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Abstract
The cochlear implant (CI) is widely considered to be one of the most innovative and successful neuroprosthetic treatments 
developed to date. Although outcomes vary, CIs are able to effectively improve hearing in nearly all recipients and can sub-
stantially improve speech understanding and quality of life for patients with significant hearing loss. A wealth of research 
has focused on underlying factors that contribute to success with a CI, and recent evidence suggests that the overall health 
of the cochlea could potentially play a larger role than previously recognized. This article defines and reviews attributes 
of cochlear health and describes procedures to evaluate cochlear health in humans and animal models in order to examine 
the effects of cochlear health on performance with a CI. Lastly, we describe how future biologic approaches can be used to 
preserve and/or enhance cochlear health in order to maximize performance for individual CI recipients.

Keywords Auditory prosthesis · Cochlear electrical stimulation · Spiral ganglion neuron · Measures of cochlear implant 
function · Genetic and environmental deafness · Gene therapy for hearing loss

Introduction

Cochlear implantation is widely considered to be the most 
successful means to partially restore hearing in patients with 
significant hearing loss. As of 2019, over 700,000 patients 
had received cochlear implants (CIs) worldwide [1], and it 
is reasonable to expect that this number will continue to 
grow exponentially due to expanding candidacy criteria 
and efforts to educate referring providers regarding referral 
guidelines and candidacy [2–5]. The increased number of 
CI recipients has allowed researchers and clinicians to better 
understand the factors that contribute to the success of CIs 
as well as the limitations of the technology. While several 
factors are known to contribute to CI performance outcomes 
in children and adults including duration of hearing loss and 
age at implantation [6–10], developing methods to estimate 
and/or improve neural health of implanted ears is likely to 

enhance outcomes for many patients, which would reduce 
the incidence of sub-optimal performance.

“Cochlear health” as it is used in this review, is a com-
prehensive term that includes neural, sensory, and other bio-
logical factors that are known or suspected to be important 
for CI function. Examples of “measures of neural health” 
include spiral ganglion neuron (SGN) density, neuronal cell 
size, myelination, presence/absence of peripheral process, 
and synaptic function. “Sensory health” includes number 
and condition of inner hair cells (IHCs) or outer hair cells 
(OHCs). Other attributes, such as stria vascularis function, 
help to maintain cochlear hemostasis and therefore are also 
important to consider. Also, we discuss that the effects of 
anatomical and structural characteristics of the implanted 
cochlea influence outcomes; for example, the presence of 
fibrous tissue or new bone, congenital cochlear anomalies 
such as cochlear hypoplasia, common cavity, incomplete 
partition (IP), and enlarged vestibular aqueduct (EVA), 
might all affect outcomes or measures of cochlear health to 
some extent.

When CIs were initially approved by the Food and Drug 
Administration (FDA) in 1984, they were reserved for a 
group of patients with no residual hearing on a pure-tone 
audiogram and zero percent word recognition with the use 
of hearing aids [11]. The impact of cochlear health on per-
formance in early CI recipients was likely not very important 
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because the population was relatively homogeneous with 
regards to pre-operative audiometric and speech recognition 
data. It should be acknowledged, however, that post-operative 
performance still varied to some extent across subjects [12]. 
Present day FDA criteria have expanded to include adults 
with significant residual hearing pre-operatively via audio-
metric pure-tone thresholds and residual open-set speech rec-
ognition scores. Several studies have shown significant ben-
efit of cochlear implantation in patients with residual hearing 
function [13–16]. Thus, contemporary CI recipients are likely 
more heterogeneous with respect to pre-operative functional 
hearing [16], and it is logical that cochlear health factors, 
such as neural and sensory health, also vary across this group 
of patients. A better understanding of how cochlear health 
influences outcomes in CI recipients will help to advance 
technology used to reduce damage during implantation, 
develop biologically based therapies, and improve program-
ming protocols, which will ultimately improve outcomes.

In this review article, we will first define and review fea-
tures of cochlear health that are known or hypothesized to 
be particularly important for CI function and discuss what 
is known about cochlear health associated with common eti-
ologies of hearing loss. We then describe how to evaluate 
cochlear health using animal models and human subjects 
and examine its effect on performance with a CI. Lastly, we 
explore how biologic approaches can be used to preserve or 
even improve the cochlear infrastructure needed for optimal 
performance by individual CI users. While this paper exam-
ines effects of peripheral neural health on CI outcomes, it is 
of course certain that central encoding of information (and 
central neural health) also plays a role in CI outcomes and 
performance [17–27]. Further research shows that cogni-
tive function influences perception with a CI [28–32]. While 
these factors are important to acknowledge, the current paper 
focuses on peripheral cochlear function in CI patients.

Attributes of Cochlear Health Important 
for Electrical Hearing

Neural Health

Because a CI directly stimulates the auditory nerve, it is 
logical that the condition of the SGNs would play a key role 
in how sound is perceived using CI technology. The most 
common anatomical measure of neural health in human tem-
poral bones and in animal studies is SGN cell body survival. 
Typically, this is quantified as SGN density, (i.e., the number 
of SGN cell bodies in a cross section of Rosenthal’s canal, 
divided by the area of the region containing those cell bod-
ies). SGNs are classified as type I with several subtypes [33] 
and type II; they are differentiated by morphology, func-
tion, and innervation within the cochlea. Given that type I 

SGNs comprise at least 90% of the overall population, the 
remainder of the discussion below will focus on type I cells 
illustrated schematically in Fig. 1. Animal and human tem-
poral bone studies show that sensory (hearing) loss may be 
accompanied by degeneration of SGNs. In humans, there is 
evidence that this process can take several years, and likely 
occurs slower than the time course observed in most animal 
models [34–38]. Variation in SGN density across animal 
subjects has been shown to account for about 50% of the 
variance in simple psychophysical and electrophysiological 
measures of CI function [39–43], and those same functional 
measures have been shown to be predictive of speech rec-
ognition when applied across human subjects who use CIs 
[44, 45]. These specific functional measures of health will 
be reviewed in depth later in this paper. SGN density is a 
very useful anatomical measure of cochlear health, but it is 
likely that other anatomical features of the hearing-impaired, 
implanted cochlea are also of importance. Figure 2 shows 
a normal, healthy cochlea (a–c) and a deafened, implanted 
ear (d–f) for comparison. Figure 2d, f illustrate the location 
of the SGN components in relation to the location of a CI 
electrode array. The electrode array has been withdrawn but 
its previous location is evident from the empty space sur-
rounded by fibrous tissue and new bone.

One prominent feature of SGN health, which varies 
across etiologies of deafness or experimental treatments, 
is the condition of the peripheral processes. The normal 
type I SGN is a bipolar neuron with a peripheral process 
that extends peripherally from the cell body in Rosenthal’s 
canal to the base of the IHC and centrally to the cochlear 
nucleus (Fig. 1). The peripheral process is myelinated within 
Rosenthal’s canal and the osseous spiral lamina (OSL in 
Fig. 2a), ending with a short final segment extending to the 
IHCs that is not myelinated. In human cases of cochlear 
pathology, the peripheral process can die back to the cell 
body [46], although this does not always happen in some 
animal models [47, 48]. If the peripheral process has died 
back, the cell body can remain intact as a unipolar neuron 

Fig. 1  Schematic representation of type I spiral ganglion neurons in 
the context of their peripheral and central projections. The neurons 
are bipolar, with peripheral processes (b) that transport information 
from inner hair cells in the organ of Corti (a) via the cell bodies in 
Rosenthal’s canal (c) to the central processes (d), which then carry 
the information to neurons in the cochlear nucleus (e). Further details 
are provided in the manuscript text and in Fig. 2
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for an extended period of time; this has been observed in 
animal models [49, 50] and in human temporal bones [46, 
51]. Experimental and modeling studies suggest that the 
effects of peripheral process survival on CI function are 
potentially significant but complex [52, 53]. These effects 
are discussed later in this paper. Other morphological fea-
tures of the neural population including myelination and cell 
size can also vary in humans or animals with hearing loss, 

and these variables can potentially affect the responses to 
electrical stimulation [54, 55].

Wise and colleagues [56] administered an ototoxic drug 
cocktail to guinea pig ears to understand the effects of hair 
cell loss on SGN morphology and function, at 2, 6, and 
12 weeks following deafening. This preparation showed 
degeneration of the SGN peripheral fibers, which occurred 
prior to the degeneration of the cell body. These results 

Fig. 2  Some anatomical and structural features of the implanted 
cochlea that are potentially important for CI function. Images in the 
left column are from a control guinea pig cochlea (no implant or 
treatment) while those in the right column are comparable images 
from a guinea pig cochlea that has been deafened with neomycin 
and received a CI. All scale bars indicate 100  µm. a Cross section 
of control cochlea, showing stria vascularis (SV), locations of hair 
cells (HC) in the organ of Corti (OC), and positions of Rosenthal’s 
canal (RC), and the osseus spiral lamina (OSL) adjacent to the scala 
tympani (ST). b Higher magnification image showing the ordered 
arrangement of inner and outer hair cells (IHC and OHC) and sup-
porting cells (SC) in the OC. Distal ends of the myelinated portions 
of peripheral fibers (PF) of spiral ganglion neurons (SGN) can be 

seen in the OSL. c High magnification image showing dense packing 
of SGN cell bodies in RC and peripheral fibers exiting RC and enter-
ing the OSL. d Cochlea of a deafened and implanted guinea pig. The 
complexly structured organ of Corti has been replaced by a flat epi-
thelium (FE), a simple sheet of thin cells, and the densities of SGNs 
and PFs are greatly reduced. The scala tympani is filled with fibrous 
tissue (FT) except for the space previously occupied by the implant 
(I). The dark regions embedded in the FT are regions with new bone. 
e High magnification image showing the simple structure of a flat 
epithelium and a few surviving peripheral fibers in the OSL. f High 
magnification image showing sparse surviving SGN cell bodies, some 
with uneven margins (*), suggesting abnormal cellular function
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provide evidence that, at least in some cases, the cell bodies 
can remain relatively intact in the presence of degeneration 
of the peripheral process. Two key findings were present 
with respect to myelination: (1) that myelination degenera-
tion had sometimes occurred in 6- and 12-week deafened 
animals and (2) that the axoplasm often degenerated leav-
ing behind a myelin sheath. In contrast, Ramekers and col-
leagues [50] deafened guinea pigs with a procedure similar 
to that used by Wise and colleagues, but they found simul-
taneous degeneration of SGN peripheral processes and cell 
bodies instead of the sequential degeneration observed by 
Wise and colleagues described above [50]. However, in a 
subsequent experiment [57], they found that if animals were 
treated with a neurotrophin (BDNF via an osmotic pump) 
2 weeks after deafening, there was significant survival of 
SGN cell bodies and central axons, but less robust survival 
of peripheral processes. Further studies are needed to better 
explore the sequence and timing of degeneration of neu-
ronal structures and the underlying factors contributing to 
the demise or survival of these structures.

Simultaneous versus sequential degeneration of SGN 
fibers is important to CI stimulation because there is some 
evidence that the site of excitation along the SGN will dif-
fer depending on electrical current stimulus parameters and 
pulse shape [52, 58, 59]. For example, modeling studies 
propose that when the auditory nerve is healthy, and the 
peripheral process is present, cathodic stimuli are prefer-
ential; cathodic-leading biphasic pulses, similar to those 
used for CI stimulation, are those with a negative leading 
phase (Fig. 3c). In the case of poorer neural health (i.e., 
degenerated peripheral process), the site of excitation is the 
cell body, which is preferentially excited by anodic stimuli; 
anodic-leading biphasic pulses are those with a positive 
leading phase (Fig. 3). Single-unit recordings of healthy 
SGNs show that the site of excitation at threshold occurs at 
the peripheral process (if present) and moves to the axonal 
region at higher stimulation levels. Latency characteristics 
also change with an increase in stimulus level [52]. There-
fore, the anatomy of the SGN fibers and stimulation level 
(charge) should influence the site of excitation, and degen-
eration would affect stimulation properties.

Sensory‑neural Health

Early CI candidates had profound bilateral sensorineural 
hearing loss and often no residual hearing at the limits of 
audiometric testing. Based on temporal bone studies in 
humans with profound hearing loss [60], it can be assumed 
that for these early CI candidates, survival of OHCs and 
IHCs was quite poor. Over the past 30 years, candidacy cri-
teria have expanded to include adult and pediatric patients 
with good pre-operative acoustic hearing levels, particularly 
in the lower frequencies while hearing levels in the high 

frequencies fall within the severe to profound hearing loss 
range [16]. Pre-operatively, contemporary candidates often 
demonstrate audiometric thresholds ranging from within 
normal limits, to moderate or moderate-to-severe in the low 
frequencies. These candidates likely exhibit a higher propor-
tion of residual hair cells and supporting cells compared to 
those with significant and long-term hearing loss prior to 
implantation [61]. Several studies demonstrate that there can 
be variation in residual hearing or implant function that is 
independent of the level of hair cell survival [46, 62]. There 
is much research outlining the advantages of CI technology 
in patients with residual hair cell function and post-operative 
acoustic hearing, particularly for those with sufficient post-
operative residual hearing who are able to take advantage of 
electro-acoustic stimulation (EAS) (e.g., acoustic stimula-
tion of low frequencies and electrode stimulation of high 
frequencies, within the same ear) [63–65]. A focus on EAS 
benefit and processing is beyond the scope of this paper; 
however, here we provide a brief explanation of how sensory 
health might affect CI stimulation in the electric-only and 
EAS conditions.

Post-operatively, some adult and pediatric patients, as 
well as various animal models, continue to demonstrate 
residual acoustic hearing to various degrees [40, 66–69]. 
Therefore, it can be assumed that hair cell function as well as 
basilar membrane mechanics is at least somewhat preserved 
in this cohort. Insertion of the electrode has been shown to 

a b

c

Fig. 3  Schematic of a biphasic pulse, similar to those used in several 
cited studies. Within each pulse, the shaded gray area is the cathodic/
negative phase, and the grey striped area is the anodic/positive phase. 
The solid red horizontal line represents the location of the interphase 
gap (IPG). a A cathodic-leading biphasic pulse. b The same a but 
with a longer IPG duration. Specific ECAP measurements such as 
the threshold, amplitude, slope, or latency of the amplitude-growth 
function change as the IPG duration increases (IPG Effect = differ-
ence between 3a and 3b). c An anodic-leading biphasic pulse. Spe-
cific ECAP measures previously mentioned might also change with a 
changing leading polarity phase (polarity effect = difference between 
Fig. 3a, c)
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create intracochlear trauma, particular to the IHCs, OHCs 
(even those apical to the electrode), and peripheral pro-
cesses, while the supporting cells are less affected although 
in some cases a flat epithelium is present [70]. Even in the 
absence of measurable acoustic hearing via traditional air-
conduction audiometry, it is possible that sensory cells 
are still present and relatively intact in some patients. In 
such cases, the insertion of the electrode array could poten-
tially affect basilar membrane mechanics to the extent that 
mechanosensory transmission is disrupted, yet the sensory 
cells are still present and healthy to some extent [71–74]. If 
insertion trauma sufficiently disrupts cochlear mechanics, 
perception evoked by an acoustical stimulus would not be 
possible, but the sensory cells would still be receptive to 
electrical stimulation. Although recent evidence suggests 
that there might be little effect of doing so [62], healthy 
IHCs could be directly stimulated by the electrical stimu-
lus or indirectly stimulated via residual basilar membrane 
mechanics (if intact) causing them to release transmitter and 
stimulate the auditory nerve (“electrophonic” response) [52, 
75–77]. These studies show complex interactions between 
electroneural and electrophonic stimulation, and potential 
masking of the electroneural signal. These interactions 
are not yet well understood, but they could certainly lead 
to more complicated sound perception in contemporary CI 
recipients [52, 78–80].

Furthermore, the presence of hair cells in the implanted 
cochlea can have important effects on the function of the sur-
viving auditory neurons by generating “spontaneous activ-
ity” in the nerve. In a deaf ear, the auditory nerve tends to 
be silent in the resting state, so an electrical stimulus from 
the CI will cause all of the neurons within its receptive field 
to fire synchronously. In contrast, if IHCs are present and 
there is spontaneous activity in the nerve fibers, some fibers 
will be in a refractory state at the time that the electrical 
stimulus is delivered, so they will not respond to the electri-
cal stimulus. Thus, the ensemble response of the nerve will 
be reduced but be more stochastic and thus more natural 
[81–83].

There has been significant debate regarding the interde-
pendence of sensory and neural structures following insult, 
disease, or injury to the cochlea [84]. Collectively, results 
have shown that the interdependence might be influenced by 
the pathology and/or species; but it is clear that neural and 
sensory health can certainly vary independently. Historically, 
it was presumed that IHCs were important for SGN survival 
given that they provide neurotrophic support, and that fol-
lowing injury to the cochlea, hair cells would become quickly 
and easily damaged, soon followed by SGN loss. However, 
post-mortem temporal bone studies in humans show that 
SGNs can persist for decades in regions of the cochlea 
where hair cells are no longer present [61, 85]. Limited evi-
dence from animal studies generally supports these findings. 

Specifically, the diphtheria toxin receptor (DTR) mouse [86] 
has the human DTR gene under control of Pou4f3, a hair-
cell specific transcription factor. Studies in adult DTR mice 
show near complete preservation of SGNs is possible even 
in the complete absence of hair cells [47, 48, 86]. In two 
different mouse models, hair cell loss is neither correlated 
nor collocated with a SGN loss in the cochlea at least for 
2–3 months after deafening [48, 84]. Preservation of the neu-
rons after IHC loss is likely a result of neurotrophins that are 
secreted by the supporting cells. Hearing loss induced by 
some ototoxic drugs is associated with a rapid loss of hair 
cells, which is quickly followed by SGN degeneration even 
when supporting cells survive [87, 88]. McFadden et al. [88] 
noted intact supporting cells (Deiters’ and pillar) for several 
weeks post administration of ethacrynic acid and gentamicin 
in the chinchilla, at which point much of the SGN and hair 
cell populations were degenerated.

The importance of the work discussed in this section as it 
relates to cochlear implantation is the notion that the condi-
tion and degeneration of SGNs and sensory cells can dif-
fer substantially within and across ears. Depending on the 
species and etiology of hearing loss, attributes of cochlear 
health might degenerate in quick succession, but in other 
instances changes might present more independently of one 
another. Taken together, it is important to understand the 
effects of both sensory and neural elements to CI function 
given that their interdependence might vary widely based 
on multiple factors.

Non‑neural Features of Cochlear Health

There are several non-neural factors related to neural 
and sensory health that are important to consider with 
regard to CI function. The health of neural and sensory 
cells within the cochlea is maintained, at least in part, by 
regulatory mechanisms that help to support homeostasis 
[89–92]. Proper function of the stria vascularis is necessary 
in order to maintain the endocochlear potential and hair 
cell transduction. Although it is unclear if stria function 
directly affects perception with a CI, studies have shown 
that damage to the stria vascularis during electrode inser-
tion does disrupt cochlear homeostasis and contributes to 
post-operative changes in acoustic residual hearing in the 
animal model [93, 94]. Specifically, these studies showed 
that threshold changes of up to 40–50 dB post implantation 
were not directly related to changes in any anatomical fea-
ture other than to the stria vascularis. These studies found 
that post-operative changes in acoustic residual hearing 
were associated with reduced stria vascularis blood ves-
sel density, but not to hair cells counts or SGN density. 
Although not yet tested directly, it is logical that damage 
to the stria would be more prevalent in lateral compared to 
perimodiolar arrays.
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Several other studies note intracochlear changes follow-
ing insertion of the electrode array, which could poten-
tially disrupt homeostasis and perception of electroneural, 
electrophonic, or acoustical stimulation. Temporal bone 
studies in humans often reveal either fibrous or bony tis-
sue surrounding the electrode array [37, 38, 95–98], and 
the prevalence and degree of post-operative ossification 
increases in patients with an abnormal insertion (e.g., “tip 
roll over”) [99]. Likewise, similar post-operative changes 
related to tissue growth have been noted in animal models 
of cochlear implantation [100, 101]. Related studies in 
animals and humans have postulated that post-operative 
growth of tissue and bone in the scala tympani occurs sub-
sequent to an influx of an immune response due to trauma-
induced inflammation. For example, a few studies have 
noted the active role of macrophages following cochlear 
implantation [96, 102]. Figure 4a–c, and d illustrate the 
range of variation in the presentation of post-operative 
tissue growth observed during histological examination 
of 52 cochlear implanted guinea pigs [101]. The tissue 
arising from implantation varied from a thin band to thick 
layers of fibrous protein with zero to large amounts of 
bone. A review of early studies revealed how biocompat-
ibility of materials can also influence intracochlear dam-
age and inflammatory responses, which could also lead 
to both residual loss of hearing and growth of tissue and 
bone [103].

It has been hypothesized that abnormal and substan-
tial tissue growth within the cochlea, either before or after 
electrode insertion could lead to a loss of residual hearing, 
hair cells, SGNs, and support structures [101, 104, 105]. In 
humans, post-mortem temporal bone studies provide con-
flicting evidence. Some findings point to overall decreased 
SGN and IHC counts in ears with ossification along with 
collocation of the greatest ossification with lowest remain-
ing SGN densities while other studies contradict these find-
ings and show good SGN survival in some ears with sig-
nificant ossification [106–109]. One explanation for these  
mixed findings could be that the trauma-induced immune 
response, or the trauma itself, which likely varies in each 
case, could also affect survival of SGNs. To investigate the 
relationship between intrascalar tissue and SGN density, the  
52 animals examined by Swiderski et al. [101] were divided 
into three implantation and treatment groups (1, implant 
only no deafening treatment; 2, neomycin deafened and 
implanted; and 3, neomycin deafened + neurotrophin treat-
ment + implant), and the density of tissue between the 
implant and Rosenthal’s canal was scored in three levels 
(low, medium, and high). Results shown in Fig. 4e illustrated 
the expected differences in SGN density between procedures 
(F(2,43) = 64.99, p < 0.001), and more important, showed that 
variation in SGN density within treatment groups was inde-
pendent of the variation in density of the intrascalar tissue 

(F(4,43) = 0.127, p = 0.972) (for additional statistical analysis, 
see Swiderski et al. [101]).

Lastly, several studies reveal that, although the intended 
placement of the electrode array is within the scala tympani, 
the array often translocates into the scala media or vestibuli 
[110–113]. However, these studies also reveal that adequate 
speech recognition remains possible even when the electrode 
is placed in the scala vestibuli. Translocation of the elec-
trode array could potentially cause damage to the neural and 
sensory elements [114–119], and it is possible that trauma 
induced by an electrode translocation or tip-foldover, would 
induce an immune response and possibly an increased accu-
mulation of tissue surrounding the electrode array. Translo-
cation of the electrode array is more common for perimo-
diolar (42%) compared to lateral (11%) arrays [120], and 
the incidence of tip fold-over is about 1–2% [121]. Taken 
together, it is possible that etiology of hearing loss and/or the 
trauma subsequent to electrode insertion could potentially 
disrupt cochlear homeostasis, which could in turn influence 
the health of neural and sensory elements.

Cochlear Health and Hearing‑loss Etiology

SGN density, the condition of the peripheral processes, 
myelination, cell size, and other potentially important coch-
lear health attributes in the deaf ear, depend on the specific 
etiology of hearing loss in humans or on the specific treat-
ments used in animal models of hearing loss. Studies show 
some correlation between etiology and outcome, along with 
a large variability within each cohort [122, 123]. It is esti-
mated that 30% of congenital hearing losses are syndromic, 
while the remainder are non-syndromic genetic causes of 
hearing loss. Some etiologies entail mutations to genes that 
affect the hair cells directly (ACTG1, CDH23, LOXHD1, 
MYO15A, MYO6, MYO7A, OTOF), while others affect sup-
porting cells (GJB2, CCDC50), SGNs (PMP22), or some 
combination of these (TMPRSS3, CHD7). Among patients 
with congenital hearing loss, approximately half are attrib-
uted to genetic etiology [124]. Mutations in the GJB2 gene, 
which encode the connexin 26 (Cx26) protein, are among 
the most common causes of congenital hearing loss [125]. 
Humans with GJB2 deafness usually perform well with a 
CI indicating that their SGNs are relatively intact and func-
tional. In contrast, most mouse models of Cx26-related deaf-
ness reveal that the SGNs degenerate very early [126–129] 
although a more recent model with inducible conditional 
deletion of GJB2 presents a less severe phenotype [130]. 
Nadol [37] used post-mortem temporal bone studies to show 
average SGN densities in humans with various etiologies 
of hearing loss; these findings show that humans with sud-
den idiopathic hearing loss or aminoglycoside ototoxicity 
exhibit near normal counts of SGNs. Conversely, those with 
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postnatal viral labyrinthitis or bacterial labyrinthitis demon-
strate significantly lower SGN counts [37].

Another common congenital hearing loss etiology which 
affects approximately 5–15% of children with hearing loss is 
enlarged vestibular aqueduct (EVA). In these patients, EVA 
is considered to be related to the underlying deficiency of 
pendrin, which is an anion exchange protein expressed in 

the inner ear and is important for maintaining homeostasis 
and regulation of endolymph [131, 132]. These patients typi-
cally present with progressive hearing loss and are shown to 
have good outcomes when undergoing cochlear implantation 
in a timely manner [133]. In fact, studies generally show 
positive outcomes for patients with etiologies that do not 
include abnormalities in the auditory nerve whereas poorer 

Fig. 4  Examples of intrascalar 
tissue formation and SGN den-
sities found in three guinea pig 
models differing in treatment 
and implantation procedures: 
animals implanted in a normal-
hearing ear; animals deafened 
by local infusion of neomycin 
and then implanted; and animals 
deafened with neomycin, treated 
with neurotrophin to help 
preserve SGN cell bodies, and 
implanted. The photomicro-
graphs (a–d) demonstrate the 
variability in density and type 
of intrascalar tissue observed in 
these animal models. a Minimal 
tissue. b More extensive tissue 
with patches of bone (dark 
stain and laminated) and dense 
fibrosis (lighter and unlami-
nated). c Similar to “b,” but 
with dense fibrosis between the 
implant and the spiral ganglion. 
d Implant completely sur-
rounded by bone that fills most 
of the scala. Arrows indicate 
patches of dense fibrosis (green) 
and bone (magenta) in the 
intrascalar tissue. Blue lines 
indicate the region of interest 
(between Rosenthal’s canal and 
the area previously occupied by 
the implant) in which intras-
calar tissue development was 
scored (low, medium, high). 
Bar = 200 µm. e Results for each 
individual in each treatment 
group, illustrating the across-
subject variability in SGN 
density near the implant and 
intrascalar tissue classifications 
in the region of interest. Special 
cases of intrascalar tissue are 
indicated by marks inside  
the symbols (black + = no 
visible intrascalar tissue, 
white-= bone surrounding the 
implant filled the remaining 
space in the scala tympani). 
This figure is a combination of 
Figs. 2 and 4 from Swiderski 
et al. [101], reproduced with 
permission from the publisher
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outcomes are associated with etiologies known to specifi-
cally affect the neural elements [122, 123].

Auditory neuropathy spectrum disorder (ANSD) often 
involves specific demyelination of the auditory nerve, and 
outcomes among CI recipients with ANSD are mixed likely 
due to variations in the specific site of lesion [134]. Diseases 
associated with demyelination of the peripheral nervous sys- 
tem such as Charcot Marie Tooth (CMT) [135] are also 
associated with abnormal auditory nerve function as evi-
denced by auditory brainstem response (ABR) testing [136]. 
PMP22 mutations which cause CMT are known to primarily 
influence Schwann cells, leading to abnormal interactions 
between Schwann cells and axons [137]. Further studies 
using an existing mouse model may help elucidate the path-
ological mechanism in CMT and design treatments [138]. 
Patients with CMT who undergo cochlear implantation 
show mixed outcomes [139, 140]. Likewise, children born 
with cochlear nerve deficiency (CND), otherwise known 
as cochlear nerve hypoplasia, often have poorer outcomes 
and sometimes are unable to develop spoken language even 
when implanted at an appropriate age [141].

Specific etiologies of hearing loss are also associated 
with the accumulation of tissue in the scala tympani. Spe-
cifically, meningitis and sudden hearing losses caused by 
viral labyrinthitis often exhibit abnormal ossification of the 
otherwise typically fluid filled spaces in the cochlea, even 
prior to insertion of the cochlear-implant electrode array 
[106, 142]. Severe cases of ossification require additional 
drilling during electrode insertion, or in some cases insertion 
into a less-ossified portion of the cochlea such as the scala 
vestibuli [143]. It is logical that the medium surrounding the 
electrode would systematically influence impedance during 
electrical stimulation; however, the relationship does not 
seem to be straightforward [97, 144]. Patients who received 
a CI subsequent to meningitis require an increased stimulus 
amplitude to induce effective stimulation, and demonstrate 
higher impedances [145], and in the cases of severe ossifica-
tion, outcomes with cochlear implantation can be quite poor 
[146]. Poorer outcomes when significant ossification is pre-
sent are also affected by placement and/or limited insertion 
of the electrode array as well as duration of hearing loss and 
concomitant neurological involvement [147].

Evaluating the Effects of Cochlear Health 
on Cochlear Implant Function

Different types of studies help us to better understand how 
cochlear health influences CI function. Early studies in 
humans involved analysis of post-mortem temporal bone 
histology in order to better describe the condition of the 
human implanted ear [36–38, 148–150]. These early studies 
examined how structural conditions of the cochlea grossly 

relate to CI outcomes using word recognition scores but 
resulted in mixed findings. A recent meta-analysis collec-
tively revealed a lack of correlation between SGN density 
and word recognition scores, using post-mortem temporal 
bone studies [151].

Animal studies, often using guinea pigs, rats, mice, or 
gerbils, can help to more precisely describe the relation-
ship between cochlear health and its influence on electri-
cal hearing using non-speech stimuli. These studies used 
various electrophysiological or psychophysical measures 
in implanted animals, and then compared those measures 
directly to histological findings. For comparison of histolog-
ical results to functional measures, animal models have the 
advantage of better preservation of the temporal bones, and 
the ability to monitor the stability of the functional measures 
up to the time of euthanasia. Animal models utilize a variety 
of methods to achieve hearing loss similar to that found in 
human CI users. These include implantation in a hearing 
ear, deafening the ear with aminoglycoside antibiotics, and 
deafening followed by neurotrophin treatment to reduce the 
degeneration of SGNs [40, 43, 101]. Using multiple pro-
cedures, one can achieve a large range of SGN densities 
across a population of animals, and there is also considerable 
across-subject variation in SGN density for any given pro-
cedure (e.g., Fig. 4e). There is also considerable variation in 
other features of cochlear health including survival of IHCs 
and peripheral processes.

However, animal models fail to help us understand how 
the condition of the cochlea affects speech recognition out-
comes. Fortunately, many of the electrophysiological or psy-
chophysical measures that are made in cochlear implanted 
animals can also be assessed in human CI users. Therefore, 
we can estimate the health of an implanted human ear using 
the measures that have known relationships to cochlear 
health in animals and then directly compare those results 
to speech recognition outcomes or perception of complex 
speech-like sounds. We can also use those measures to help 
us understand how to improve biological conditions in the 
cochlea or alter programming to improve CI performance. 
Here, we focus on recent studies that have used electro-
physiological and/or psychophysical measures in cochlear-
implanted animals, and how they relate to cochlear health; 
we call those measures “functional measures.” Then, we 
review how we can apply those same functional measures 
to help us better understand how cochlear health influences 
perception of complex speech signals in cochlear-implanted 
humans.

Changes in Functional Measures of Cochlear Health 
Over Time

We have observed large f luctuations in functional 
measures (psychophysical detection thresholds and 
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electrophysiological measures) over time, particularly in the 
months after implantation. Often, the sensitivity to electrical 
stimulation declines over days after implantation and then 
slowly improves over the course of several weeks. Psycho-
physical detection thresholds for electrical stimulation typi-
cally increase during the first week or two after implantation 
and gradually return to low levels and then remain stable. 
Slopes of electrically evoked compound action potential 
(ECAP) amplitude growth functions (AGFs) decline over 
the first weeks after implantation and then “recover” becom-
ing steeper and then stabilizing (Fig. 5a, b). These changes 
in response to electrical stimulation over time after implan-
tation have been seen in non-human primates [152, 153], 
guinea pigs [41, 154], and mice [155]. Examples of changes 
in objective electrophysiological responses are shown in 
Fig. 5. Once the functional measures have recovered from 
the initial effects of implantation and other treatments, they 
typically remain stable for long periods of time. It is impor-
tant to demonstrate that they are stable up to the time of 
euthanasia and histological analysis if the goal is to relate 
structure to function.

Functional Measures of Cochlear Health in Animals 
and Humans

Electrically Evoked Compound Action Potentials 
(ECAPs) Early studies showed that SGN density was posi-
tively and significantly correlated with the slope of the 
electrically evoked auditory brainstem response (EABR) 
AGF as well as its peak-amplitude [156, 157]. The EABR 
wave I is analogous to the ECAP, a measure frequently used 
in the clinic with CI patients both intra- and post-opera-
tively. Subsequent studies have shown that attributes of the 
ECAP response are correlated with SGN densities [40–43, 
158, 159]. The results in Fig. 6 [42] show the relationship 
between SGN density and ECAP measures in a group of 
34 cochlear-implanted guinea pigs that underwent one of 
three treatments. Nine of the animals received an implant in 
a normal-hearing ear (highest SGNs). Two of the animals 
were deafened using neomycin delivered into the perilymph. 
Neomycin typically causes hair cell loss and an almost com-
plete loss of SGNs and produces other morphological and 
physiological changes in the cochlea [160]. Twenty-three of 
the animals were deafened with neomycin, and then received 
neurotrophin treatments (AAV.BDNF or AAV.Ntf3) that 
helped to protect the SGNs from ototoxic effects of the neo-
mycin [43, 161, 162]. The results shown in Fig. 6a–c (left 
column) are similar to results reported by others [40, 43, 
156, 157] and demonstrate that the ECAP AGF slope, peak 
amplitude, and latency of the N1 response are positively and 
significantly correlated with residual SGN density across the 
animals. Related work in acutely implanted guinea pigs has 
shown that a loss of SGN fibers can affect temporal recovery 

time constants assessed using ECAP masker-probe paradigm 
and by examining the alternating pattern of ECAP amplitude 
in response to each pulse [159].

We and others have also examined how ECAP AGF 
amplitude, slope, and latency change as the interphase gap 
(IPG) is increased (ECAP “IPG Effect”). The underlying 
contributions to the IPG Effect are not yet well understood, 
but theoretically would relate to the ability of the stimu-
lated cell to recover from depolarization which would likely 
be affected by overall neural health as reviewed in previ-
ous literature [40, 163]. Previous studies have shown that 
increasing the IPG results in a reduction in the thresholds of 
auditory nerve fibers [164], and typically causes an increase 
in loudness perception [165]. While not completely under-
stood, the IPG Effect is thought to be dependent on mem-
brane characteristics, and thus reflect temporal response 
properties of the auditory nerve [166].

Similar to ECAP measures using a fixed IPG, SGN den-
sity and cell size in cochlear-implanted guinea pigs account 
for a significant proportion of variance (about 40–60%) when 
measuring the IPG Effect for ECAP amplitude and slope 
(Fig. 6d, e), but not latency (Fig. 6f) [40, 42]. Similarly, 
it has been observed that the charge required to evoke an 
equal-amplitude ECAP when using a short or long IPG also 
correlates with SGN density in acutely implanted guinea 
pigs [158]. It is proposed that, while the IPG Effect might 
be affected by temporal response properties of the auditory 
nerve, it also reflects SGN density based on these animal 
studies. Given that the IPG Effect is a measure performed 
within the same channel/electrode, it could be advantageous 
to use, when compared to ECAPs measured with a fixed 
IPG, as it should be less influenced by non-neural conditions 
that vary across the electrode array (e.g., electrode imped-
ance, fibrous growth, electrode position) [113]; more on this 
topic is discussed later in this paper.

Most of the work looking at how cochlear health influ-
ences ECAPs has focused on the single attribute of SGN 
density. However, some work has shown that health of the 
IHCs also influences characteristics of the ECAP response. 
Hu and colleagues [83] measured ECAP responses in nor-
mal-hearing guinea pigs, and then used furosemide to tem-
porarily disable hair cell function and examined the change 
in ECAP responses. When hair cell function was disabled, 
ECAPs exhibited steeper peak amplitudes and slopes. Fur-
thermore, temporal characteristics also changed as adapta-
tion, magnitude of amplitude alteration (using successive 
pulses), and refractoriness increased. The authors concluded 
that hair cells helped to provide desynchronization of the 
auditory nerve response, which could be advantageous to 
electrical hearing. Further work is needed to better quantify 
how other cochlear health attributes, such as demyelination, 
affect CI function and to characterize demyelination using 
ECAP responses.
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a b

c d

e f

Fig. 5  Changes over time after treatment and implantation in electri-
cally evoked compound action potential (ECAP) amplitude-growth 
functions (AGFs). Left column shows ECAP AGFs (input–output 
functions) for individual days post implantation (see inset), and the 
right column shows the slopes of the steeper part of the AGFs (µV/
µA) as a function of post-implantation time. In long-term implanted 
animals, the magnitudes of the AGF slopes are typically positively 
correlated with SGN survival. a, b From a guinea pig implanted in a  
hearing ear. ECAP AGF slopes decrease over time after implantation  
and then recover to steeper levels and then stabilized. At the time 
of euthanasia, this animal had good nerve survival. Figure c,  d  

show similar results obtained from an implanted mouse except that 
the electrophysiological recordings were not begun until 8 days after 
surgery and proceeded to only 42 days after implantation. This ani-
mal also had good nerve survival at the time of euthanasia. e, f From 
a guinea pig that was deafened and treated with an empty adeno-
associated virus at the time of implantation. AGF slopes decreased 
over time after implantation but showed no recovery. This animal 
showed poor nerve survival at the time of euthanasia. Parts of this 
figure have been published previously and are reproduced here with 
permission: c from Colesa et  al. [155] and e, f from Pfingst et  al. 
[154]
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ECAPs can be easily measured in the clinical setting but 
have been typically limited to measuring ECAP thresholds. 
However, research shows that ECAP thresholds provide 
rather poor correlation with behavioral programming levels 
[167–169] do not necessarily reflect cochlear health in ani-
mal models [40], and are not related to speech understand-
ing with a CI [170]. Supra-threshold measures, such as the 
AGF slope and peak amplitude or N1 latency, which have 
been shown to reflect cochlear health, are not typically used 
in the clinical setting. Collectively, there is mixed evidence 
when examining the relationship between supra-threshold 
ECAP measures and speech recognition performance in 
CI users [170]. Some studies show a relationship between 
ECAP peak-amplitude or slope using a fixed IPG and pho-
neme or sentence recognition performance [171–173], and 
other studies show no relationship between ECAP measures 
and the speech recognition outcomes [174]. We propose that 
these discrepancies are due, at least in part, to variables such 
as central auditory processing and cognition that contribute 
to speech recognition performance but vary among CI listen-
ers [25, 26, 30, 175, 176]. These findings and factors empha-
size the advantages of using within-subject designs [44, 
177]. Figure 7a shows results from a study that examined 
the relationship between ECAP suprathreshold measures 
and speech recognition [45]. Within a bilaterally implanted 
listener, the ear with a higher average ECAP IPG Effect for 
AGF linear slope across the electrode array also had better 
speech recognition. These findings show that for each CI 
user, the ear estimated to have a higher density of SGNs 
was also the ear that could more accurately process complex 
speech signals, such as sentences in noise; this finding was 
statistically significant.

It has been observed that ECAPs can be useful to cap-
ture differences between populations that may be related to 
differences in cochlear health. For example, a recent study 
showed that pediatric patients with CND had smaller ECAP 
peak amplitudes and shallower AGF slopes when compared 
to children without CND [178]. Another study found that 
CI patients with Cx26-related deafness had larger ECAP 
amplitudes and steeper ECAP AGF slopes when compared 
to non-Cx26 (EVA) patients, suggesting better neural sur-
vival in patients with connexin-related deafness [179]. These 
findings could help to explain why patients with connexin-
related deafness tend to perform quite well with CIs, par-
ticularly when implanted at an early age [180–183]. Jahn and 
Arenberg [184] reported steeper AGF slopes and amplitudes 
in adult patients who were implanted in childhood, com-
pared to adult patients implanted in adulthood. The same 
study found a similar pattern for the IPG Effect for ECAP 
amplitude, but not for slope or threshold [184]; none of these 
ECAP measures were correlated with vowel recognition. 
These studies help to support animal data that shows that 
specific ECAP measures can be useful to estimate cochlear 

health in humans, and particularly when large disparities in 
cochlear health are expected between two groups. However, 
within subject designs are ideal when comparing ECAP 
measures to speech recognition performance with a CI.

Recent work from our laboratory examined the effects 
of medial–lateral electrode distance on ECAP measures in 
human CI users [113]. Specifically, we found that ECAP 
AGF slopes (a suprathreshold measure) increased with 
increasing distance between the electrode and mid-modiolar 
axis when ECAPs were measured using a fixed IPG. A more 
recent study also reported somewhat similar findings [185]; 
specifically, they reported that the ECAP thresholds, but not 
necessarily suprathreshold (e.g., AGF slope) ECAP meas-
ures were correlated with medial–lateral distance. The IPG 
Effect for ECAP thresholds and AGF slope were independ-
ent of these factors. It is possible that IPG Effect measures 
are better suited for human application, given that electrode 
location differs in humans both within and across ears [110, 
111, 113, 186–189].

A novel and promising ECAP measure, called the “pano-
ramic” ECAP (PECAP) was developed to take into account 
neural and non-neural factors [190]. The panoramic PECAP 
is examined by taking the ECAP amplitude for every probe 
and masker combination across the entire length of the 
electrode array, which theoretically provides information 
regarding not only the neural survival but electrical current 
field overlap/interaction; the latter of which would also be 
affected by distance between the electrode and the neural 
population. While this measure does show some prom-
ise when compared to other physiologic data measured in 
humans, it has yet to be validated using an animal model. 
Using computer modeling, Garcia et al. [191] showed that 
PECAP measures in humans could correctly identify simu-
lated neural cochlear dead regions. This study also compared 
PECAP measures to a neural health estimate using low-rate 
detection thresholds as well as medial–lateral electrode 
distance as measured via post-operative imaging. Results 
across subjects are highly variable and do not show a clear 
relationship between the PECAP measure and neural health 
estimates nor medial–lateral distance of the electrode for 
most CI users evaluated.

Ensemble Spontaneous Activity (ESA) Another useful elec-
trophysiological measure of cochlear health is ensemble 
spontaneous activity (ESA). This activity can be recorded 
from an electrode on the round window, or from one of 
the CI electrodes, in the absence of any external stimulus. 
Studies using guinea pigs [192, 193] have indicated that the 
presence of a spectral peak near 900 Hz in these record-
ings represents spontaneous activity at the level of the audi-
tory nerve. In cochlear-implanted guinea pigs, ESA can be 
recorded in cochleae with good IHC survival and high SGN 
density [39, 43, 66]. It is reasonable to assume that IHCs 
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generate spontaneous activity in the auditory nerve and that 
functioning auditory nerve fibers must be present in suffi-
cient quantities to generate measurable “ensemble” activity. 
Low levels of ESA have been observed in deaf guinea pigs 
suggesting very low levels of spontaneous activity in the 
auditory nerve in the absence of IHCs [43].

Electrocochleography Electrocochleography (an evoked 
potential elicited using acoustic stimulation), and in par-
ticular, the cochlear microphonic (CM), can also be used 
to assess the status of sensory health. The CM reflects 
contributions of the OHCs and IHCs, and reflects basilar 
membrane displacement at least in a normal hearing, non-
pathological ear [194, 195]. More recent work in cochlear-
implanted, noise-exposed animals showed the presence of 
CM when tested intraoperatively [114, 196]. Noise-exposed 
animals demonstrated decreased hearing, abnormal OHC 
morphology, and the absence of latency delays in CM 
recordings, suggesting that residual OHCs were contrib-
uting to CM responses in noise-exposed animals [196]. 
Results from these studies and others [197] suggest that 
CM measures can be used in the clinical setting in order to 
monitor residual hearing and/or residual hair cell function 
either intra- or post-operatively. A recent paper by Tejani 
and colleagues examined CM and auditory nerve neuro-
phonic (ANN) responses in seven patients with residual 
hearing immediately post-implantation, but who demon-
strated a progressive hearing loss over several months post-
implantation. The ANN is a sustained phase-locked neural 
response, also measured via electrocochleography. There is 
evidence among these patients that the CM remains present 
to some extent, even when residual hearing cannot be meas-
ured behaviorally via standard audiometry [74]. In the same 
study, patients with present CMs had no ANN responses. 
Hence, electrocochleography responses could be useful to 
help better understand individual contributions of sensory 
and neural components to CI function, particularly among 
patients with significant residual, acoustic hearing either 
before or after CI surgery.

In humans, intraoperative electrocochleography is predic-
tive of post-operative speech recognition with a CI, likely 

reflecting preserved hair cell function and associated pre-
served neural health across the electrode array. Among pedi-
atric patients, intraoperative electrocochleography measures 
accounted for 32% of the variance in post-operative word 
recognition performance [198]. Similar studies in adults 
show that intraoperative electrocochleography accounts for 
40–47% of the variance in post-operative word recognition 
performance [199, 200]. Several studies have proposed that 
intraoperative cochleography can be used to monitor trauma 
during electrode insertion [118, 119, 201], and related studies 
have shown that the same measures predict post-operative 
audiometric thresholds (residual hearing) in pediatric and 
adult recipients [202, 203]. Lastly, intraoperative electro-
cochleography measures were predictive of electrode sca-
lar location and translocation in 32 adults with CIs [117]; 
the study examined the amplitude and phase changes, and 
a model predicted the final scalar location. Results showed 
that the model successfully predicted final location of the 
electrode array in 82% of the ears tested as confirmed with 
post-operative imaging.

Psychophysical Measures Psychophysical measures 
have also been shown to reflect cochlear health status in 
implanted animals. Multipulse integration (MPI) refers to 
a decrease (improvement) in the psychophysical detection 
threshold with increasing pulse rate for fixed-duration pulse 
trains in CI stimulation (Figs. 8 and 9a). MPI slopes (amount 
of threshold decrease per unit of pulse-rate increase) are 
typically calculated for pulse rates over a range from a few 
pulses per second (pps) up to about 1000 pps. The proposed 
mechanism underlying threshold change likely differs for 
pulse rates above 1000 pps [39, 204]. Studies in animal mod-
els have shown that the slope of the MPI function (rate of 
change in psychophysical detection threshold as a function 
of increase in pulse rate) differs between animals with lower 
and higher SGN densities [39, 43, 66, 101, 205, 206]. Simi-
lar to MPI findings, temporal integration (detection thresh-
olds vs stimulus duration with a fixed pulse rate, (Fig. 8)) is 
also related to cochlear health [39].

Studies in humans have shown that MPI slopes are pre-
dictive of speech recognition. Similar to results shown for 
the ECAP IPG Effect, Fig. 7b shows results obtained in 
bilateral CI users; within each subject, the ear with steeper 
across-site-mean (ASM) MPI slopes also had better speech 
reception thresholds (SRT) performance on speech recog-
nition in noise. Note that the y-axis scales are opposite in 
panels a and b because the ear difference in panel a was 
calculated as right–left, whereas the ear difference in panel b 
was calculated as left–right. These findings show that, when 
looking for each CI user, the ear estimated to have a higher 
density of SGNs was also the ear that could more accu-
rately process complex speech signals, such as sentences in 
noise. Related studies have shown that MPI in humans is not 

Fig. 6  Linear regression analyses showing the relationships between 
SGN density and ECAP measures. The left column (panels a, b, and 
c) shows data for ECAP responses to biphasic pulsatile stimuli with 
a 2.1 µs IPG and the right column (panels d, e, and f) shows data for 
the IPG Effect (data for a 30  µs IPG minus data for a 2.1  µs IPG). 
The three rows represent three different measures derived from the 
ECAP amplitude growth function (AGF): top row: linear slope; mid-
dle row: ECAP AGF peak amplitude; bottom row: ECAP AGF N1 
latency. Colors (red and blue) indicate if hair cells were present or 
absent, respectively. Solid regression lines are for analyses using data 
from all animals, regardless of IHC status. Regression statistics are 
shown in each figure. Taken, with permission, from Schvartz-Leyzac 
et al. [42]
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related to medial–lateral distance of the electrode array via 
post-operative imaging [113].

However, animal studies also show a potential influence 
of sensory health; specifically, the relationship between MPI 
slopes and SGN density is only significant when animals 
with healthy IHCs are included in the analysis (see Fig. 9). 
In the data shown in Fig. 9, only animals with SGN densities 
greater than 706 cells/mm2 demonstrated good MPI slopes 
(steeper than − 1 dB/doubling). For those animals, all had 
acoustic hearing before and after cochlear implantation, and 
it is unknown if the high counts of IHCs, SGNs, or both of 
these variables contributed to the results.

Data are needed in animals to determine how simple 
psychophysical detection thresholds for low and high pulse 
rates measured using other electrode configurations (e.g., 
bipolar or tripolar) relate to SGN density. Studies performed 
in CI humans have proposed that psychophysical detection 
thresholds measured using focused current (e.g., bipolar, 
tripolar) reflect the underlying condition of the electrical-
neural interface, which includes cochlear health [207–211]. 
Lower psychophysical detection thresholds using focused 
current but higher pulse rates (~ 900 pps) have been shown 
to correlate with polarity sensitivity (i.e., polarity effect) 
in CI users [212] and can characterize differences in the 

a b

Fig. 7  Results of experiments examining the relationship between 
measures of speech reception thresholds (SRTs) in human subjects 
and two measures of neural health (as inferred from animal studies).  
Both studies were conducted in human subjects with bilateral CIs. 
Scatterplot of ear differences (R-L for a and L-R for b) in the dB 
signal-to-noise ratio (SNR) at 50% correct for CUNY Sentences in 
Noise on the y axis (scales are reverse between the two graphs) are 
compared to measures estimating SGN density on the x axis. In a,  

the measure estimating SGN density is the IPG Effect for ECAP AGF 
linear slope. In b, the measure estimating SGN density is across- 
site mean (ASM) MPI slope. Each data point corresponds to one sub-
ject. The dashed lines show the fitted linear function of the regression 
analysis, and statistics (regression coefficient and p value) are also 
provided. Figure a shows data from Schvartz-Leyzac and Pfingst [45] 
and Figure b shows data from Zhou and Pfingst [44]. Figures were 
copied, with permission from the original publications

Fig. 8  Schematic of a biphasic, cathodic leading pulse train simi-
lar to that shown in Fig. 3. The first pulse in a–c shows the cathodic 
and anodic phase (along with the interphase gap) consistent with 
Fig. 3. The x axis is current level, and the y axis is a duration of time 
(unspecified). Temporal integration is described by comparing the 
difference in psychophysical threshold between a and b, in which 

case the pulse rate remains constant, but the stimulus duration is 
longer. In this example, the stimulation duration is twice as long in b 
compared to a. Multipulse integration (MPI) is described by compar-
ing the difference in psychophysical thresholds between a and c, in 
which case the pulse rate increases for the same duration of time. In 
this case, the pulse rate is doubled for a fixed duration of time
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electrical-neural interface between groups of listeners [213]. 
Jahn et al. [213] reported that cochlear-implanted children 
with EVA syndrome had higher detection thresholds using 
focused current when compared to a group of pediatric CI 
recipients with connexin-related deafness, suggesting bet-
ter neural health in patients with EVA [213]. Studies using 
focused thresholds (e.g., bipolar and tripolar configurations) 
in humans are compelling and do support the hypothesis 
that focused thresholds reflect the condition of the electrical 

neural interface. Despite these studies, Bierer and Litvak 
[209] did not show that performance among CI listen-
ers improved when programming was specifically altered 
based on psychophysical thresholds measured using focused 
stimuli [209]. To date, there lacks support from an animal 
model to clarify the relationship between focused thresholds 
and cochlear health.

Related to this work, others have hypothesized how psy-
chophysical thresholds using low rate (< 100 pps) stimuli 

Fig. 9  Examples of multi-pulse integration (MPI) functions (decreases 
in psychophysical detection threshold as a function of pulse rate for 
fixed-duration pulse trains) and their relation to SGN density. a MPI 
functions for 200-ms pulse trains of biphasic pulses at 25  µs/phase 
and pulse rates ranging from 5 to 625 pps. Data were obtained from 
cochlear implanted guinea pigs with varying degrees of cochlear 
health that resulted from the following treatments: implanted in a hear-
ing ear (red and orange circles); deafened with neomycin, inoculated 
with AAV, Ntf3; and implanted (black squares; letters indicate identi-
fiers as detailed in Pfingst et  al. [43]), and deafened with neomycin, 
no inoculation or inoculated with an AAV.empty, and implanted (blue 
triangles). b, c, d The slopes of MPI functions plotted as a function of 

SGN density in Rosenthal’s canal for cochlear locations in the area of 
the electrode used for the MPI measurements (profile A); a half turn 
apical to that electrode (profile B), and a full turn above that electrode 
(profile C). In all panels, filled symbols indicate the presence of IHC 
(red fill ≥ 80% survival, orange fill 1 to 79% survival), and open sym-
bols indicate the absence of IHCs in that profile. b The red regres-
sion line and corresponding statistics show the significant correlation 
between MPI slope and SGN-A density for the animals implanted in a 
hearing ear; red curving lines are 95% confidence ranges. For profiles 
B and C, this correlation was not significant. Taken, with permission, 
from Pfingst et al. [43]

19



 Schvartz-Leyzac et al.

1 3

reflect the underlying condition of the auditory nerve in CI 
patients. Zhou and colleagues have shown promising work 
in humans that psychophysical detection thresholds using 
low pulse rates (e.g., 80 pps) also reflects the underlying 
condition of the auditory nerve [214, 215]. Zhou [215] 
reported improved speech recognition in nine CI users after 
using an experimental map in which electrodes were deac-
tivated based on psychophysical thresholds using low-rate, 
monopolar thresholds [215]. However, similar to thresholds 
measured with focused current, there is a paucity of direct 
evidence from an animal model that specifically examines 
how cochlear health contributes to psychophysical threshold 
measures using low-rate stimuli. As mentioned previously, 
low-rate thresholds are also influenced by medial distance 
and potentially electrode configuration and might not reflect 
only neural conditions [112, 113]. Similar work shows that 
focused thresholds reflect medial–lateral distance [172]. 
Further work is needed in this area to maximize clinical 
application of these measures.

Lastly, strength duration functions (detection thresholds 
vs pulse phase duration) have the potential for diagnosing 
several aspects of the health of the implanted cochlea. A 
recent study [211] showed that psychophysical strength 
duration function slopes were significantly shallower in 
guinea pigs implanted in a hearing ear compared to those 
implanted in a deafened ear that was treated with neurotro-
phin. In animals deafened with neomycin and treated with 
neurotrophin, which typically had no surviving inner hair 
cells (IHCs), the slopes of the psychophysical strength-
duration functions were correlated with spiral ganglion 
neuron (SGN) density, being steeper in cases with higher 
SGN densities. However, in animals implanted in a hear-
ing ear, which typically had surviving IHCs, slopes of the 
strength-duration functions were not correlated with SGN 
density. These data suggest opposing effects of SGN density 
and IHC presence on the slopes of psychophysical strength-
duration functions, but further experiments are needed to 
better understand these relationships.

Polarity Effect Based on modeling and animal studies [58, 
59, 216, 217], some researchers have proposed that differen-
tial sensitivity to cathodic or anodic pulses (polarity sensitiv-
ity or polarity effect; Fig. 3) is also an indicator of cochlear 
health and can be used to improve CI performance. This 
concept would apply to both psychophysical and electro-
physical measures. These modeling studies hypothesize that 
differential sensitivity to either anodic or cathodic stimuli 
reflects the underlying condition of the auditory nerve. In 
studies using acutely deafened animals, where the neural 
anatomy might still be relatively intact, there is evidence 
that the cathodic rather than the anodic phase of the biphasic 
pulse elicits greater excitability [216, 218]. In a healthier 
neuron where the peripheral process is present, then the 

cathodic phase preferentially excites the peripheral process. 
Conversely, the anodic phase is thought to preferentially 
excite the cell body; therefore, in cases of neural degenera-
tion, the anodic phase might be the primary excitatory phase. 
Additional work in electrically stimulated cats and guinea 
pigs supports the idea that cathodic- or anodic-leading phase 
stimuli excite different points along the auditory nerve [217].

In humans, results are often opposite of those reported in 
animals, and show preferential excitation to anodic-leading 
biphasic pulses using electrophysiological and psychophysi-
cal studies [219–223], but polarity sensitivity for threshold 
measures can vary within an ear [224, 225]. As described 
in previous studies [163, 219], there are several potential 
reasons for this difference including position of the elec-
trode relative to the stimulated neural population, electrode 
geometry, overall health of the neurons (which could be 
influenced by deafening method/etiology), and stimulus 
level. Jahn and Arenberg found that polarity sensitivity to 
psychophysical thresholds was not related to electrode loca-
tion [212]. Goehring et al. [226] examined the efficacy of 
selecting electrode sites for activation based on polarity sen-
sitivity to psychophysical thresholds, but results were mixed 
and did not show a clear advantage of this method when 
subjects were measured on speech recognition tasks or a 
spectro-temporal ripple task [226].

Additional Commentary on Functional Health Measures Var-
ious electrophysiological and psychophysical measures of 
cochlear health described above do not necessarily reflect 
the same underlying variables. The fact that two measures 
correlate with SGN density does not necessarily mean that 
SGN density is the underlying causal variable [227, 228]. 
SGN density typically accounts for only 50% of the across-
subject variability in any given measure. Other features of 
cochlear health including neuronal cell size, fibrosis, and 
osteoneogenesis are not as strongly correlated with these 
measures but may not account for additional variance once 
the effects of SGN density have been taken into account [42, 
101]. Also, it should be noted that the relationship between 
SGN density and various functional measures differs across 
measures. For example, the correlation of MPI with SGN 
density depends on inclusion of cases with very high SGN 
densities and surviving IHCs while the correlation of ECAP 
AGF slopes with SGN density holds across a broad range 
of SGN densities [43]. Presence of IHCs seems to facilitate 
MPI slopes but may reduce slopes of ECAP AGFs, as noted 
previously [83].

Each of the measures above could be influenced by tissue 
and fluids surrounding the electrode array, including fibrous 
tissue or bone. These factors are difficult to parse because 
they are often related to one another. For example, insertion 
trauma has been shown to elicit an immune response [115, 
229, 230], which could both increase intrascalar tissue and 
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decrease SGN density. Kamakura and Nadol [231] examined 
post-mortem temporal bones in cochlear-implanted ears and 
found that post-operative CNC word scores were negatively 
correlated with percent volume of new bone within the coch-
lea, but not with percent of fibrous tissue. The percent of 
new bone was correlated with intrascalar trauma, and par-
ticularly trauma to the basilar membrane [231]. Collectively, 
these studies show that application of cochlear health meas-
ures in humans is quite complex, and therefore efforts to 
use these measures to improve outcomes often yield mixed 
results [209, 214, 215, 226, 232].

Biological Approaches for Preserving or Improving Cochlear 
Health There are several cochlear domains that should be 
considered as targets for preserving or enhancing cochlear 
health in a way that could potentially benefit CI outcomes. 
The most obvious targets are the sensory epithelium (hair 
cells and supporting cells) and the SGNs [37]. The sensory 
epithelium is a target because of clear evidence for a posi-
tive influence of surviving HCs on outcomes in both humans 
[70] and animals [66] after cochlear implantation. The syn-
apses in the auditory periphery also need to be considered as 
targets for therapy since changes in synapses associated with 
CI stimulations have been observed [233]. The stria vascu-
laris and other lateral wall structures could also be addi-
tional therapeutic targets to address decline in performance 
and/or loss of residual hearing after cochlear implantation 
[93, 94]. The relationship between the number of surviving 
SGNs and CI outcomes is complex but by examining both 
independent studies and literature reviews, there is evidence 
using well controlled paradigms that the health of SGNs 
positively influences speech understanding with a CI [44, 45, 
169, 170, 234]. At least some neurons need to survive for the 
CI to function, and the physiological health of these neurons 
should be preserved, making them an important target for 
therapy. The therapies mentioned below have the potential 
to enhance CI outcomes addressing the conditions of one or 
more of the targets mentioned above.

One approach is the use of dexamethasone, which, among 
the options listed below, is the only treatment currently used 
in the clinical setting. Dexamethasone is administered by 
many CI surgeons routinely intra- and post-operatively, and 
has been shown to have positive effects by enhancing hear-
ing preservation, reducing inflammation, and preserving 
neurons [235, 236]. Another approach for enhancing sur-
vival and health of CI relevant cochlear structures is via 
gene therapy, which has the potential for inducing long-term 
over-expression of therapeutic genes. In vivo gene therapy is 
based on local (cochlear) delivery of gene vectors (usually 
viruses), which results in forced expression of the transgenes 
that either act entirely within the target cells or cause those 
cells to produce a diffusible product that can affect the entire 
cochlea. Gene vectors vary in their extent of toxicity and the 

duration of gene expression. Currently, the most commonly 
used gene therapy vectors are adeno-associated viruses 
(AAVs), due to their low toxicity and long-term gene expres-
sion. Several reviews summarize the use of gene therapy 
in the cochlea in general [237–240] and in relation to CIs 
[162, 241].

An alternative for inserting genes via a gene vector is 
infusing the therapeutic reagents directly into the cochlea. 
This can be done during the CI insertion surgery, either by 
direct infusion, or by use of special implants that, in addition 
to delivering electrical stimulation, can also serve as elut-
ing vehicles. Such implants have been tested for delivering 
dexamethasone [242–244] as well as other molecules such as 
IGF-1, which has been shown to increase neuronal survival 
and CI outcomes [245]. A recent review summarizes devel-
opments of drug delivery via the CI [246]. Another goal of 
future treatments is to prevent or reduce the fibrosis that is 
often found to surround the electrode array. This can likely 
be accomplished by reducing the immune response to the CI 
insertion and reducing the surgical trauma [115]. Once the 
signaling molecules that cause the fibrosis are identified, it 
should be possible to use gene therapy or eluting electrodes 
to reduce this negative outcome of the CI surgery.

Stem cell therapies are being developed for several inner 
ear applications, including the replacement of lost SGNs. 
Proof of the principle has been shown in the gerbil model, 
in which elimination of the neurons while preserving IHCs 
was feasible [247, 248]. Oubain was used to eliminate most 
SGNs, and then stem cells were injected into the modio-
lus. The authors demonstrated differentiation of the stem 
cells into neuronal phenotypes, establishment of connection 
both centrally (cochlear nucleus) and peripherally (IHC), 
and improvement in ABR thresholds. Similarly, restoration 
of the population of hair cells, even in part, may assist in 
preservation and functionality of the auditory nerve and/or 
provide some acoustic hearing. The field of hair cell regen-
eration in the cochlea is not ready for clinical use but pro-
gress is being made, with clear evidence for the possibility 
to generate new hair cells [249–252].

Summary and Conclusions

CI technology has seen tremendous advancements over 
the past 40 years, and hundreds of thousands of individu-
als worldwide have benefited from cochlear implantation. 
Combined behavioral, electrophysiological, and histological 
studies in animal models coupled with broadened candidacy 
criteria in humans have shed light on the importance of the 
health of the cochlea for the success of cochlear implan-
tation; a relationship which was once thought relatively 
unimportant. Advanced animal models in combination with 
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the development of biological approaches will yield more 
sophisticated methods to understand how cochlear health 
can guide stimulation parameters, and ultimately how we 
can optimize outcomes in CI users. These methods can also 
be used to understand and improve CI outcomes for specific 
populations; for example, by using mouse models of genetic 
hearing loss etiologies that are also common in humans. Bio-
logic approaches can be used in combination with cochlear 
implantation in an effort to preserve cochlear health and to 
limit intracochlear trauma associated with surgical inser-
tion of the implant. Further work is needed to continue to 
fully realize the promise as well as the limitations of these 
approaches, and to further understand how we can exploit 
features of cochlear health to maximize performance for 
each CI recipient.
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