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Abstract
Auditory stream segregation and informational masking were investigated in brain-lesioned individuals, age-matched controls 
with no neurological disease, and young college-age students. A psychophysical paradigm known as rhythmic masking release 
(RMR) was used to examine the ability of participants to identify a change in the rhythmic sequence of 20-ms Gaussian 
noise bursts presented through headphones and filtered through generalized head-related transfer functions to produce the 
percept of an externalized auditory image (i.e., a 3D virtual reality sound). The target rhythm was temporally interleaved 
with a masker sequence comprising similar noise bursts in a manner that resulted in a uniform sequence with no informa-
tion remaining about the target rhythm when the target and masker were presented from the same location (an impossible  
task). Spatially separating the target and masker sequences allowed participants to determine if there was a change in the 
target rhythm midway during its presentation. RMR thresholds were defined as the minimum spatial separation between 
target and masker sequences that resulted in 70.7% correct-performance level in a single-interval 2-alternative forced-choice 
adaptive tracking procedure. The main findings were (1) significantly higher RMR thresholds for individuals with brain 
lesions (especially those with damage to parietal areas) and (2) a left–right spatial asymmetry in performance for lesion (but 
not control) participants. These findings contribute to a better understanding of spatiotemporal relations in informational 
masking and the neural bases of auditory scene analysis.
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Introduction

Several sensory and cognitive cues contribute to auditory 
object formation. These include a sound’s fundamental fre-
quency, common onsets and offsets, ongoing synchronous 
envelopes, and spatial cues [1–6]. In multisource environ-
ments, the formation and identification of an auditory object 
may be degraded through masking by other auditory sources. 
Two basic types of auditory masking, energetic and infor-
mational, are often contrasted with each other [7–9]. Ener-
getic masking is that in which signal and masker overlap in 
spectrum and time. Much of the history of research on audi-
tory masking has focused on energetic masking, and several 
sophisticated signal-detection models have been developed 
that largely explain the mechanism underlying this type of 
masking [10–12]. Much less is known about informational 
masking, partly because it is a newer field with fewer stud-
ies and partly because of its more complex nature involving 
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cognitive factors (e.g., selective attention and working mem-
ory) in addition to peripheral sensory mechanisms.

One useful approach to the study of informational 
masking is rhythmic masking release (RMR).1 In an RMR 
experiment, the observer’s task is to distinguish between two 
sequences of sounds that differ in their rhythmic patterns. 
The target sequences are presented in competition with inter-
leaved masking sequences. These studies have shown that 
masking effects can be mitigated by the addition of sounds 
that are temporally synchronous with and spectrally flanking 
the masker sequence [13–15]. This coherence between the 
flanking and masking sounds leads to perceptual grouping 
(or fusion) of the flanking and masker sequences and better 
isolation of the target sequence to be detected. Spatial cues 
can also significantly contribute to RMR by separating a 
target sequence from masking sequences based on differ-
ences in their perceived locations [15–19]. The spatial RMR 
paradigm provides an objective measure of stream segrega-
tion quantified as the minimum spatial separation necessary 
for identification of the target sequence [18].

The study of RMR and informational masking in brain-
lesioned and elderly populations is of particular interest not 
just for theoretical reasons but also for social and practi-
cal reasons. A common complaint among these vulnerable 
populations is that in relatively noisy environments where 
multiple individuals are simultaneously speaking (e.g.,  
restaurants) attending to a target speaker imposes signifi-
cant cognitive load that is not mitigated by simple sound 
amplification (i.e., by reducing energetic masking). Such 
adverse cognitive effects, which result primarily from infor-
mational masking, are often reported to cause mental fatigue 
and emotional stress [20, 21]. A better understanding of the 
mechanisms of informational masking in these populations 
can lead to improved clinical therapeutics, better hearing-aid 
and cochlear-implant design, reduced attentional demands in 
communication, and a healthier social experience.

The current study uses spatial RMR to investigate stream 
segregation and informational masking in three groups: peo-
ple with stroke-induced brain lesions, older adults with no 
neurological dysfunction, and young healthy college-age 
students. No prior study has investigated RMR in individu-
als with brain lesions or in older adults. The few lesion stud-
ies that have examined the effects of spatial cues on signal 
detection in a multisource environment (i.e., cocktail party 

effect) have employed temporally and spectrally overlapping 
sound sources which confound measurements of informa-
tional masking with energetic masking [22, 23]. The current 
study uses stimuli that isolate the ability to detect informa-
tional sequences from the effects of energetic masking. The 
target and masking sounds comprise differing sequences of 
identical noise bursts that are interleaved but not tempo-
rally overlapping, facilitating measurement of informational 
content (i.e., temporal patterns) in the absence of energetic 
masking. Results showed that older and younger control 
groups had similar averaged RMR thresholds that were con-
siderably lower than thresholds measured for brain-lesioned 
individuals. Within the latter group, those with damage to 
parietal regions had particular difficulty in performing the 
spatial RMR task. Furthermore, performance was poorer 
within the left-hemisphere lesioned group (nearly our entire 
lesion population) when the masker was presented in their 
left spatial hemifield, suggesting a more effective masking 
effect when the masker was processed by the intact right 
(contralateral) hemisphere.

Methods

Participants

Three categories of participants across four institutions 
participated in this experiment. The participant catego-
ries comprised 55 individuals with stroke-induced brain 
lesions (mean age 57.2 years, σ = 12.0, age range 29–76), 
15 older adults with no neurological disease (mean age 
60.1 years, σ = 7.5, age range 48–72), and 13 young college-
age control participants in their late teens or early 20s. The 
number of participants in the older adult control group is 
larger than many prior auditory psychophysical studies of 
older adults [24–31]. Our sample size of young participants 
is also larger than those used in other RMR studies of young 
adults [15, 18].

The brain-lesioned population was recruited by and 
participated in the experiment at Arizona State University 
(N = 22), the University of South Carolina (N = 22), and 
the Medical College of Wisconsin (N = 11). The older and 
younger control groups were recruited by and participated 
in the experiment at the University of California, Irvine. All 
lesion participants and older adults completed audiometric 
tests at their respective institutions (Supplemental Table 1). 
In general, these participants showed some characteristic 
hearing loss at higher frequencies above 2 kHz. All brain-
lesioned participants and age-matched older adults signed 
written informed consent forms approved at their respec-
tive institutions’ IRB. Participants from the younger con-
trol group were verbally consented as approved by UCI’s 
IRB. None of the authors served as a participant in this study.

1 Informational masking has been defined in a number of different 
ways. Here, RMR is referred to as informational (un)masking because 
what is interfered with is a temporal pattern of information as is typi-
cal in studies of informational masking. While the dependent meas-
ure used in the current study is spatial separation instead of decibels, 
what is being masked (or unmasked) is in fact a pattern of informa-
tion. Also note that there was no temporal overlap between the target 
and masker sound pulses and, hence, no energetic masking.
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Lesion participants were included in the present study 
based on the following criteria: (i) a chronic focal (6 months 
or more post-onset) lesion due to a stroke in either the cere-
brum, cerebellum, or brain stem; (ii) no significant anatomi-
cal abnormalities other than the signature lesion of their vas-
cular event; (iii) an absence of a history of psychological or 
neurological disease other than a single stroke event (e.g., no 
tumors, seizures, or subsequent strokes); (iv) native English 
speaker; (v) right-handed pre stroke; and (vi) ability to fol-
low task instructions. All lesion participants underwent MRI 
scanning using a 3 T or 1.5 T MRI system at the respective 
testing site, and T1-MRIs and T2-MRIs with 1  mm3 reso-
lution were collected and used to manually demarcate the 
lesion by well-trained individuals.

Locations of stroke-induced lesions were determined 
by visual inspection of the lesion maps generated (Fig. 4 
depicts the overlap of these lesion maps after the lesion maps 
were transformed into Montreal Neurological Institute tem-
plate space using standard procedures [32]). Inspection of 
the lesion maps yielded the following general categories of 
lesion locations: N = 49 left cerebral hemisphere, N = 1 right 
cerebral hemisphere, N = 2 bilateral cerebral hemisphere, 
N = 1 right cerebellum, N = 1 left cerebellum, and N = 1 brain 
stem. In the two bilateral cases, it is likely that two separate 
strokes led to the bilateral lesions, but the strokes occurred 
nearly simultaneously such that they were treated acutely 
during the same medical event. Thus, it is very unlikely that 
any between-stroke functional neural reorganization could 
have occurred.

Nearly all of the brain-lesion sample had neuroimaging-
confirmed damage to the left cerebral hemisphere (i.e.,  
93%; 51 of 55; see Fig. 3). Among those 51 left cerebral- 

lesioned participants, the following aphasia types were iden-
tified via site-specific protocols that included the West-
ern Aphasia Battery, Boston Diagnostic Examination, and 
clinical observations: Broca’s (N = 19), conduction (N = 8), 
anomic (N = 12), Wernicke’s (N = 1), global (N = 2), trans-
cortical sensory (N = 2), transcortical motor (N = 1), and no 
aphasia (N = 6).

Stimuli and Procedures

RMR Task

Stimuli were temporal sequences of 20-ms broadband Gauss-
ian noise pulses generated using a Dell Latitude E5450 com-
puter and presented binaurally through digital-to-analog 
converters and Sennheiser headphones (HD360 Pro) at a sam-
pling rate of 44.1 kHz. Noise pulses were filtered through gen-
eralized head-related transfer-functions (HRTFs) to produce 
externalized (virtual reality) auditory percepts when presented 
through headphones [33]. All four research sites used identical 
computers, stimuli, and headphones calibrated and tested at 
UCI and shipped to the other 3 research sites. Figure 1 shows 
a diagram of target (signal) and masker sequences. The target 
sequence (panel A) consisted of a rhythmic pattern of noise 
pulses that either changed halfway through the sequence or 
remained the same throughout [34]. The participant’s task 
was to determine if there was a change in the rhythmic pat-
tern. This single-interval design was adopted because it is 
a conceptually easier task for brain-lesioned participants 
than one that has been reported in young, non-lesion patients 
[18]. Panel B shows the target together with the masker 
sequence (red) spatially separated from each other. The target  

Fig. 1  Stimuli used in the cur-
rent study. On each trial either 
a sequence with a change or 
without a change was pre-
sented (A). The listener had to 
determine if the target rhythm 
changed midway through the 
sequence. The target was always 
presented in the presence of a 
masker sequence that precisely 
“filled in” the gaps in the target 
sequence. When there was spa-
tial separation between masker 
and target sequences (B) the 
task could be performed. When 
there was no spatial separation 
(C), the task was impossible. 
RMR threshold was defined 
as the angular spatial separa-
tion between masker and target 
sequences that resulted in 70.7% 
correct performance
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sequence was always presented in the presence of a masker 
sequence and never in isolation. The masker sequence was 
always complementary to the target sequence whether there 
was a change or no change in the target’s rhythmic pattern. 
This resulted in the masker pulses “filling in” the gaps in  
the rhythmic pattern of the target sequence. If there was no 
spatial separation between the target and masker sequences 
(panel C), the temporal sequence became uniform. This made 
it impossible to distinguish between the “change” and “no 
change” rhythmic patterns in the target sequence, resulting  
in chance performance. As the spatial separation of target 
and masker sequences increased, the task became easier.  
The target was always positioned at zero degrees, directly in 
front of the listener. The masker position was varied either 
toward the left or right of midline to determine the minimum 
spatial separation between target and masker that could be 
reliably detected by the participant (RMR threshold). When 
the masker and target sequences were combined (panel C) 
the aggregate pulse rates was 10 Hz (100 ms interpulse  
interval). The full duration of a temporal sequence that 
included the interleaved masker and target sequences was 
4.72 s (48 pulses). For young control participants, stimuli 
were presented at a comfortable listening level of ~ 65 dB  
(A weighted) measured with a 6 cc flat-plate coupler and  
a sound level meter. For lesion and older adult partici-
pants, the level of the signal was adjusted individually to  
what was reported by the participant to be a comfortable  
listening level.

RMR thresholds were measured using a 2-down 1-up 
adaptive procedure that tracked the listener’s 70.7% correct 
response level [35]. Each run began with the maximum spa-
tial separation between target and masker (90˚). Two correct 
responses in a row resulted in a reduction of spatial separa-
tion by a given step-size for the next trial, and an incorrect 
response resulted in an increase in spatial separation by the 
same amount. The step-sizes were progressively reduced 
after each track “reversal,” defined as the point at which 
an increase in spatial separation is followed by a decrease, 
or vice versa. The step-size started at 40° and then was 
reduced to 30, 20, and 10° where it remained for the rest of 
the run. Thus, near the end of a run, the spatial separation 
between the masker and target would change by only 10° 
when a change was actually required. Two thresholds were 
simultaneously measured by interleaving two independent 
threshold tracking procedures, one for the left spatial hemi-
field (masker location on the left of midline) and one for 
the right hemifield. The participant was unaware of the fact 
that two separate trackers were simultaneously in operation. 
Each interleaved track was stopped after 7 reversals. Each  
run took approximately 60 to 80 trials to complete and lasted 
approximately 10 min. Threshold was based on the averaged 
spatial separation at track reversal points measured at the last 
6 reversals of a run. At the end of a run, two RMR threshold  

estimates were obtained, one for the track associated with 
the left spatial hemifield and one for the right. Each partici-
pant in either the younger or older control groups completed 
approximately 5 runs.2 Each brain-lesioned participant com-
pleted a single run because of secondary fatigue and task  
difficulty. As will be described in the “Results” section, 
no significant difference was observed between threshold 
estimates measured for brain-lesioned individuals with that  
measured for the “first run” of the age-matched control 
group. Before data collection began, all participants were 
given instructions about the task and performed a short pilot  
run on a demo program which played examples of sequences  
with and without a masker present, and with or without a  
change in the target sequence, until it was clear to the experi-
menter that they fully understood the task.

Interaural Delay Acuity Task

Lateralization thresholds [36] were also measured in a 
2-interval forced-choice 2-down 1-up adaptive procedure. 
Stimuli were broadband Gaussian noise bursts presented bin-
aurally through headphones with an interaural delay gener-
ated by a linear phase shift in the frequency domain across 
the left- and right-ear noise bursts [37, 38]. To produce a 
noise waveform with a linear phase shift, we first generated 
a Gaussian noise sample for one of the two audio channels 
in the frequency domain with amplitudes sampled from a 
Rayleigh distribution and phases from a uniform (0, 2π) dis-
tribution [39] and then linearly shifted the phase components 
of this burst to create the second sample. The slope of the 
linear phase shift corresponds to the desired interaural delay 
with steeper slopes associated with larger delays [40, 41]. 
On each trial of a 50-trial run, two successive dichotic noise 
bursts were presented having equal interaural delays leading 
to opposite ears. Each noise burst was 1 s in duration with 
an interstimulus interval of 500 ms. For example, a 1-s noise 
burst with an interaural delay of − 700 μs (leading to the left 
ear) was presented, followed by 0.5 s of silence, followed 
by a 1-s noise burst with an interaural delay of + 700 μs 
(leading to the right ear). This generated the percepts of 
two separate auditory images, one perceived on the left side 
of the interaural axis and the second on the right side. The 
order in which the two bursts were presented on a given trial 
was randomized. The participant’s task was to determine the  
order of presentation of noise bursts (left then right or right 
then left). Each run began with a maximum interaural delay 
of 700 μs (total difference of 1500 μs in the 2IFC task). 

2 Each participant in the older adult group completed exactly 5 runs, 
while some individuals in the young control group ran fewer and some 
more, averaging 4.85 runs across the 13 participants and ranging from 
3 to 8 runs.
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This was set as the adaptive track’s ceiling value. After two 
consecutive correct responses, the interaural delay differ-
ence was reduced by 0.2 log units up to the 4th reversal and 
by 0.1 log units thereafter [42]. Following each incorrect 
response, the difference was increased (and the task made 
easier) by the same step size. Thresholds were measured as 
the geometric mean of the interaural delay difference at the 
track reversal points after the 4th or 5th reversal such that the 
number of remaining reversals on which threshold estimate 
was based would be an even number. All other conditions 
were similar to those used in the RMR task.

Results

Figure 2 shows results of this experiment for the 3 partici-
pant groups. Panel A shows RMR thresholds separately for 
each spatial hemifield. Negative and positive values along 
the ordinate represent measurements for the left and right 
hemifields, respectively. Red squares show data from the 
lesion group, blue triangles from the older adult control 
group, and yellow circles from the young control group 
(see panel C for legend). Panel B shows averaged RMR 
thresholds from panel A for the three participant categories 
plotted as box plots with the central mark (small horizon-
tal line inside each box) designating mean threshold, the 
edges of the box representing the 25th and 75th percentiles, 

and the whiskers extending to the most extreme datapoints. 
Kolmogorov–Smirnov tests indicated that the threshold 
distributions for each of the 3 groups did not statistically 
deviate from normality (lesion: D(55) = 0.115, p = 0.07; 
older control: D(15) = 0.124, p = 0.20; younger group: 
D(13) = 0.153, p = 0.20). Levene’s test for homogeneity of 
variance showed that the lesion group had a significantly 
larger threshold variance compared to the other partici-
pant groups (L(2,80) = 14.59, p < 0.001). Welch’s test for 
populations with unequal variances was therefore used to 
compare performance of lesion participants with the other 
two groups, and standard ANOVA and t tests were used for 
comparison of conditions for threshold distributions with 
equal variances (e.g., left–right hemifield comparisons or 
young vs older adult groups). Results of this analysis con-
firmed that there was a statistically significant effect of 
participant population type (Welch’s F(2, 35.17) = 28.73, 
p < 0.001). Post hoc analysis showed that the lesion group 
produced significantly higher RMR thresholds than both 
the younger and older control groups: (1) lesion vs. young 
control (Levene’s test: L(1,66) = 11.8, p = 0.001; Welsch’s 
t(1,37.87) = 34.47, p < 0.001) and (2) lesion vs. older adult 
control group (Levene’s test: L(1,68) = 19.4, p < 0.001; Wels-
ch’s t(1,60.34) = 54.18, p < 0.001). There was no significant 
difference between the variances of the older and younger 
control groups (Levene’s test: L(1,26) = 0.28, p = 0.58) and 

Fig. 2  A RMR thresholds for 
the three participant groups 
(see C for legend). Thresholds 
are shown for the left and 
right hemifields (negative and 
positive numbers, respectively). 
The zero point on the ordinate 
designates a spatial position 
directly ahead of the partici-
pant. Smaller RMR thresholds 
near zero represent better 
performance. B Averaged RMR 
thresholds for the three groups 
(absolute values). C RMR 
thresholds averaged across the 
left and right hemifields and 
plotted in ascending order. D 
RMR thresholds for lesion par-
ticipants and older controls as a 
function of age. No significant 
correlation as a function of age 
was observed. N = 55 (lesion) 
N = 15 (older adults) N = 13 
(younger adults)
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no statistically significant difference between their mean 
RMR thresholds (t(26) = 0.57, p = 0.57).

Nearly all brain-lesioned participants had asymmetric 
cortical damage to the left brain hemisphere (see Fig. 3). 
The lesion group showed poorer performance for maskers 
presented in the left hemifield (t(54) = 3.94 p < 0.001) (recall 
that the target was always centrally presented). The asym-
metry remained statistically significant even after restrict-
ing the analysis to only those with left-hemisphere lesion 
(t(50) = 3.74, p < 0.001). There was no such spatial asym-
metry for the younger or older control groups (t(12) = 1.89, 
p = 0.08, and t(14) = 1.17, p = 0.26, respectively). The 
left–right asymmetry in performance of the lesion group 
participants may be partially due to the fact that a right-
sided masker, processed primarily by the damaged left (con-
tralateral) hemisphere [43–45], is less effective in masking 
the centrally positioned signal (i.e., a masker presented on 
the left would be more effective and generate higher RMR 
thresholds as it is primarily processed by the intact right 
hemisphere). We should however caution that this asymme-
try in cortical processing of sound location has been chal-
lenged by at least some studies of humans with brain lesions 

[46] and animal studies that have found cortical neurons 
with a “panoramic” view of space [47, 48]. RMR thresholds 
averaged across left and right spatial hemifields are plotted 
in ascending order in Fig. 2C. Note that some individuals 
in the lesion group performed as well as older and younger 
participants, but others had significantly higher thresholds. 
This is also evident in Fig. 2D where thresholds are plotted 
as a function of age both for the older controls and brain-
lesioned participants (the younger group who were in their 
late teens or early 20s are excluded from this panel).

Since brain-lesioned participants completed only one 
run (two tracks), performance of this group was compared 
to the “first run” of the age-matched older adults to deter-
mine whether practice effects could explain the difference 
in performance (5 runs vs 1 run). Practice could not explain 
better thresholds for the older group compared to the lesion 
group as there was a highly significant difference between 
RMR thresholds of the older controls on their first run com-
pared to the single-run of the brain-lesioned group (Welch’s 
t(1,29.97) = 20.04, p < 0.001). In addition, there was no  
statistically significant difference between run #1 and run  
#5 of the older control group (t(14) = 1.32, p = 0.208). We also  

Fig. 3  RMR thresholds for 55 brain-lesioned participants. Labels show lesion locations at the level of lobe or major structure, and aphasia descrip-
tion. Abbreviations: L, left hemisphere, R, right hemisphere
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considered whether hearing loss, especially in older indi-
viduals, may explain differences in performance but did not 
find evidence for this. Pure-tone thresholds (audiograms) 
are listed individually for each lesion and older adult con-
trol participant in Supplemental Table 1. Averaged pure-
tone threshold for the lesion group was 16.97 dB HL, and 
for the older adult control group, it was 17.04 dB HL (less 
0.1 dB difference), while their RMR thresholds were mark-
edly different.3

Figure 3 shows RMR thresholds individually for all 55 
brain-lesioned participants plotted in ascending order of 
threshold values and labeled by lesion area (lower) and apha-
sia type (upper). As shown in the lower abscissa, lesions 
were largely restricted to the left hemisphere for almost 
all participants except for one participant with lesion to 
the right-cerebral hemisphere, one with lesion to the right 
cerebellum and 2 with bilateral lesions as described in the 
“Methods” section. We should note that most of the par-
ticipants were recruited based on the presence of language 
deficits which is primarily associated with damage to the left 
hemisphere of the brain.4 Fig. 4 shows orthogonal views of 
an overlap map of the areas of damage in the stroke group 
participants with cerebral damage.

Several human neuroimaging studies (fMRI or MEG) 
have implicated the parietal cortex in auditory stream seg-
regation [49–53]. The data of Fig. 3 were further evaluated 
by contrasting those individuals who had lesion damage to 
parietal areas (circles) with participants who did not have 
damage to this area. Participants with a parietal lesion had 
a higher mean threshold compared to those with lesions to 

other brain regions (Fig. 5A; t(52) = 3.41, p < 0.01). Eleven 
of the 12 poorest performers (91%) had parietal lobe dam-
age, while only 3 of the 12 best performers (25%) had dam-
age to this region. Lesion volume for the parietal group 
was not statistically different than that for individuals with 
lesions to other brain regions (t(52) = 1.84, p = 0.072). Fur-
thermore, there was no correlation between RMR threshold 
and lesion volume (Fig. 5B; r2 = 0.03).5

The three most common types of aphasia in the lesion 
participants were Broca’s (N = 19), anomic (N = 12), and 
conduction (N = 8). Blue symbols in Fig. 3 show those brain-
lesioned individuals with Broca’s aphasia. These individuals 
are selectively highlighted because their RMR thresholds, 
as a group, appeared higher than the other two aphasic types 
(i.e., anomic and conduction). Eight of the 11 participants 
who had the highest RMR thresholds had Broca’s aphasia, 
though some individuals with Broca’s aphasia did produce 
low RMR thresholds. Figure 5C shows averaged RMR 
thresholds for those participants who were diagnosed with 
these three types of aphasia. An ANOVA on aphasia type 
did not reach significance (F(2,36) = 1.56, p = 0.224), nor 

Fig. 4  Orthogonal views of an overlap map of the areas of damage in the 
stroke group participants with cerebral damage, N = 52. Montreal Neuro-
logical Institute coordinates are provided for each slice. The area of max 
overlap, N = 25, is in the inferior frontal lobe, coordinates − 50 − 4 11. 
Not pictured are the single participants with left cerebellar, right cerebel-
lar, and brain stem damage, respectively

3 Each of the 4 research sites had their own established protocol for 
measuring audiogram thresholds. Supplemental Table 1 shows pure-
tone thresholds for frequencies that were common to all sites, rang-
ing from 0.5 to 4 kHz. One site recorded only pass/fail results at each 
frequency (up to 4 kHz) and for each ear instead of threshold values, 
with a pass/fail criterion of 35  dB HL. The analysis described here 
is based on the 32 lesion individuals and 15 older adult participants 
for whom numeric audiogram thresholds were available. For each 
participant, we calculated the overall threshold value averaged across 
ears and frequencies. Other than the nearly identical mean hearing 
threshold value (17.04 and 16.97 dB HL), the standard deviations of 
audiogram thresholds were also similar (9.8 and 7.8 dB for the lesion 
and older adult controls, respectively). Obviously a more nuanced 
analysis that considers the effects of loss at different regions of the 
spectrum may provide some additional insights. For example, it has 
been suggested that RMR thresholds are more severely influenced by 
rhythmic information in the low-frequency regions of the spectrum 
[16]. Examination of performance for four of our lesion participants 
with the poorest low-frequency hearing thresholds did not reveal any 
noticeable pattern, as even in these worst cases their low-frequency 
loss was not severe and their RMR thresholds fell within a wide range 
of performances. Audiograms were not measured for the young adult 
group who self-reported normal hearing.
4 This study is part of a larger project aimed at measuring the effects 
of auditory processing deficits on aphasia.

5 For one participant, L19 (see Supplemental Table 1), we have MRI 
confirmation of a small lesion in the brainstem. We did not, however, 
compute a lesion volume for this participant or map the lesion into 
standardized space because lesion mapping in normalized space pro-
cedures is not optimized for brainstem lesions. Furthermore, com-
bining cerebral and brainstem lesion volumes is not considered ideal 
since a small brainstem lesion can cause major impairment, whereas 
a lesion of the same size in the cerebrum typically has little effect and 
may even go unnoticed.
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did pairwise post hoc comparisons between aphasia types, 
though the difference between Broca’s and Anomic condi-
tions approached significance: t(29) = 1.70, p = 0.053, one 
tailed. This difference, however, may be largely explained by 
concomitant damage to parietal regions as shown in Fig. 5D; 
t(17) = 2.48, p = 0.02.

For each lesion participant, basic localization (later-
alization) discrimination thresholds were also measured. 
Figure 6A shows RMR thresholds plotted as a function of 
interaural delay thresholds for each of the 55 brain-lesioned 
participants. There was a weak but statistically significant 
correlation between RMR and interaural delay thresholds 
(r = 0.33, p = 0.013; 11% of variance accounted for).

Discussion

Three main aspects of the current findings are noteworthy. 
First, and most important, RMR thresholds were signifi-
cantly poorer for the lesion group than for either control 
group, with an additional left–right hemifield asymmetry 
in performance for the lesion but not other groups. Further-
more, within the lesion group, individuals with parietal lobe 
damage produced the poorest performance. Second, there 
was a weak correlation between RMR and lateralization 
(spatial acuity) thresholds, with only 11% of the variance 
in RMR thresholds accounted for by lateralization thresh-
olds. In fact, some participants with the lowest lateraliza-
tion thresholds (under 100 μs) produced near-ceiling RMR 

thresholds (~ 80˚). Consistent with this finding, others have 
shown a dissociation between RMR and minimum audible 
angle (MAA) thresholds for filtered pulses [18] suggest-
ing possibly separate but overlapping neural mechanisms 
underlying the two processes (informational unmasking and 
sound localization). They also reported that while some lis-
teners produced significantly larger RMR thresholds com-
pared to their MAA thresholds, other listeners produced 
very similar thresholds, suggesting that they were able 
to perform spatial stream segregation at the limits of the 
spatial resolution of the system. Third, the older popula-
tion of control participants with no neurological dysfunc-
tion produced RMR thresholds nearly identical to those 
seen for the young control group. This suggests that per-
haps performance on this task is largely dependent on the 
dominance of low-frequency interaural cues [18, 54–56] that 
are unaffected by the characteristic high-frequency hearing 
loss at old age. We suspect, however, that while we did not 
observe an effect of aging on RMR within the age range 
tested, it is likely that at some stage of advanced age, spatial 
stream segregation will be negatively affected similar to the 
adverse effects of aging in a number of other binaural tasks  
[57].

Auditory stream segregation involves complex cortical 
mechanisms at multiple structural and functional hierar-
chies from the auditory cortex [19, 34, 50, 58, 59] to higher 
centers [52, 53, 59, 60]. Both bottom-up automatic and top-
down attentional processing have been implicated in stream 
segregation [6, 60, 61]. Human neuroimaging studies have 

Fig. 5  A RMR thresholds for 
those with damage to parietal 
regions compared to other 
lesion participants (N = 55). B 
No correlation was observed 
between RMR threshold and 
lesion volume (N = 54). C RMR 
thresholds for three subgroups 
of brain lesioned individuals 
(Broca’s N = 19, anomic N = 12, 
conduction N = 8. D Higher 
thresholds for Broca’s aphasics 
may be explained by damage to 
parietal regions. N = 19
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identified the parietal cortex as particularly important to 
perceptually segregating auditory streams [49–53]. For 
example, an fMRI study [49] found that the intraparietal 
sulcus (IPS) is more active when two auditory streams are 
perceived instead of one in an ambiguous (bistable) auditory 
object comprising two concurrent streams.6 This suggests 
that the IPS could potentially play a role in separating two 
streams of sounds such as separating the target from masker 
sequences in the current RMR study. The streams used by 
Cusack were repeated triplets of interleaved low and high 
pitches presented at different tempos. The same stimulus 
was sometimes perceived as a galloping rhythm (i.e., a single 
auditory object) and sometimes as two concurrent streams 
(two objects). They referred to these two percepts as “horse” 
or “Morse” precepts, with greater IPS activity during the 
latter.

Another fMRI study [50] also used bistable auditory 
sequences to study the neural bases of stream segregation. 
They used two interleaved sequences (similar to our study) 
that were spatially separated via interaural level differ-
ences (ILDs) calibrated individually for each participant to 
behaviorally produce 50% reports of split streams and 50% 
reports of a unitary (or grouped) stream. Cortical activity 
measured using fMRI was stronger in the parietal cortex 
when a split stream was perceived relative to times when a 
unitary object was reported for the same physical stimulus. 
Other neuroimaging studies have also implicated the parietal 
cortex in auditory stream segregation [52, 53, 62]. Poorer 
performance in the RMR task by the parietal-lesioned indi-
viduals in our study is consistent with findings from these 
prior studies that have shown a critical role for parietal areas 
and, especially the IPS, in stream segregation, perceptual 
organization, and auditory “figure-ground” separation. The 
parietal lobe’s role in object segregation and integration is 
not exclusive to the auditory domain but extends to other 
modalities like vision and touch [63–65], as well as across 
modalities (audiovisual and visuotactile [66–69]).

Is the poorer performance by the lesion group related to 
impaired stream segregation or to an inability to process 
rhythms in general? The RMR task used here, by its very 
nature, combines these two processes. Stream segregation 
is a broader perceptual phenomenon that may be based not 
just on rhythmic patterns but also on other stimulus dimen-
sions such as spatial separation and frequency content [70]. 
For example, two perceptual streams could be formed by an 

Fig. 6  A RMR thresholds as a function of basic localization thresh-
olds (interaural delays) measured from the same brain-lesioned indi-
viduals. B Histogram of interaural delay thresholds shows a bimodal 
pattern. C Histogram of RMR thresholds. N = 55

6 A bistable “image,” often used in studies of stream segregation, is 
a stimulus that is sometimes perceived as one type and sometimes as 
another (e.g., Necker cube, or young/old woman illusion in vision). 
In the auditory experiments described here, the ambiguous sound is 
sometimes perceived as two objects (two different streams of sound, 
each with its own identity) or as one coherent complex object (a sin-
gle stream of sound).

75



 H. Farahbod et al.

1 3

isochronous sequence of tones that alternate in frequency 
even when originating from the same location (e.g., 500, 
1000, 500, 1000,… Hz). The fact that a large proportion of 
our lesion participants (80%) can perform the RMR task at 
better than chance levels (though with elevated thresholds) 
when the target and masker rhythmic sequences are spatially 
separated suggests that the impairment is not exclusively 
a rhythm-encoding deficit. While the rhythms remain the 
same, the task becomes easier when the spatial separation 
between target and masker sequences increases. This sug-
gests that the deficit is not simply a rhythmic-encoding issue 
but perhaps a broader impairment of the ability to segregate 
perceptual streams of information. The possibility cannot, 
however, be excluded that there were differences in rhythm 
perception ability that contributed to the overall difference.

As noted above, we also found a weak correlation between  
RMR and lateralization thresholds. There is psychophysical 
evidence that localization processes may involve different 
brain mechanisms than those involved in RMR and stream 
segregation [18, 71], and prior studies with brain-lesioned 
individuals have shown a dissociation between abolished 
explicit use of auditory spatial cues in localization and pre-
served implicit use of spatial cues in release from mask-
ing [72]. The correlation between RMR and localization 
thresholds, however, while consistent with prior findings 
[18] should be interpreted with caution. RMR stimuli were 
processed through HRTFs and presented in a single-interval 
design, whereas interaural delay thresholds were measured 
for unfiltered sounds in a 2IFC design. Listeners in the RMR 
task had access to the full set of interaural and spectral pro-
file cues, while they only had access to interaural delay cues 
in the lateralization (acuity) task. One interesting finding 
shown in Fig. 6B is the bimodal pattern of the threshold 
distributions for interaural delays. This is not observed 
for the distribution of RMR thresholds which appear to be 
more uniformly distributed (Fig. 6C). It is unclear why RMR 
thresholds would be more graded than the bimodally distrib-
uted localization thresholds. Perhaps this may be related to 
the more complex cues carried by RMR stimuli, as well as 
the higher-order task requirement of processing a pattern 
of information. The more complex cue may allow listeners 
to utilize different aspects of the various cues to different 
degrees, resulting in a more graded pattern of thresholds, 
whereas the discrimination of an interaural delay (a single 
cue) may be a simpler perceptual task resulting in an all-or-
none dichotomous distribution (with thresholds for listeners 
who cannot do the task aggregating near ceiling values). We 
examined whether there were any associations between these 
distribution characteristics and brain-lesion patterns in our 
participants but did not observe any relationship.

Finally, a comparison of RMR thresholds measured 
for the younger group using sounds presented through 
headphones (i.e., generalized HRTFs) to those previously 

measured in the free-field shows larger averaged thresh-
olds in the current study (25°) compared to free-field 
measurements (8°) where sounds are presented through 
loudspeakers and where subjects listen naturally through 
their own (individualized) HRTFs [18]. Several factors 
may have contributed to this difference. First, use of non-
individualized transfer functions may have had some effect 
as suggested from an earlier study [73] which showed that 
optimum selection of non-individualized HRTFs based 
on a participant’s head width and depth produces lower 
RMR thresholds than those reported here (14° vs 25° on 
average). However, even in that study, mean RMR thresh-
old was nearly twice as high as that reported previously 
[18] for free-field listening (8°). Second, the experimental 
procedures and protocol used in the free-field study [18] 
were different than ours in several respects. They required 
listeners to distinguish between two patterns instead of 
detecting a change within a pattern and used a different 
measurement design (method of constant stimuli with 
2.5° source separation) compared to the adaptive tracking 
method used in the current study (10° source separation). 
Practice and learning effects may have also contributed to 
these differences across studies [73]. It is unlikely, how-
ever, that any of these factors selectively affected RMR 
thresholds across participant groups in the current study.

Processes that underlie RMR and stream segregation are 
important to communication in multisource environments 
where competing sources of sound can mask a target sound. 
The ability of humans to isolate an auditory signal in such 
acoustically complex environments has historically been 
referred to as the cocktail party effect [2, 74]. Early studies 
of this effect focused on how spatial separation, as well as 
other cues to object formation (onset differences, envelope 
coherence, spectral content, etc.), affect energetic masking 
of the target. More recent studies have investigated how the 
informational content of masking sequences in multisource 
settings adversely affect the processing of temporally non-
overlapping signals. Processing of these types of temporal 
sequences goes beyond passive coding of informational con-
tent and may have critical predictive value for processing of 
impending (future) speech segments and other periodic or 
quasiperiodic natural sounds as demonstrated in neural and 
psychophysical forward entrainment [75–80]. The current 
study shows that brain-lesioned individuals are particularly 
vulnerable to interfering sequences of sounds that mask the 
pattern of temporal information in a target sound. Adding a 
linguistic component (e.g., conversation in a crowded restau-
rant) may make things even more challenging, especially for 
people with aphasia. The development of therapeutic strat-
egies specific to encoding temporal sequences may there-
fore be useful to this population, especially in environments 
where competing sounds may interfere with the informa-
tional content of a signal.
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