Skip to main content
. 2023 Jan 30;4(2):143–155. doi: 10.1021/accountsmr.2c00148

Table 1. Studies Relating to the Doping of Porous BNa.

dopant BN structure dopant content dopant chemical environment dopant role in the study nature of the study
C porous BN, hBN nanosheets (BNNS) 5–20 wt % C basal planes reduce bandgap, add sorption sites, add active catalytic sites computational + experimental
O porous BN, BNNS, hBN monolayer 5–20 at. % O basal planes, edges reduce bandgap, tune magnetic properties computational + experimental
C, O porous BN 8 at. % C,6 at. % O basal planes increase specific area and adsorption capacity experimental
Si BN nanotubes 0.08 at. % Si experimental, 5 at. % Si computational basal planes new synthesis technique, reduce bandgap computational + experimental
P porous BN, hBN monolayer 1–5 wt % P basal planes add sorption sites, reduce bandgap computational + experimental
S hBN, hBN monolayer   basal planes reduce bandgap, reduce electrical resistivity computational + experimental
F hBN monolayer   basal planes reduce bandgap computational
F, C, O porous BN   basal planes reduce bandgap, add sorption and catalytic sites computational
Cl hBN monolayer   basal planes reduce bandgap computational
metals (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, Ru, Rh, Pt, Pd, Au, Ag) porous BN, hBN monolayer, BN nanobelts   composite form within and on monolayer surface basal planes introduce plasmonic heating, reduce reaction-limiting potential, reduce bandgap, tune magnetic properties, create electric field within material computational + experimental
a

Full details in the Supporting Information, Table S1.