to model assessment, comparing model 

predictions to observations collected during the sampling campaign, doesn’t clearly reveal 

the superior performance of the Balanced Design or the inherent flaws of the Rush 

Hours and Business Hours Designs. In fact, the Rush Hours and Business Hours Designs 

sometimes perform better than the Balanced Design when evaluated against the campaign’s 

observations. This is because the evaluation doesn’t take into account that the observations 

are biased because of the sampling design.
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It is notable that occasionally there was an “unlucky” short-term campaign with 

meaningfully poorer performance than the other campaigns of the same design. This was 

more likely in the non-balanced designs. It may be possible that this result is driven by a few 

high-leverage outlier sites that impact the prediction model performance.

Our study focused on short-term stationary campaigns with 28 repeat samples per site. We 

did not consider campaigns with fewer or more visits. As evident in SI Figure S2, the 

percent error in estimating the annual average from fewer than 25 visits is much higher, 

suggesting that site estimates will be considerably noisier in mobile campaigns with few 

repeat visits, regardless of the study design. Prediction model performance is thus likely to 

decrease as the number of visits per site decrease. Logistically, it is also difficult to achieve 

temporally balanced sampling with fewer than 28 site visits. Furthermore, we note that 

this study focused on a few generalizable, common designs in the literature, though other 

approaches have been taken.

In putting these results in context, it is important to recognize that in this simulation 

study we are using NOx hourly averages to approximate potentially shorter-term sampling 

durations that could be collected, for example, during a mobile monitoring campaign 

(e.g., a few minutes or less). Shorter duration sampling will affect the noise in the data. 

For comparison, however, our additional evaluations of minute-level data suggest that the 

decrease in percent error in going from two-minute to hour-long samples is at most a few 

percent because of serial correlation in the data. This thus gives us confidence that the 

findings from this work are still generalizable to more common, shorter-term stationary 

monitoring campaigns with sampling periods closer to a few minutes.

Further, our study took place throughout California, a large, geographically diverse area with 

varying climate profiles (45). While such a large sampling domain would be challenging for 

a real-world monitoring campaign, the overall conclusions of this study – the importance of 

temporally-balanced sampling, are also supported in the Los Angeles-San Diego sensitivity 

analysis. In terms of the siting criteria for the regulatory monitoring sites where the data 

came from, locations are generally meant to capture representative population exposures, 

including near roadway, at various spatial scales ranging from microscales (< 100 m range) 

to regional scales in order to inform regulatory compliance (46,47). This should thus have 

provided us with decent spatial coverage and concentration variability. Many air pollution 

exposure studies intended for application to epidemiologic cohorts, in fact, rely on this 

network of regulatory monitors (48). Still, when compared to most short-term monitoring 

campaigns, this study’s larger domain and reduced exposure variability may have produced 

lower prediction model performances than would otherwise be expected.

Another distinction is that while we sampled measurements within sites at random, 

campaigns typically sample from sites along a fixed route or in a designated area. The actual 

sampling scheme will thus depend on the exact route developed and the number of platforms 

deployed, both of which are beyond the scope of this paper. In general, sampling along a 

route also induces some spatial correlation in the mobile monitoring data. This dependence 

is often overlooked in short-term monitoring campaigns and was not addressed in this 

study. Furthermore, we did not consider the importance of the distribution of sampling 
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locations in this study, which is particularly relevant when the exposure assessment goal is 

an epidemiologic application. Selecting sites that are representative of the target cohort’s 

residence locations will ensure the spatial compatibility assumption is met, which is an 

important way to reduce the role of exposure measurement error in epidemiologic inference 

(49).

Our evaluation focused on NOx, NO, and NO2, which are quickly and moderately decaying 

air pollutants (35). Campaigns that measure these pollutants may be more susceptible to 

sampling design than campaigns that measure less spatially- and/or temporally- variable 

pollutants such as PM2.5. We selected NOx, NO, and NO2 because these traffic-related 

pollutants are often measured in short-term campaigns, and data for these pollutants 

are more widely available. Non-criteria pollutants, for example ultrafine particles (UFP), 

however, have also received increasing attention in recent years given their emerging link to 

adverse health effects (50–53). Still, high-quality information about their spatial distribution 

is essentially absent, and most studies have implemented short-term mobile sampling 

approaches that may not be temporally (54) balanced and potentially be misleading for 

application to epidemiologic inference.

An important next step in this work is to understand whether the differences in exposure 

estimates that we observed across study designs have a meaningful impact on epidemiologic 

inferences. This is of particular interest considering that year-around, balanced designs are 

resource-intensive and rare, while shorter and more convenient designs are more common in 

the literature.

4.1 Conclusions and Recommendations for Mobile Monitoring Campaigns

Short-term monitoring study design should be an important consideration for campaigns 

aiming to assess long-term exposure in an epidemiologic cohort. Given the temporal 

trends in air pollution, campaigns should implement balanced designs that sample during 

all seasons of the year, days of the week, and hours of the day in order to produce 

unbiased annual averages. Nonetheless, restricting the sampling hours in balanced designs 

will still generally produce unbiased estimates at most sites. On the other hand, unbalanced 

sampling designs like those often seen in the literature are more likely to produce biased 

annual averages, with some sites being more biased than others. And while predictions 

from these restricted designs may at times perform similarly to balanced designs (or, 

more problematically, may erroneously appear to perform similarly when evaluated against 

measurements which are themselves biased samples), this performance may strongly depend 

on the exact sampling period chosen and may thus be difficult or impossible to anticipate 

prior to conducting a new sampling campaign. Furthermore, the differential exposure 

misclassification that may result from these designs may be problematic in epidemiologic 

investigations. Finally, studies that implement unbalanced sampling designs are likely 

to have hidden exposure misclassification given that both the observations and model 

predictions may be systematically incorrect. By implementing a balanced sampling design, 

campaigns can increase their likelihood of capturing accurate annual averages.
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Data Availability

Air pollution data are available through the EPA (https://www.epa.gov/outdoor-air-quality-

data). The covariates used in this analysis for regulatory sites are freely available through 

various online sources and may be available from the authors upon request.
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Impact Statement

Short-term monitoring campaigns to assess long-term air pollution trends are increasingly 

common, though they rarely conduct temporally balanced sampling. We show that this 

approach produces biased annual average exposure estimates that can be improved by 

collecting temporally-balanced samples.
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Figure 1. 
Best fit lines of cross-validated short-term predictions for 30 campaigns vs the gold standard 

predictions for NOx. Thin transparent lines are individual campaigns, colored by design 

version; thicker lines are the overall version trend.
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Figure 2. 
Site-specific NOx prediction errors for short-term designs (N = 30 campaigns) as compared 

to the gold standard predictions (long-term Balanced Design Version 1). Showing a stratified 

random sample of 12 sites, stratified by whether true concentrations were in the low (Conc 

< 0.25), middle (0.25 ≤ Conc ≤ 0.75) or high (Conc > 0.75) concentration quantile and 

arranged within each stratum with lower concentration sites closer to the bottom.
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Figure 3. 
Model performances (MSE-based R2, Regression-based R2, and RMSE), as determined 

by each campaign’s cross-validated predictions relative to: a) the true averages (long-term 

Balanced Version 1), and b) its respective campaign averages. Boxplots are for short-term 

approaches (30 campaigns), while squares are for long-term approaches (1 campaign).
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Table 1.

Simulated sampling designs used to estimate site annual averages.1

Design Sampling Seasons Sampling Days Sampling Hours

Year-Around 
“Balanced” Design

Winter, spring, summer, fall Mon – Sun V1 (All Hours)2
V2 (Most Hours): 5 AM –12 AM
V3 (Truncated Hours): 6–9 AM, 1–5 PM, 8–10 PM

5/7 weekday; 2/7 
weekend samples

Random hours according to V1, V2, or V3

Two-Season Weekday 
“Rush Hours” Design

V4–5: winter & summer (2 wks/ 
season)
V6–7: spring & fall (2-wks/season)

Mon – Fri 7–10 AM, 3–6 PM

Random Rush Hours according to V4–5 or V6–7

Two-Season Weekday 
“Business Hours” 
Design

V4–5: winter & summer (2 wks/
season)
V6–7: spring & fall (2 wks/season)

Mon – Fri 9 AM – 5 PM

Random Business Hours according to V4–5 or V6–7

1
“V” = version. See SI Table S1 for the exact sampling periods of the Business Hours and Rush Hours designs.

2
The long-term sampling approach for this version produces gold standard (true) estimates.
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