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Abstract

Understanding the spatial interactions between the elements of the tumor microenvironment -i.e. 

tumor cells. fibroblasts, immune cells- and how these interactions relate to the diagnosis or 

prognosis of a tumor is one of the goals of computational pathology. We present NaroNet, a 

deep learning framework that models the multi-scale tumor microenvironment from multiplex-

stained cancer tissue images and provides patient-level interpretable predictions using a seamless 

end-to-end learning pipeline. Trained only with multiplex-stained tissue images and their 

corresponding patient-level clinical labels, NaroNet unsupervisedly learns which cell phenotypes, 

cell neighborhoods, and neighborhood interactions have the highest influence to predict the 

correct label. To this end, NaroNet incorporates several novel and state-of-the-art deep learning 

techniques, such as patch-level contrastive learning, multi-level graph embeddings, a novel max-

sum pooling operation, or a metric that quantifies the relevance that each microenvironment 

element has in the individual predictions. We validate NaroNet using synthetic data simulating 

multiplex-immunostained images where a patient label is artificially associated to the -adjustable-
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probabilistic incidence of different microenvironment elements. We then apply our model to two 

sets of images of human cancer tissues: 336 seven-color multiplex-immunostained images from 12 

high-grade endometrial cancer patients; and 382 35-plex mass cytometry images from 215 breast 

cancer patients. In both synthetic and real datasets, NaroNet provides outstanding predictions 

of relevant clinical information while associating those predictions to the presence of specific 

microenvironment elements.

Keywords

Tumor microenvironment; Weakly supervised learning; Deep learning; Spatial biology; Multiplex 
imaging; Imaging mass cytometry; Cellular neighborhoods; Interpretable machine learning; Self 
supervised learning

1. Introduction

The histopathology and phenotype of a tumor guide its diagnosis, prognosis, and help 

to predict its response to conventional or immune-based anticancer treatments. Indeed, 

cancers are graded based on tumor architecture and cellular morphology (histopathology), 

while the expression of relevant cancer biomarkers (phenotype) is used to stratify patients, 

predict their prognosis and customize their treatment. Automating these tasks using machine 

learning (ML) is the goal of a novel field known as computational pathology.

1.1. Computational pathology

Two main computational pathology strategies exist to automate the analysis of the 

histopathology of a tumor or its phenotype: weakly supervised deep learning (WSDL) 

and single cell analysis (SCA). WSDL builds on the widespread availability of whole 

slide imaging (WSI) to blindly extract prominent histopathological tumor features from 

large amounts of raw or weakly annotated images of H&E stained tissue sections. Trained 

only with patient-level labels, WSDL automatically associates these architectural tumor 

features with clinical labels (Veta et al., 2019; Srinidhi et al., 2021; van der Laak et al., 

2021), eliminating the need for manual and extensive pixel-level annotations (Bulten et al., 

2020). WSDL uses patches containing several cells as the basic unit of interpretability, to 

saliently localize tumor-specific regions. This strategy has been shown very effective, often 

outperforming human experts’ predictive ability. For instance, WSDL has been effectively 

used for tumor subtyping, patient grade classification, or lymph node metastasis detection 

without pathologist’s intervention (Campanella et al., 2019; Boehm et al., 2021; Bilal et al., 

2021; Lu et al., 2021; Pinckaers et al., 2020; Cheng et al., 2021; Diao et al., 2021; Longo et 

al., 2021).

SCA emerged in the context of the research for novel cancer biomarkers, i.e., specific 

proteins that are expressed by tumor cells, defining their particular phenotype. This 

laborious task requires selecting potential targets from in silico data and validating these 

targets in situ to confirm that they are reliably related to a specific biological effect. 

Traditionally, this has been done one or a few markers at a time. Recently, the development 

of highly multiplexed tissue imaging technologies, such as imaging mass cytometry (IMC) 
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or multiplex immunofluorescence (MI), allows simultaneous staining of tissue sections with 

a high number (>20) of biomarkers (Hao et al., 2021; Stopsack et al., 2020). These complex 

biomarker signatures provide a comprehensive visualization of the tumor microenvironment 

and the spatial relationship between its elements, which could be related to the biology and 

prognosis of the tumor (Rendeiro et al., 2021; Ji et al., 2020). However, the complexity of 

the patterns of expression and the spatial relationships between multiple markers exceeds 

the capabilities of the human brain. SCA methods (Schapiro et al., 2017) approach this task 

by first segmenting the cells in the tissue and quantifying their morphology and intensity 

of marker expression. This information is then used to find clusters of cells with similar 

phenotypes, as well as higher-order interactions or ‘neighborhoods’ between phenotypes 

(Schürch et al., 2020). To this end, SCA methods build topological networks containing cell 

phenotype interactions, and apply graph-based clustering (Blondel et al., 2008) to assign 

groups of cells to different neighborhoods. Since SCA methods use the cell as the basic unit 

of tissue representation, they provide a high level of interpretability. However, SCA methods 

are sequential and not learning-based, meaning that the phenotypes and neighborhoods 

extracted are inferred ignoring which were the clinical questions at hand, and therefore the 

quantified microenvironmental features are not necessarily optimal to differentiate patient 

types (McQuin et al., 2018). This is especially true when analyzing highly heterogeneous 

data, affected by technical non-linear variabilities caused by autofluorescence and/or low 

expression of some antigens (Jackson et al., 2020; Schürch et al., 2020).

1.2. Aim of the study

The aim of this study is to combine SCA (cell-level interpretable quantification of the tumor 

microenvironment) and WSDL (patch-based end-to-end learning of tumor histopathology) 

to automate the in situ discovery of tumor microenvironment elements (TMEs) that are 

relevant for a specific clinical predictive task. To this end, we have developed NaroNet, a 

multilevel, interpretable deep learning ensemble, which learns the most relevant TMEs from 

multiplex immunostained tissue sections while performing a classification task, using only 

patient-level labels. NaroNet assigns patches to TMEs at three levels of spatial complexity: 

local cell phenotypes, cellular neighborhoods, and interactions between neighborhoods that 

we name as tissue areas. The concept and main elements of NaroNet are illustrated in Fig. 1.

To validate NaroNet in a controlled way, i.e. having a ground truth, we first analyzed 

synthetic sets of multiplex images that simulate situations that can be found in real samples. 

Then we applied our model to learn relevant TMEs while predicting clinically relevant 

parameters from two real datasets: 336 7-plex images from 12 patients with high-grade 

endometrial cancer and a publicly available imaging mass cytometry dataset (Jackson et al., 

2020) consisting of images from 215 breast cancer patients.

1.3. Methodological contributions

Besides the main conceptual novelty of discovering TMEs while performing clinical 

predictions from multiplex immunostained cancer tissues, NaroNet integrates novel and 

state-of-the-art ML approaches. In particular, the main methodological contributions of 

NaroNet are:
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• The development of patch contrastive learning (PCL), a self-supervised learning 

algorithm that encodes high-dimensional pixel information into enriched patch-

embeddings.

• The modelling of the tumor microenvironment in three levels of increasing 

complexity: local phenotypes, cellular neighborhoods and areas of interaction 

between cellular neighborhoods.

• A novel max-sum pooling operation that transforms TME learned annotations 

into patient-level vectors where each value specifies the incidence of TMEs.

• Two novel regularization loss terms that prevent NaroNet from producing 

spurious local minima: patch entropy loss and patient entropy loss.

• The optimal selection between several dataset-dependent architectural variations 

(e.g. multiple TME assignment, leveraging patch relevance, global reasoning 

unit, etc.). This is computationally feasible thanks to the dimensionality 

reduction provided by our PCL module.

• A BioInsights interpretability module that automates the association between 

patient types and TMEs, based on a novel predictive influence ratio (PIR) metric 

that quantifies the relevance that TMEs have in individual predictions.

The structure of the rest of this paper is as follows: Section 2 describes the synthetic and real 

datasets used, and describes the proposed methodology. Section 3 contains the experiments 

used to test the performance of NaroNet and reports the results obtained. Section 4 provides 

in-depth analysis of the proposed methods. Finally, we discuss the results in Section 5, and 

end with our conclusions in Section 6.

2. Materials and methods

2.1. Datasets

A. Synthetic patient cohorts.—An in-house developed multiplex immunostained 

tissue simulator (Jiménez-Sánchez et al., 2021), was used to create patient cohorts. Each 

patient of the cohort was represented by a 80 0×80 0 multiplex image that contained 8 

cell phenotypes (Ph1-Ph8), defined by the (tunable) probabilistic level of expression of 6 

fluorescently labeled markers (Mk1-Mk6) (Fig. 2a), the cell size (Fig. 2b), and shape (Fig. 

2c). Four types of cell neighborhoods (Nb1-Nb4) were also defined based on the (adjustable) 

probabilistic abundance of the 8 cell phenotypes (Fig. 2d), and the (adjustable) interactions 

between them (Fig. 2e). Each neighborhood had a predefined prevalence in the tissue (Fig. 

2f) and could interact with other neighborhoods (Fig. 2g) defining one area of interaction.

We simulated 7 patient cohorts. Each cohort contained 240 patients, distributed in 3 groups 

(type I, II, and III) of 80 patients each, defined by the variation of the default configuration 

parameters shown in (Fig. 2), simulating different disease paradigms in-spired on real 

scenarios:

Phenotype Marker Intensity (PMI).: In these patient cohorts, the cells of phenotype 

Ph6, located in neighborhood Nb3, displayed different relative intensity of Mk6 marker 
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expression in each group of patients: 25% (type I), 50% (type II), or 75% (type III) 

(Supplementary Fig. 1). Two cohorts were created with different levels of complexity. In 

cohort PMI1, the relative abundance of Ph6 cells in Nb3 was set to 15% (moderately 

present), whereas in PMI2 the relative abundance of Ph6 was set to 0.25% (rarely present).

Phenotype Frequency (PF).: We simulated two patient cohorts where each group of 

patients displayed different abundance of cell phenotype Ph6. In PF1 (moderate presence) 

the relative abundance of Ph6 cells in neighborhood Nb3 was set to 0% (type I), 30% 

(type II), and 60% (type III) (Supplementary Fig. 2). In PF2 (rare presence), the relative 

abundance of Ph6 in Nb3 was set to 0% (type I), 0.12% (type II), and 0.25 (type III)%.

Cell-Cell Interactions (CCI).: We simulated two patient cohorts where cell phenotypes Ph4 

and Ph5 that belong to neighborhood Nb2 repel (type I), show no interaction (type II), or 

attract (type III) (Supplementary Fig. 3). In cohort CCI1 (moderate presence) the relative 

abundance of both Ph4 and Ph5 in Nb2 was set to 5%; in CCI2 (rare presence), the relative 

abundance of both Ph4 and Ph5 was set to 1%.

Neighborhood-Neighborhood Interactions (NNI).: We simulated one patient cohort 

displaying different interactions between cellular neighborhoods, related to patient type. 

In this cohort (NNI1), Nb2 and Nb3 repel (type I), show no interaction (type II), or attract 

(type III). The relative abundance of both Nb2 and Nb3 was set to 15% (Supplementary Fig. 

4).

B. Endometrial carcinomas.—Tissue sections from twelve Formalin-fixed, paraffin-

embedded (FFPE) high-grade endometrial carcinomas were stained with a seven-color 

multiplex panel targeting key elements of the immune environment: CD4 and CD8 T 

cell membrane receptors, the transcription factor FOXP3, the bona fide T cell activation 

marker CD137 (4–1BB), the programmed cell death-1 (PD-1), cytokeratin (CK), and 

DAPI (counterstaining). 336 1876×1404×7 pixel images were obtained from the 12 

tissue sections, using a Vectra-Polaris Automated Quantitative Pathology Imaging System 

(Perkin Elmer Inc., Waltham, MA, USA). Clinicopathological patient-level information was 

available for these tumors (León-Castillo et al., 2020), including the microsatellite instability 

(MSI) subclass, genomic copy number variation, and POLE mutation variants. A detailed 

description of this dataset, including the staining protocol and relevant clinicopathological 

information is included in Supplementary Materials: Appendix A. High grade Endometrial 

carcinomas.

C. Breast cancer.—A publicly available image dataset (Jackson et al., 2020) was used, 

consisting in 381 images from the same number of IMC (CyTOF) stained tissue sections, 

obtained from 215 breast cancer tumor biopsies. Tissue sections were stained with a 35-plex 

antibody panel staining clinically established breast cancer targets like oestrogen receptor 

(ER), progesterone receptor (PR), and HER2, as well as relevant oncogenes, signalling, and 

epigenetic related proteins.
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2.2. Methodology: Patch Contrastive Learning (PCL) (Fig. 1b)

The goal of the first step of our pipeline is to convert each high-dimensional multiplex 

image of the cohort into a more manage-able list of low-dimensional embedding vectors. 

To this end, each image is divided into patches-our basic units of representation of the local 

tissue microenvironment, or phenotype-, and each patch is converted by the PCL module -a 

properly trained CNN- into a low-dimensional vector that embeds both the morphological 

and spectral information of the patch.

The PCL module is trained iteratively. In each iteration, illustrated in Fig. 3, the PCL module 

is unsupervisedly trained to learn embeddings of a random set of patches, by maximizing 

the agreement between augmented views of highly overlapping patches, and minimizing the 

agreement between augmented views of distant patches, using a contrastive loss function. 

The choice of the image patch size SL is critical as it determines the extent to which 

biological structures can be captured, and their context. It also determines the size of the 

graph that is used to predict the outcome of the patient (see next section). This value was 

chosen considering that: i. a patch should be large enough to contain between zero and 

two cells, thus guaranteeing the interpretability of the model at the level of single cell or 

small cell environments; ii. the entire set of patches extracted from the images of one patient 

should fit in a single GPU, to efficiently generate patient predictions.

The steps required in each training iteration are described next:

A. Image crop selection.—A set x 1 . BL is created made of BL image crops of size 

SL ∗ ∝L × SL ∗ ∝L × B obtained at random positions of R random images chosen from 

the entire pool of N images of the cohort (Fig. 3a-b). Note that B is the number of spectral 

channels of the image.

B. Data augmentation.—An image patch set x 1.BL ∗ 2 is created containing two 

augmented views, xj1 and xj2 each image crop xj of x 1.BL. To this end, our data 

augmentation module (Fig. 3c) applies the following sequence of simple transformations 

to each image crop Xj: i. of two random crops of size SL; ii. one random rotation; and iii. a 

random cutout consisting of masking out random 0.15 × SL sized sections of the patch.

C. Patch embedding generation.—The entire set of augmented patches x 1.BL ∗ 2 is 

fed to a ResNet-101 (Fig. 3d), to obtain a set of g = 256 - dimensional vector representations 

or embeddings of the patches ℎ 1 ⋅ BL ∗ 2, being each patch, ℎjk = ResNet xjk , k = 1, 2

where ℎjk ∈ ℝg. Then, a multilayer perceptron (MLP) maps each representation ℎjk to a 

128-dimensional vector zjk.

D. Network parameter update.—Finally, a contrastive loss function is applied to 

z 1 ⋅ BL ∗ 2 to create similar embeddings for patches contained in the same crop (i.e, 

zj1 and zj2) -possibly corresponding to the same biological structure-, while forcing 

dissimilar embeddings for patches contained in different image crops (i.e. zik and zql, 
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being i ≠ q)-possibly corresponding to dissimilar biological structures- (Fig. 3g). Let 

sim(u, v) = uTv/ ∥ u ∥ ∥ v ∥ denote the cosine similarity between two vectors u and v. The 

loss function applied to any given pair of patches that belong to the same image crop is 

defined as:

ℓj1, j2 = − log exp sim zj1, zj2 /τ
∑q = 1, q ≠ j, l = 1, 2

BL − 1 exp sim zjk, zql /τ
(1)

where τ is a temperature parameter set to 0.5.

This iterative (A-D) process is repeated until convergence to train the PCL module, 

which is next used to create vector embeddings of all the images of the cohort. To this 

end, each high dimensional multiplex image i ∈ ℝix × iy × B is divided in patches of size 

SL × SL × B, and each image patch is then introduced into the PCL module to obtain a 

patch embedding h j (Fig. 3e). This way the PCL module converts each image into a list 

of patch embeddings ℎ 1.L. The resulting embedded image has reduced dimensionality, i.e. 

i ∈ ℝix × iy × B ℝL × g, where L =
ixiy
SL2  is the number of patches of the image, and g is the 

number of features contained in the new patch embedding, in our case 256. This strategy 

reduces the image dataset size by approximately one order of magnitude.

2.3. Methodology: Patch-graph generation (Fig 1c)

A graph is then created that contains all the embedded patches of each tissue/image 

capturing cellular neighborhoods, i.e., local phenotypes that are spatially associated (Fig. 

1c). This graph is G = (Z, A), where Z ∈ ℝLxg is a matrix that contains all the embeddings 

of the image ℎ 1.L, and A ∈ 0, 1LxL is an adjacency matrix that contains the connectivity 

between patches. To reduce the expensive memory burden of storing complete adjacency 

matrices, we ‘sparsify’ A as A′ ∈ ℤEx2, being A′ a list of edges (i.e., connections) 

between patches, extracted from the non-zero values of the original A, where E is the 

number of edges present in the graph. Therefore, graph G = (Z, A), is converted into graph 

G′ = Z, A′ . Since we connect each patch to its 4 adjacent neighbors, i.e., E = L × 4, the 

memory required to store A′ increases linearly with L, as opposed to A, which increases 

exponentially.

2.4. Methodology: NaroNet (Fig 1d)

Being D = G1, y1 , G2, y2 , …, GM, yM , a cohort of patients, where M is the number of 

patients, and each patient is represented by a graph Gm ∈ G, and a patient-level label 

ym ∈ Y, the goal of NaroNet is to learn a mapping G f Y that relates patient information 

with patient labels, or predictions (Fig. 1d). The architecture of NaroNet is divided 

in two consecutive networks G
f1 (P, N, A)

f2 Y, trained end-to-end using the patient 

labels, where P ∈ ℝP  is the abundance of local phenotypes (Fig. 1e), N ∈ ℝN is the 

abundance of neighborhoods (or phenotype interactions) (Fig. 1f), and A ∈ ℝA is the 
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abundance of areas (or neighborhood interactions) (Fig. 1g). Note that P, N, and A are 

the number of phenotypes, neighborhoods or areas, respectively. We therefore model the 

tissue microenvironment using three levels of increasing spatial complexity. For the sake of 

consistency, we refer globally to P, N, A as tumor microenvironment elements (TMEs). 

The first section of NaroNet, f1 (Fig. 1e-h), is an ensemble of three parallel networks 

that assigns nodes to distinct P, N, A values. The second section, f2, assigns patient’s 

predictions from the learned TMEs (Fig. 1i). To learn the tumor microenvironment, the three 

neural networks f1 = f1P , f1N, f1A  are trained in parallel from individual patient data and 

later pooled to obtain the abundance of each TME, as described in the following paragraphs:

A. Phenotype learning.—Each image patch, ℎl ∈ Zm, is assigned to a phenotype vector 

using f1P , i.e.:

SP = f1P Zm ∈ ℝL × P (2)

where f1P  is an 8-layer MLP with skip connections, with P phenotypes in the last 

layer. Therefore f1P  takes the patch representations of image Zm and generates a patch 

assignment matrix SP, whose values represent the probability that each patch is assigned to P 
phenotypes.

B. Neighborhood learning.—Likewise, each image patch, ℎl ∈ Zm is assigned to a 

neighborhood f1N, i.e.:

SN = f1N Z, A′ ∈ ℝL × N (3)

where f1N is a Graph Neural Network (GNN) followed by a 1-layer MLP which has an 

output dimensionality N. Therefore, f1N uses Zm patch representations and the adjacency 

matrix A′ to produce a patch assignment matrix SN. Here, the GNN captures relationships 

between connected patches of a graph. To that end, it performs K iterations of a trainable 

weighted sum of each graph node (in our case patch ℎl ∈ Zm) and its connected neighboring 

nodes, generating a new feature vector at the next hidden layer of the network (Hamilton et 

al., 2017; Kipf and Welling, 2017; Jimenez-Sanchez et al., 2020; Pati et al., 2020).

C. Area learning.—Each neighborhood that resulted from the previous GNN, ℎl ∈ Zm
(K)

is assigned to areas using a second GNN f1A . To this end the following trainable 

assignment matrix is used:

SI = f1A SN
T Z(K), SN

T A′SN ∈ ℝN × A
(4)

This GNN learns the higher order interactions between the N neighborhoods of the 

original graph. For this purpose, f1A is fed with the embeddings from N neighborhoods 

SN
TZ(K) ∈ ℝN × H and the interactions between neighborhoods SN

TA′SN ∈ ℝN × N ⋅ f1A
accumulates feature vectors of neighborhoods that are close to each other. As in the previous 
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section, the GNN is applied K iterations or hops, this number indicating the extent to which 

the patch embeddings can capture information of their neighbors.

D. Max-sum pooling.—After applying f1P , f1N, f1A, each row of SP contains the 

probability that each patch of the image contain each of the P phenotypes, each row of 

SN contains the probability that a patch of the image contain each of the N neighborhoods, 

and each row of SA contains the probability that a neighborhood of the image contain each 

of the possible A areas. The final step of f1 is a max-sum pooling operation that captures the 

abundance of each TME:

P = ∑
1.L

max
1.P

softmax SP ∈ ℝP
(5)

N = ∑
1.L

max
1.N

softmax SN ∈ ℝN
(6)

A = ∑
1.L

max
1.A

softmax SA ∈ ℝA
(7)

where SP , SN, SA (eqs. 5, 6, 7) are the assignment matrices whose values correspond to 

neuron activations, where the softmax activation function transforms them into probabilities 

in a row-wise fashion. The max operator function is applied row-wise so that only the 

maximum values of each row are kept, while the others are set to zero. The sum operator is 

applied column-wise to obtain the abundance of each TME. The resulting (P, N, A) are the 

TME abundances that represent each patient.

The TME abundance vector (P, N, A) ∈ ℝP + N + A is fed to the second’s network section 

(f2), consisting in a 1 layer MLP, i.e., y′ = f2(P, N, A) ∈ ℝ0, where y′ is the prediction 

between O possible patient-outcomes. A cross entropy loss is used to train the parameters of 

both f1 and f2. The strategy used to implement f1 can produce spurious local minima where 

all patches are assigned to a single microenvironment element. This local optimal solution 

traps the gradient-based optimization, and reduces NaroNet’s performance. To prevent this, 

we use two regularization loss functions.

E. Patch entropy loss.—Patch entropy loss is used to regularize the probabilities given 

by eqs. 5, 6, 7. After initialization, the assignment of patches to TMEs is uncertain and 

the entropy of the patches is high. During the training process, we aim at knowing the 

assignment of patches to TMEs, obtaining a sparse matrix assignment. To this end, we 

propose to reduce patch entropy for each TME using a loss function:

ℓ = 1
L ∗ ∑

l = 1.L
− sum(softmax(S) ∗ log(softmax(S))) (8)

where S is any of the matrices SP , SN, SA, and the function generates ℓep, ℓen, ℓea  losses, 

respectively. The final loss is restricted to ℝ ∩ [0, 1] where the lower the value the most 
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certain it is that a patch belongs to a specific TME. The final, combined loss is regularized 

by a λ parameter.

ℓe = λep ∗ ℓep + λen ∗ ℓen + λei ∗ ℓei /3 (9)

where λep, λen, λei regularize how much the weights are adjusted to each (P, N, A) TME. 

This is a specific learning rate that is chosen based on the tumor microenvironment 

complexity.

E. Patient entropy loss.—Patient entropy loss is used to avoid graph pooling collapse 

in (P, N, A) TMEs.:

ℓpp = sum(P ∗ log(P) (10)

ℓpn = sum(N ∗ log(N)) (11)

ℓpa = sum(A ∗ log(A)) (12)

where (P, N, A) are the TME abundances and the vector ℓpp, ℓpn, ℓpa  contains 

the calculated losses, their values being restricted to ℝ ∩ [ − 1, 0]. As done for 

the patch entropy loss, the final loss is also regularized using a λ parameter, 

ℓp = lambdapp ∗ ℓpp + λpn ∗ ℓpn + λpa ∗ ℓpa /3. Notice that the lower the value of lp the most 

spread out is the abundance of the TMEs. This strategy is less restrictive than the orthogonal 

loss (Bianchi et al., 2020) since the regularization term does not force clusters to have the 

same size.

In order to provide the highest predictive and interpretability performance, NaroNet’s 

parameters and architecture variations (Supplementary Materials: Appendix C. Architectural 

variations) are optimally selected by an architecture search algorithm (Supplementary 

Materials: Appendix B. Architecture search).

2.5. Methodology: BioInsights interpretability module

Besides generating predictions, NaroNet identifies the elements of the tumor landscape that 

relate to a specific predictive task. This can be done a posteriori through the analysis of the 

TMEs (P, N, A), obtained by NaroNet while classifying patients. That is the goal of the 

BioInsights module, that is done through the identification of global cohort-differentiating 

features (differential TME analysis), and relevant TMEs in individual predictions (predictive 

influence ratio).

A. Differential TME analysis.—NaroNet’s f2 network maps TME abundances to 

patient-outcomes, i.e., Y = f2(P, N, A)1.M. Therefore, (P, N, A)1.M are the coefficients 

or covariates of the model, and the patient’s predictions are made solely using the relative 

abundance of specific TMEs. We use regression analysis to interrogate which TMEs were 

more important to perform patient predictions. Specifically, to evaluate whether a specific 
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TME is significant to perform patient predictions, a leave-one-out strategy is used, where a 

TME t is extracted from the set of all patient TME abundances (P, N, A)1.M obtaining a 

new set of TMEs defined as (P, N, A)1.M
t . The model is evaluated with the entire patient 

cohort, and new prediction probabilities are obtained. Then, a Kruskal-wallis test is used 

to compare the prediction performance of the original TMEs with that of the leave-one-out 

model. If the null hypothesis is accepted, the extracted TME is considered to have predictive 

value.

B. Predictive influence ratio (PIR).—The differential TME analysis finds global 

patterns in patient cohorts but ignores the heterogeneity existing between patients/tissues. To 

address this, we introduce the predictive influence ratio (PIR), which quantifies the influence 

that each TME has on the prediction accuracy of a patient m ∈ 1 − M:

PIRm, t = f2(P, N, A)m
f2(P, N, A)m

t (13)

where PIRm, t is the predictive influence ratio for a patient m and a TME t, and 

f2(P, N, I)mt  is the leave-one-out model performance. The higher the value of PIRm, t the 

most important the TME t is for the classification of patient m.

3. Results

3.1. Synthetic experiments

Seven patient cohorts, 240 patients each, were simulated (see Section 2.1.A), representing 

four disease paradigms (PM, PF, CCI and NN) in which either the moderate (1) or rare 

(2) presence of a specific TME differs between each of the three patient types (I, II or 

III). Seven different experiments were carried out, in which NaroNet was trained to predict 

the correct patient type for all patients of a cohort, while learning the TMEs that were 

relevant for that prediction. With these experiments we wanted to validate the ability of 

NaroNet to correctly classify each patient, and also to identify the relevant TME that defines 

each paradigm, in a properly controlled, quantifiable fashion (Supplementary Materials: 

Appendix D. Interpretability performance measure). In all 7 experiments, 120 patients of the 

cohort (40 patients of each type) were used for training and validation of NaroNet, including 

PCL and 500 runs of architecture search, and the remaining 120 patients were used for 

testing. Three train-test runs were made and averaged to report the final performance values.

The results obtained in each of these 7 experiments, in terms of NaroNet’s predictive 

accuracy, i.e. how accurately NaroNet predicted the patient type, and interpretability, i.e. 

the correspondence between the TME found more relevant by NaroNet and the TME 

that actually defined the disease paradigm, are shown in Table 1. Overall, the model 

predicts remarkably well all disease paradigms, even in those experiments involving rare 

cell populations.

Illustrative example: CCI1.—Now we illustrate NaroNet’s methodology, results and 

interpretability using one of the synthetic experiments (CCI1) consisting of a patient cohort 
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where cell phenotypes Ph4 and Ph5, coexisting in neighborhood Nb2, repel, show no 

interaction, or attract each other in patient types I, II, and III, respectively (Fig. 4a,b). 

The PCL module was trained to generate 256-long vector embeddings of 10×10 pixel 

patches with 52.8% contrastive accuracy, which was comparable to state-of-the-art semi-

supervised learning setups (Chen et al., 2020b) (Table 1). Next, we used the training image 

set (120 patients) to calculate the optimal architecture (Supplementary Tables 1 and 2, 

Supplementary Figs. 5 and 6) and train the model. Then the test image set (120 patients) 

was used to calculate the classification performance. The receiver operating characteristic 

(ROC) curves, confusion matrix, and training and test accuracy curves obtained are shown 

in Supplementary Fig. 7. As shown in Table 1, the overall accuracy achieved for experiment 

CCI1 was 98.6% with a 95% confidence interval (CI) of [97.7,99.5]

Regarding the interpretability of the results, our global differential TME analysis revealed 

that, amongst all the neighborhoods detected by NaroNet (Supplementary Figs. 8,9), 

four neighborhoods -in order of statistical significance: N3, N7, N9, and N1-were most 

responsible for NaroNet’s predictions (Supplementary Fig. 10a). We also found that N3 

and N7 are the most abundant neighborhoods in type I patients (repulsion between Ph4 

and Ph5 cells)(Supplementary Figs. 10b-c), N9 is the most abundant neighborhood in type 

III patients (those displaying attraction of Ph4 and Ph5 cells)(Supplementary Figs. 10b-d), 

and N1 is the most abundant neighborhood in type II patients (no interaction between Ph4 

and Ph5 cells) showing an equilibrium between attraction and repulsion (Supplementary 

Figs. 10e). The combination of these four neighborhoods overlaps 92.8% with ground 

truth neighborhood Nb2 (Table 1 and Fig. 4a). Therefore, NaroNet has correctly identified, 

and weighted in the classification, the tissue regions where the patient-defining TMEs are 

located.

We can next analyze the content of these four neighborhoods to confirm this finding: N7 

contains high expression of markers Mk3 and Mk5, corresponding to cell phenotypes Ph3 

and Ph5 (Fig. 4b,c). In type I patients, the abundance of N7 is statistically higher than in 

type III patients (Fig. 4d). If we look at N7 in type I tissues (Fig. 4e), we can confirm that 

it contains Ph3 and Ph5 cells, but not Ph4, meaning that there is physical repulsion between 

Ph4 and Ph5 as expected for this disease paradigm. The behaviour of N3 is similar to that 

of N7. N9 contains high expression of markers Mk3, Mk4 and Mk5, which correspond to 

cell phenotypes Ph3, Ph4, and Ph5 (Fig. 4b,c) and is significantly more abundant in type III 

patients, compared to patient types I and II (Fig. 4f). If we go back to the tissues of type III 

(Fig. 4g), it can be confirmed that N9 contains spatially related cells with phenotypes Ph4 

and Ph5, as expected in this disease paradigm. Therefore, we have shown that the TMEs 

learned by NaroNet capture the specifics of the underlying disease paradigm and lead to a 

successful classification.

To interpret why an individual image/patient was classified as a certain patient type, we 

calculated the predictive influence ratio (PIR) value for each TME. This strategy, applied 

to CCI1 shows (Supplementary Fig. 11a) that for most type I patients, the abundance of 

neighborhood N7 was the most determinant classification factor. Conversely, N9 was highly 

predictive for type III patients, and N1 was highly relevant to successfully classify type II 

patients. We illustrate this with examples of individual predictions: a patient classified as 
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type I with prediction confidence of 97.75% and a PIR value of 2.28 for N7 (Fig. 4h), and 

a patient classified as type III with prediction confidence of 94.36% and a PIR value of 1.61 

for N9 (Fig. 4i).

3.2. Endometrial carcinomas

We first asked NaroNet to learn TMEs associated to four patient-level labels: the somatic 

POLE mutation, copy number variation (CNV), DNA mismatch repair (MMR) deficiency, 

and two tumor histology types (endometrial carcinoma or serous-like carcinoma) from 

382 images of 12 high-grade endometrial carcinomas. The PCL module was trained to 

generate 256-dimensional embeddings of 15×15 pixel image patches, obtaining a high 

contrast accuracy of 81.11%. A 10-fold nested cross validation strategy was then used to 

optimize NaroNet’s parameters and hyperparameters. Using this strategy, the architecture 

search is repeated ten times (outer loop) using a 10-fold partition of the data. In each inner 

loop, 50 runs of the architecture search are implemented from 90% of the image dataset (344 

images). The best architecture configuration (Supplementary Table 3) was then evaluated on 

the corresponding test fold of the outer loop (38 images), providing image-level predictions 

with average accuracy of 93.75% with 95% CI [91.16,96.33] (Fig. 5a and Supplementary 

Fig. 12) for the four patient-level labels.

As an example of the global interpretability of the results, we next analyze the 

interpretability of the model while predicting the POLE mutation status: NaroNet 

unsupervisedly learned 26 TMEs (Supplementary Figs. 13 and 14). Our differential TME 

composition analysis revealed that area A1 (p-value: 2.56×10−9) is the most predictive 

TME when making patient predictions. Particularly, A1 is significantly more associated to 

tumors harboring POLE mutations than to POLE wild type (WT) tumors (Fig. 5c). Area 

A1 contains neighborhoods N2 and N7 (Fig. 5b and Supplementary Fig. 14d) which in 

turn contain local phenotype interactions between P2-P7 and P4-P9, respectively (Fig. 5d). 

N7 contains CK+ tumor cells (P4) and intratumoral cells expressing CD4 and CD8 (P9), 

and by itself is not associated with POLE mutation (Fig. 5e). By contrast, N2 contains 

non-infiltrating cells that express CD8, PD1 and FoxP3 (P2) associated to tumor CK+ cells 

(P7), and is associated with POLE mutated patients (Fig. 5f). Furthermore, P2 by itself 

was significantly more abundant in POLE mutated patients (p-value: 2.80×10−10) compared 

to patients carrying the wild type version of the gene (Fig. 5g-i). All these findings are 

consistent with the literature as CD4, CD8, FoxP3, and PD1 are inflammation markers, and 

POLE-mutated endometrial carcinomas, usually with a better prognosis than POLE WT, 

with higher abundance of A1 areas, are described to have large lymphocyte populations 

(Li et al., 2019b). In summary, area A1 contains cellular neighborhoods related to high 

immunological activity, and points at the existence of interactions between specific immune 

phenotypes in POLE vs. non POLE mutated cancers that could be further explored, as could 

be done with other TMEs selected by NaroNet.

To illustrate the individual interpretability of our results we provide two examples of images 

in which phenotype P2 was the most relevant TME selected by NaroNet. The first image 

was correctly classified as POLE WT with a prediction confidence of 95.45%, and PIR value 

of 1.49. It shows a cold tumor landscape -low P2 abundance - that is associated with POLE 
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WT patients (Fig. 5j). This is consistent with the global cohort-level findings (Fig. 5h). The 

second image was correctly classified as a POLE mutated with a prediction confidence of 

99.24%, and a PIR value of 1.38. It shows a hot tumor landscape with high P2 abundance 

(Fig. 5k), being also consistent with global cohort-level findings.

Comparison with single cell analysis: Qupath.—To further validate NaroNet, we 

quantified the phenotype that NaroNet identified as the most discriminative between patient 

types (P2, i.e. high expression of CD8, PD1, and FoxP3), using QuPath (Bankhead et al., 

2017), a widely used open source software for computational pathology (Supplementary 

Materials: Appendix E. Image analysis with Qupath). For each image of the cohort, we 

first quantified the level of expression of CD8, PD1, and FoxP3 from the cell segmentation 

masks obtained using the DAPI -counterstained-channel. Then we calculated the number 

of CD8+PD1+FoxP3+ cells and correlated this number with the number of patches that 

NaroNet assigned to P2, obtaining positive correlation (R2 = 0.63) (Supplementary Fig. 

15b). Moreover, the respective violin-plots (Supplementary Fig. 15c-d) showed both QuPath 

and NaroNet are able to robustly distinguish patient-types based on CD8+PD1+FoxP3+ 

phenotype abundance, the outstanding difference being that NaroNet infers it without human 

supervision.

Patient-wise quantification.—Finally, to test NaroNet’s predictive power classifying 

subjects, i.e. patients and not individual images, based on the POLE mutation, we performed 

a leave-one-out experiment: iteratively, 11 patients (represented by all their images) were 

used to train the model and one patient was used for testing. Patient-wise predictions were 

calculated as the mean prediction value of all images that correspond to the test patient, 

achieving an overall accuracy of 83.33% with a 95% CI [63.02– 10 0.0 0%], and an AUC of 

0.67 with a 95% CI [0.32–1].

3.3. Breast cancer cohort

NaroNet was trained to associate TMEs with patient survival risk (Jackson et al., 2020). 

215 patients were clustered by k-means into three risk groups (RI, RII, RIII) based on 

their long-term survival (Fig. 6a): RI contained 48 patients that survived more than 120 

months, RII contained 107 patients that survived between 54 and 119 months, and RIII 

contained 60 patients that survived less than 53 months. The PCL module produced 18×18 

pixel patch embeddings for all the images of the cohort, with a high contrast accuracy of 

82.50%. As more than one image was acquired per patient, images from the same patient 

were combined in one single data structure (i.e., graph) and fed to NaroNet. A 10-fold 

nested cross validation was used to optimize NaroNet’s parameters and hyperparameters 

(Supplementary Table 4) as explained for the endometrial carcinoma experiment in Section 

3.2. NaroNet predicted RI vs. RIII patients with an accuracy of 70.37% with 95% CI [61.81–

78.92] and an AUC of 0.73 with 95% CI [63.15–82.00] (Supplementary Fig. 16).

As an example of how to make use of its global interpretability, NaroNet learned 57 distinct 

spatial patterns of TMEs able to predict the patient risk group (Fig. 6c and Supplementary 

Fig. 17). Using our differential TME composition analysis we found that a combination 

of two neighborhoods (N8 and N16) was significantly predictive (p-value < 0.05) when 
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distinguishing between RI and RIII patients. N8 is a neighborhood that contains tumor cells 

(cytokeratin AE1/AE3 and cytokeratin 7 positive), and high presence of fibronectin. This 

neighborhood is more abundant in risk III patients (Fig. 6d). Fibronectin is a key component 

of the extracellular matrix. In particular, as seen in the literature, fibronectin is highly 

present in the remodeled tumor extracellular matrix, forming a barrier for the infiltration 

of immune cells. Consistent with our findings, fibronectin was associated with poorer 

patient survival (Fernandez-Garcia et al., 2014). Moreover, the abundance of neighborhood 

N16, consisting of tumor cells expressing p53, was also associated with bad prognosis 

(Fig. 6d). The tumor suppressor gene p53 is one of the most commonly mutated gene 

in human cancers. TP53 gene mutation is generally associated with a strong and diffuse 

immunoexpression of p53. Consistent with our findings, TP53 mutation has been shown to 

be a poor prognostic factor in various cancer types (Li et al., 2019a).

Besides N8 and N16 there are other TMEs whose abundance is significantly different across 

patient types (Supplementary Fig. 17c). Working in ‘discovery’ mode, these TMEs could 

be used to obtain insights on cohort-differentiating microenvironment features. For instance, 

neighborhood N4 was associated with poor survival (p-value < 0.0 0 01) and contained Sox9 

positive cells, Sox9 having been previously described as an oncogene (Aguilar-Medina et al., 

2019).

We next evaluate NaroNet’s ability to capture the heterogeneity of the 35-plex breast cancer 

cohort by showing the individual interpretable prediction of two patients. The first patient, 

who survived 33 months, was correctly classified as high risk (RIII) with a prediction 

confidence of 98.98%. Such prediction was mainly driven by the presence of N4 (i.e., 

Sox9+, PIR value 1.91) that is highly abundant in this patient (9.07% of the tissue) 

compared to the average presence of N4 found in the whole patient cohort (1.49%). This is 

consistent with our global findings that indicate that high risk patients are associated with 

Sox9 oncogene expression (i.e., neighborhood N4). The second patient, who survived 174 

months, was correctly classified as low risk (RI) with a prediction confidence of 93.15%, 

being the prediction mainly driven by the absence of N8 (i.e., extracellular fibronectin, PIR 

value 1.84) as its relative abundance is low (0.01%) compared to the average N8 mean 

abundance (2.21%). Therefore, for this patient, NaroNet correctly quantified a low presence 

of N8, and associated it to high survival, as it was previously observed cohort-wise (Fig. 6d).

Effect of the data input format.—We finally analyzed NaroNet’s ability to predict 

patient risk subtypes as a function of the input used. On the one hand, as cell segmentation 

masks are provided along with the public image dataset, cell features were extracted as done 

in the original reference paper (Jackson et al., 2020). Briefly, a graph of interconnected cells 

(37-element vectors) was fed to NaroNet, where each cell vector consists of the average 

expression of the 35 markers plus the cell size and eccentricity. This approach is compared 

to our proposed strategy based on the use of graphs of patch embeddings. On the other hand, 

as more than one image was acquired for some patients, we compared the strategy of feeding 

NaroNet using one graph per image or feeding it with a graph that combines all the images 

of the patient. We used the same hyperparameters for all the experiments (Supplementary 

Table 4).
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Fig. 6b shows the area under the curve (AUC) for all experiments. As shown, NaroNet 

achieves the highest prediction performance using a graph containing PCL patches instead 

of cell masks, and works better when all images of the same patient are combined into a 

single graph.

4. In depth analysis

In this section, we describe additional experiments that were carried out to provide an even 

more comprehensive understanding of the proposed methods (i.e., NaroNet and PCL). All 

experiments were conducted using the training protocols introduced in the Results section.

4.1. Ablation studies

We examined how NaroNet’s performance varies when selected modules are removed from 

the original network, specifically phenotype, neighborhood, or area learning. Therefore, 

we repeated all experiments done with real and synthetic datasets, removing sequentially 

the phenotype, neighborhood, or area learning modules. The results of the ablation studies 

are shown in Table 2. Overall, NaroNet performs best when using the three modules. 

As expected, its performance varies greatly depending on which element of the tumor 

microenvironment is driving the disease paradigm at hand. For instance, in CCI1, where 

patient types show distinct cell to cell interactions, the neighborhood learning module 

is crucial, and when removed, NaroNet is unable to capture cellular interactions, its 

performance dropping dramatically.

4.2. Comparison with other methods

NaroNet is the first WSDL method fully adapted to multiplex imaging. In contrast with 

other imaging modalities like H&E staining, where WSDL methods can be evaluated in 

public datasets, e.g., Camelyon16 challenge (Bandi et al., 2018), there is a lack of public 

multiplex image datasets to objectively evaluate multiplex image analysis frameworks. 

However, in order to compare NaroNet with other existing approaches that could be applied 

to multiplex imaging, we adopted two state-of-the-art WSDL methods used to classify H&E 

tissue sections, adapting them for the analysis of multiplex images from our real cohorts 

(i.e., Endometrial carcinomas and Breast Cancer cohort).

A. CLAM—(Lu et al., 2021) As most WSDL methods, CLAM is based on a two-step 

strategy. In the first step, the image is divided into image patches (i.e., hundreds of 

cells) which are fed to a ResNet50 pretrained on ImageNet. In the second step, attention 

scores are assigned to patch representations considering their relevance in the patient-level 

classification task at hand. To adapt this method to multiplex imaging, it is necessary to use 

an alternative patch feature extraction strategy because it is not possible to input multiplex 

image patches to a RGB-based ResNet50 pretrained on ImageNet. Instead, we used our 

proposed PCL strategy. To this end, output patch representations from our PCL module 

were input to CLAM. To choose the size of the image patch we took into consideration 

how CLAM models patches: CLAM does not try to capture physical interactions between 

patch representation, but instead models the tumor microenvironment from the information 

existing within each patch. Therefore, it requires relatively large patch sizes. For this reason, 
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we evaluated CLAM’s performance using two patch sizes, the first following our strategy 

where one image patch contains one or two cells, and the second, more similar to the 

original CLAM’s strategy, following the strategy used in (Lu et al., 2021) where one image 

patch contains dozens of cells.

B. Neural Image Compression (NIC)—(Tellez et al., 2019) NIC is also a two-step 

strategy. In the first step, the image is divided into image patches that are used to train a 

CNN unsupervisedly. In the second step, feature vectors are arranged to create a compressed 

image, which is then fed to another CNN (ResNet50) that is trained supervisedly to predict 

patient-level labels. As done before, we used our PCL strategy to extract features at the 

cellular level. As NIC is based on a CNN to make patient predictions, thus capturing 

interactions between patches, we used a small image patch containing one or two cells.

Performance results are provided in Table 3. Compared to CLAM and NIC, NaroNet 

achieves the best performance in terms of AUC scores. Please note that, besides achieving 

higher prediction values, our method is inherently interpretable at three levels of complexity 

(i.e., phenotypes, neighborhoods, and areas).

4.3. PCL parameter evaluation

The PCL module learns cellular features from two augmented views of one image crop. 

Here, as the image crop is ∝L times bigger than the augmented views, the subsequent 

generated image patches (or views) do not necessarily contain the same pixel information, 

but can capture information from neighboring pixels. We evaluated NaroNet’s performance 

using different ∝L values. From the result (Table 4) we can conclude that NaroNet performs 

better when using a value of ∝L higher than 1. This means that introducing in the learning 

pipeline information from neighboring pixels is beneficial to extract cellular features.

5. Discussion

Our working hypothesis is that relevant elements of the tumor microenvironment can 

be blindly identified and associated with patient-level tumor information from multiplex 

imaging data. To this end, we have developed NaroNet, an end-to-end deep learning 

framework that proves this hypothesis true, as it accurately performs patient predictions 

from local phenotypes, neighborhoods, and areas that were blindly identified from multiplex 

immunostained histological data. NaroNet takes advantage of, and improves elements of 

the two main state-of-the-art computational pathology approaches. From SCA methods, 

NaroNet inherits the use of graphs to capture phenotype interactions, extending this idea 

by using GNNs to actually ‘learn’ the most relevant interactions between elements of the 

tumor microenvironment (Kipf and Welling, 2017). From WSDL, NaroNet uses the concept 

of learning deep features from patches without the need of manual annotations using only 

patient-level labels, and applies it to multiplex immunostained sections instead of H&E 

histological images. Furthermore, instead of being a black-box approach (Rudin, 2019), 

NaroNet is inherently interpretable as it makes predictions based on the abundances of 

discovered phenotypes, neighborhoods and areas, thanks to the use of a novel max-sum 

pooling operation. During the learning process, NaroNet’s parameters are trained to assign 
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patches into never seen TMEs, whose abundances would eventually differentiate patient 

types. For this reason, NaroNet can be used in ‘discovery mode’ to research new biomarker 

signatures of the tumor biology, or to answer clinically relevant questions, e.g. which tumor 

features are more predictive of the tumor type or the outcome of the patient. Furthermore, 

using validated biomarker signatures, NaroNet can be trained to provide clinicians with 

interpretable clinical decisions, since predictions are based on TME annotations which can 

be mapped back onto the original images. To facilitate individual interpretable predictions, 

we developed a new metric called predictive influence ratio (PIR) that measures how each 

tumor microenvironment element contributes to the final prediction.

One of the major bottlenecks in developing high-performance machine learning classifiers 

for computational pathology is the low number of available labeled tissue images. This is 

even a greater problem in the case of multi-spectral images, as the use of multiple markers 

dramatically increases the complexity of the annotation. To address this, we propose a 

data-efficient contrastive learning loss preprocessing step (PCL). This is a similar strategy 

to the one followed in state-of-the-art semi-supervised learning frame-works (Chen et al., 

2020a; 2020c). These methods learn enriched image representations from large numbers 

of unlabeled images using an unsupervised deep neural network. Later, a supervised 

classifier can be trained to obtain outstanding image predictions from small numbers 

of these enriched, labeled image representations. In our case, all available patient tissue 

information is divided in patches, i.e., tiles, containing up to two cells, and are introduced 

in a convolutional neural network to create self-supervised low-dimensional enriched 

embeddings of these patches. These embeddings allow for comprehensive discrimination 

of pixel-level features such as, cell morphology, marker intensity, marker colocalization, 

etc. thus reducing the inherent heterogeneity existing within and between tissues. We 

hypothesized that the use of these prototypical enriched representations extracted from the 

images might help with the classification of low number of patients represented by them. 

Furthermore, the volume of data space is decreased so that NaroNet’s computational time 

is reduced allowing the use of architecture search algorithms that would ultimately increase 

predictive performance.

We have validated NaroNet using both synthetic and real data. Using a novel multiplex 

tissue image simulator we created realistic patient cohorts with tunable presence of specific 

TMEs, providing an ideal objective benchmark to test the performance of the system. 

Indeed, our extensive validation using synthetic data successfully confirms that NaroNet can 

learn relevant TMEs - local phenotypes, cell-interaction neighborhoods, and neighborhood-

interaction areas -, even when their presence in the tissue is rare. Using a high-grade 

endometrial carcinoma patient cohort, NaroNet found, among other TMEs that could be 

explored, a local phenotype expressing CD8, PD1, and FOXP3 whose high abundance was 

associated with the POLE mutation, while achieving a prediction accuracy of 93.75%. This 

finding is in accordance with what has already been described in the literature. Moreover, 

we confirmed using a semi-automated computational pathology software (QuPath), that the 

abundance of this specific phenotype correlates positively with the one found by NaroNet. 

This nicely shows that NaroNet can be a useful tool in research environments, as it can help 

to blindly identify novel TMEs that are related to the biology of the tumor. Using a public 

breast cancer dataset, NaroNet found TMEs that were associated with the patient’s survival 
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achieving an AUC of 0.73. Strikingly, NaroNet did not require human supervision to learn, 

from a pool of millions of cells stained by 35 markers, decisive neighborhoods consisting 

of cells expressing Sox9 and extracellular fibronectin, respectively, that were related to 

the survival of the patient. In addition, we show that NaroNet performs better when fed 

with an enriched graph created from image patches than when using cell features obtained 

from cell segmentation masks. This shows that NaroNet is able to learn relevant tumor 

microenvironmental information without the highly demanding task of segmenting all cells 

in the tissue. We also prove that using graphs to represent patients is more advantageous than 

using images, as patient’s stained tissue sections can be combined together into a single, 

disjoint graph providing NaroNet with more information to make better predictions.

Finally, we have presented an ablation study that shows that the three levels of spatial 

complexity used by NaroNet to model the tumor microenvironment (i.e., local phenotypes, 

neighborhoods and areas) contribute individually to achieve better predictions. Moreover, a 

comparison with two state-of-the-art WSDL methods shows that NaroNet is able to achieve 

more accurate predictions while providing an inherent interpretability of the reason behind 

those predictions that the rest of the methods lack.

6. Conclusion

We have presented NaroNet, and ensemble of networks that unsupervisedly identifies and 

annotates relevant TMEs that drive patient outcomes. Since we have shown that NaroNet is 

able learn in situ highly predictive TMEs that confirm the existing literature, it is possible to 

affirm that the analysis of new predictive TMEs discovered by NaroNet could provide novel 

insights into the mechanisms of disease progression. This could be used in clinical settings, 

and more importantly, it makes NaroNet a valuable research tool for the discovery of novel 

biomarkers. Furthermore, the fact that NaroNet’s clinical predictions are directly based on 

the annotations of TMEs results in an important breakthrough in computational pathology, 

as it contributes to the whitening of DL black-boxes. Indeed, our model allows clinicians to 

understand which TMEs drive the prediction of each patient safely and reliably since DL 

neuron activations are related to specific biological structures that can be mapped back into 

the original images. Therefore, NaroNet could be an optimal solution for the rapid clinical 

translation of biomarker discovery signatures, where DL models trained to quantify relevant 

TMEs are then applied to new incoming patients by providing clinicians with interpretable 

predictions.

Implementation details

Patch contrastive learning is implemented in Python 3.7.3 using Tensorflow 1.14.0. NaroNet 

is implemented in Python 3.7.3 using PyTorch 1.4.0. Architecture search was performed 

using ray 1.0.0 (Liaw et al., 2018) and hyperpopt 0.2.3. Synthetic datasets were generated 

in MATLAB v2019b. Python libraries that were also used include imgaug 0.4.0, tqdm 

4.48.2, scipy 1.5.4, numpy 1.18.2, sklearn 0.23.2, seaborn 0.11.0, and pandas 1.1.1. All 

the experiments were carried out using a server with 16 Intel(R) Xeon(R) E5–2623 v3 

@ 3.00GHz CPUs, a RAM of 256 GBs, and 4 GeForce RTX 2080 Ti GPUs of 11GBs. 
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For use as a framework, NaroNet’s source code is available on GitHub ( https://github.com/

djimenezsanchez/NaroNet ).

All 3 datasets used in this study are publicly available and can be accessed online. All 

synthetic patient cohorts (including multiplex images, ground-truth masks, and patient data) 

and high-grade endometrial cancer cohorts (including multiplex images and patient data) 

are available at Zenodo (https://doi.org/10.5281/zenodo.4596337). Breast cancer cohort is 

publicly available from the original authors (Jackson et al., 2020) at Zenodo (https://doi.org/

10.5281/zenodo.3518284).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

This work was funded by the Spanish Ministry of Science, Innovation and Universities, under grants number 
RTI2018-094494-B-C22 and RTC-2017-6218-1 (MCIU/AEI//10.13039/501100011033/) and FEDER, UE (C.O.S.). 
This work was also funded by the National Cancer Institute (NCI) at the National Institutes of Health (NIH): 
R01CA184476 (H.C.). We thank patients who donated tumor samples as well as Marató TV and Grupos Estables 
AECC.

References

Aguilar-Medina M, Avendaño-Félix M, Lizárraga-Verdugo E, Bermúdez M, Romero-Quintana JG, 
Ramos-Payan R, Ruíz-García E, López-Camarillo C, 2019. SOX9 Stem-Cell Factor: Clinical and 
Functional Relevance in Cancer. doi: 10.1155/2019/6754040.

Bandi P, Geessink O, Manson Q, Van Dijk M, Balkenhol M, Hermsen M, Bejnordi BE, Lee B, Paeng 
K, Zhong A, et al. , 2018. From detection of individual metastases to classification of lymph node 
status at the patient level: the camelyon17 challenge. IEEE Trans Med Imaging 38 (2), 550–560.

Bankhead P, Loughrey MB, Fernández JA, Dombrowski Y, McArt DG, Dunne PD, McQuaid S, Gray 
RT, Murray LJ, Coleman HG, James JA, Salto-Tellez M, Hamilton PW, 2017. Qupath: open source 
software for digital pathology image analysis. Sci Rep 7 (1). doi: 10.1038/s41598-017-17204-5.

Bianchi FM, Grattarola D, Alippi C, 2020. Spectral clustering with graph neural networks for graph 
pooling. Proceedings of Machine Learning Research (PMLR) 119, 874–883. 1907.00481.

Bilal M, Raza SEA., Azam A, Graham S, Ilyas M, Cree IA, Snead D, Minhas F, Rajpoot NM, 2021. 
Development and validation of a weakly supervised deep learning framework to predict the status 
of molecular pathways and key mutations in colorectal cancer from routine histology images: a 
retrospective study. The Lancet Digital Health.

Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E, 2008. Fast unfolding of communities in large 
networks. J. Stat. Mech: Theory Exp 10, 0803.0476. doi: 10.1088/1742-5468/2008/10/P10008.

Boehm KM, Khosravi P, Vanguri R, Gao J, Shah SP, 2021. Harnessing multi-modal data integration to 
advance precision oncology. Nat. Rev. Cancer 1–13. [PubMed: 33203999] 

Bulten W, Pinckaers H, van Boven H, Vink R, de Bel T, van Ginneken B, van der Laak J, Hulsbergen-
van de Kaa C, Litjens G, 2020. Automated deep-learning system for gleason grading of prostate 
cancer using biopsies: a diagnostic study. The Lancet Oncology 21 (2), 233–241. [PubMed: 
31926805] 

Campanella G, Hanna MG, Geneslaw L, Miraflor A, Werneck Krauss Silva V, Busam KJ, Brogi E, 
Reuter VE, Klimstra DS, Fuchs TJ, 2019. Clinical-grade computational pathology using weakly 
supervised deep learning on whole slide images. Nat. Med 25 (8), 1301–1309. doi: 10.1038/
s41591-019-0508-1. [PubMed: 31308507] 

Jiménez-Sánchez et al. Page 20

Med Image Anal. Author manuscript; available in PMC 2023 February 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/djimenezsanchez/NaroNet
https://github.com/djimenezsanchez/NaroNet
https://doi.org/10.5281/zenodo.4596337
https://doi.org/10.5281/zenodo.3518284
https://doi.org/10.5281/zenodo.3518284


Chen RJ, Lu MY, Wang J, Williamson DFK, Rodig SJ, Lindeman NI, Mahmood F, 2020. Pathomic 
fusion: an integrated framework for fusing histopathology and genomic features for cancer 
diagnosis and prognosis. IEEE Trans Med Imaging.

Chen T, Kornblith S, Norouzi M, Hinton G, 2020. A simple framework for contrastive learning of 
visual representations. Proceedings of the 37th International Conference on Machine Learning 
119, 1597–1607.

Chen T, Kornblith S, Swersky K, Norouzi M, Hinton G, 2020. Big self-supervised models are strong 
semi-supervised learners. Adv Neural Inf Process Syst 33.

Cheng S, Liu S, Yu J, Rao G, Xiao Y, Han W, Zhu W, Lv X, Li N, Cai J, et al. , 2021. Robust whole 
slide image analysis for cervical cancer screening using deep learning. Nat Commun 12 (1), 1–10. 
[PubMed: 33397941] 

Diao JA, Wang JK, Chui WF, Mountain V, Gullapally SC, Srinivasan R, Mitchell RN, Glass B, 
Hoffman S, Rao SK, et al. , 2021. Human-interpretable image features derived from densely 
mapped cancer pathology slides predict diverse molecular phenotypes. Nat Commun 12 (1), 1–15. 
[PubMed: 33397941] 

Fernandez-Garcia B, Eiró N, Marín L, González-Reyes S, Gonzalez LO, Lamelas ML, Vizoso FJ, 
2014. Expression and prognostic significance of fibronectin and matrix metalloproteases in breast 
cancer metastasis. Histopathology 64 (4), 512–522. [PubMed: 24117661] 

Hamilton WL, Ying R, Leskovec J, 2017. Representation learning on graphs: methods and 
applications. arXiv preprint arXiv: 1709.05584.

Hao Y, Hao S, Andersen-Nissen E, Mauck III WM, Zheng S, Butler A, Lee MJ, Wilk AJ, Darby C, 
Zager M, et al., 2021. Integrated Analysis of Multimodal Single-cell Data. In: Cell, 184. Elsevier, 
pp. 3573–3587.

Jackson HW, Fischer JR, Zanotelli VR, Ali HR, Mechera R, Soysal SD, Moch H, Muenst S, Varga Z, 
Weber WP, Bodenmiller B, 2020. The single-cell pathology landscape of breast cancer. Nature 578 
(7796), 615–620. doi: 10.1038/s41586-019-1876-x. [PubMed: 31959985] 

Ji AL, Rubin AJ, Thrane K, Jiang S, Reynolds DL, Meyers RM, Guo MG, George BM, Mollbrink 
A, Bergenstråhle J, Larsson L, Bai Y, Zhu B, Bhaduri A, Meyers JM, Rovira-Clavé X, Hollmig 
ST, Aasi SZ, Nolan GP, Lundeberg J, Khavari PA, 2020. Multimodal analysis of composition 
and spatial architecture in human squamous cell carcinoma. J Clean Prod 182 (2), 497–514. doi: 
10.1016/j.cell.2020.05.039.

Jimenez-Sanchez D, Ariz M, Ortiz-De-Solorzano C, 2020. Unsupervised learning of contextual 
information in multiplex immunofluorescence tissue cytometry. Proceedings - International 
Symposium on Biomedical Imaging 2020, 1275–1279. doi: 10.1109/ISBI45749.2020.9098352.

Jiménez-Sánchez D, Ariz M, Ortiz-de Solórzano C, 2021. Synplex: a synthetic simulator of highly 
multiplexed histological images. In: 2021 IEEE EMBS International Conference on Biomedical 
and Health Informatics (BHI), pp. 1–4. doi: 10.1109/BHI50953.2021.9508562.

Kipf TN, Welling M, 2017. Semi-supervised classification with graph convolutional networks. 
5th International Conference on Learning Representations, ICLR 2017 - Conference Track 
Proceedings 2017. 1609.02907

van der Laak J, Litjens G, Ciompi F, 2021. Deep learning in histopathology: the path to the clinic. Nat. 
Med 27 (5), 775–784. [PubMed: 33990804] 

León-Castillo A, Gilvazquez E, Nout R, Smit VT, McAlpine JN, McConechy M, Kommoss S, Brucker 
SY, Carlson JW, Epstein E, Rau TT, Soslow RA, Ganesan R, Matias-Guiu X, Oliva E, Harrison 
BT, Church DN, Gilks CB, Bosse T, 2020. Clinicopathological and molecular characterisation of 
‘multiple-classifier’ endometrial carcinomas. Journal of Pathology 250 (3), 312–322. doi: 10.1002/
path.5373. [PubMed: 31829447] 

Li J. p., Zhang X. m., Zhang Z, Zheng L. h., Jindal S, Liu Y. j., 2019. Association of p53 expression 
with poor prognosis in patients with triple-negative breast invasive ductal carcinoma. Medicine 
(Baltimore) 98 (18).

Li Y, Bian Y, Wang K, Wan XP, 2019. POLE Mutations improve the prognosis of endometrial cancer 
via regulating cellular metabolism through AMF/AMFR signal transduction. BMC Med. Genet 20 
(1), 202. doi: 10.1186/s12881-019-0936-2. [PubMed: 31864301] 

Jiménez-Sánchez et al. Page 21

Med Image Anal. Author manuscript; available in PMC 2023 February 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Liaw R, Liang E, Nishihara R, Moritz P, Gonzalez JE, Stoica I, 2018. Tune: A Research Platform for 
Distributed Model Selection and Training. arXiv preprint arXiv: 1807.05118.

Longo SK, Guo MG, Ji AL, Khavari PA, 2021. Integrating single-cell and spatial transcriptomics to 
elucidate intercellular tissue dynamics. Nat. Rev. Genet 22 (10), 627–644. [PubMed: 34145435] 

Lu MY, Williamson DFK, Chen TY, Chen RJ, Barbieri M, Mahmood F, 2021. Data-efficient and 
weakly supervised computational pathology on whole-slide images. Nat. Biomed. Eng doi: 
10.1038/s41551-020-00682-w.

McQuin C, Goodman A, Chernyshev V, Kamentsky L, Cimini BA, Karhohs KW, Doan M, Ding L, 
Rafelski SM, Thirstrup D, Wiegraebe W, Singh S, Becker T, Caicedo JC, Carpenter AE, 2018. 
Cellprofiler 3.0: next-generation image processing for biology. PLoS Biol. 16 (7). doi: 10.1371/
journal.pbio.2005970.

Pati P, Jaume G, Fernandes LA, Foncubierta-Rodríguez A, Feroce F, Anniciello AM, Scognamiglio G, 
Brancati N, Riccio D, Di Bonito M, et al., 2020. Hact-net: a hierarchical cell-to-tissue graph neural 
network for histopathological image classification. In: Uncertainty for Safe Utilization of Machine 
Learning in Medical Imaging, and Graphs in Biomedical Image Analysis. Springer, pp. 208–219.

Pinckaers J, van Ginneken B, Litjens G, 2020. Streaming convolutional neural networks for end-to-
end learning with multi-megapixel images. IEEE Transactions on Pattern Analysis and Machine 
Intelligence.

Rendeiro AF, Ravichandran H, Bram Y, Chandar V, Kim J, Meydan C, Park J, Foox J, Hether T, 
Warren S, et al. , 2021. The spatial landscape of lung pathology during covid-19 progression. 
Nature 593 (7860), 564–569. [PubMed: 33780969] 

Rudin C, 2019. Stop explaining black box machine learning models for high stakes decisions and use 
interpretable models instead. 1811.10154. doi: 10.1038/s42256-019-0048-x.

Schapiro D, Jackson HW, Raghuraman S, Fischer JR, Zanotelli VR, Schulz D, Giesen C, Catena R, 
Varga Z, Bodenmiller B, 2017. HistoCAT: analysis of cell phenotypes and interactions in multiplex 
image cytometry data. Nat. Methods 14 (9), 873–876. doi: 10.1038/nmeth.4391. [PubMed: 
28783155] 

Schürch CM, Bhate SS, Barlow GL, Phillips DJ, Noti L, Zlobec I, Chu P, Black S, Demeter J, 
McIlwain DR, Samusik N, Goltsev Y, Nolan GP, 2020. Coordinated cellular neighborhoods 
orchestrate antitumoral immunity at the colorectal cancer invasive front. Cell 182 (5), 1341–
1359.e19. doi: 10.1016/j.cell.2020.07.005. [PubMed: 32763154] 

Srinidhi CL, Ciga O, Martel AL, 2021. Deep neural network models for computational histopathology: 
a survey. Med Image Anal 67, 101813.

Stopsack KH, Huang Y, Tyekucheva S, Gerke TA, Bango C, Elfandy H, Bowden M, Penney 
KL, Roberts TM, Parmigiani G, et al. , 2020. Multiplex immunofluorescence in formalin-fixed 
paraffin-embedded tumor tissue to identify single-cell–level pi3k pathway activation. Clinical 
Cancer Research 26 (22), 5903–5913. [PubMed: 32913135] 

Tellez D, Litjens G, van der Laak J, Ciompi F, 2019. Neural image compression for gigapixel 
histopathology image analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 
doi: 10.1109/tpami.2019.2936841.

Veta M, Heng YJ, Stathonikos N, Bejnordi BE, Beca F, Wollmann T, Rohr K, Shah MA, Wang D, 
Rousson M, Hedlund M, Tellez D, Ciompi F, Zerhouni E, Lanyi D, Viana M, Kovalev V, Liauchuk 
V, Phoulady HA, Qaiser T, Graham S, Rajpoot N, Sjöblom E, Molin J, Paeng K, Hwang S, 
Park S, Jia Z, Chang EI, Xu Y, Beck AH, van Diest PJ, Pluim JP, 2019. Predicting breast tumor 
proliferation from whole-slide images: the TUPAC16 challenge. Med Image Anal 54, 111–121. 
doi:10.1016/j.media.2019.02.012. [PubMed: 30861443] 

Jiménez-Sánchez et al. Page 22

Med Image Anal. Author manuscript; available in PMC 2023 February 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Scheme of NaroNet’s learning and discovery protocol. a. The input data consists of 

multiplex cancer tissue images with associated clinical and pathological information. b. 

The patch contrastive learning module divides images into patches and embeds each patch 

in a 256-dimensional vector using a CNN unsupervisedly trained to assign similar vectors to 

patches containing similar biological structures. c. An enriched graph of patches is generated 

that contains the spatial interactions between tissue patches. d. The graph of patches is fed to 

NaroNet: an interpretable ensemble of neural networks that learns phenotypes (e), phenotype 

neighborhoods (f), and areas of interaction between neighborhoods (g) to classify patients 

(i) based on the abundance of those tumor microenvironment elements (h). Legend. CNN: 

convolutional neural network; MLP: multilayer perceptron; GNN: graph neural network.
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Fig. 2. 
Synplex (synthetic simulator) default configuration. Eight cell phenotypes are defined by the 

expression of 6 markers (a), each of them having a specific cell size (b) and eccentricity (c). 

Four neighborhoods are defined based on the relative abundance of the phenotypes -please 

note that the color of neighborhood sections refer to the different phenotypes, as in pannels 

b and c-(d) and interaction, i.e. attraction/repulsion rules between phenotypes (e). These 

neighborhoods in turn are organized based on their frequency and interaction rules (f-g.).
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Fig. 3. 
Visualization of Patch Contrastive Learning method description. Step-by-step illustration of 

Patch Contrastive Learning strategy.
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Fig. 4. 
Graphical description of synthetic experiment CCI1. a. Ground truth: Schematic description 

of the interactions between cell phenotypes Ph3, Ph4, and Ph5 (located in neighborhood 

Nb2) that define each patient type (I-III). b. Marker expression levels for the three relevant 

cell phenotypes. c. Z-scored mean expression of all markers in the neighborhoods learned by 

NaroNet. d. Relative abundance of learned neighborhood N7 in the three patient groups. e. 

Representative patches assigned to N7. f. Relative abundance of learned neighborhood N9 

in the three patient groups. e. Representative patches assigned to N9. h. Example of patient 

correctly classified as Type I (i.e. displaying Ph4-Ph5 repulsion), with squares showing 

patches assigned to learned neighborhood N7, located in ground truth neighborhood Nb2 

(marked in red). i. Example of patient correctly classified as Type III (Ph4-Ph5 attraction), 

with squares showing patches assigned to learned neighborhood N9, located in ground truth 

neighborhood Nb2. (***p < 0.001; **** p < 0.0001).
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Fig. 5. 
Association of high-grade endometrial carcinomas with patient-level labels. a. ROC curves 

showing the classification performance of NaroNet for the four tissue characteristics learned. 

b. Neighborhood composition of learned area A1. c. Violin-plot showing relative abundance 

of learned area A1 as a function of POLE mutation status. d. Heatmap showing interactions 

between the local phenotypes learned by NaroNet. e,f. Patches assigned to neighborhoods 

N7 and N2, and their corresponding abundance across patient-types. g. Heatmap showing 

the mean marker expression, for the phenotypes learned by NaroNet. h,i Patches assigned to 

phenotype P2 and its corresponding abundance across patient types. j,k. Images of WT and 

POLE mutated patients that were classified due to phenotype P2 abundance. White squares 

represent patches assigned to P2.
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Fig. 6. 
Association of spatially-resolved 35-plex of breast cancer tissues with patient long term 

survival. a. Histogram plot of patient overall survival in months, colored by risk classes. b. 

AUC prediction performance of NaroNet for four training strategies: image-wise or patient-

wise, and using the cell segmentation provided with the image dataset or using the proposed 

PCL method. c. Heatmap showing the mean marker expression, for all neighborhoods 

learned by NaroNet. d. Violin-plot showing the relative abundance of learned neighborhoods 

N8 and N16 as a function of risk group, RI and RIII (p-values were adjusted with Bonferroni 

correction).
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Table 3

Comparison of NaroNet with other WSDL methods. AUC scores obtained using three weakly-supervised 

methods over a 10 fold cross validation, for the endometrial carcinomas and breast cancer datasets. A small 

patch size corresponds to 15×15 and 18×18 pixels, and a large patch size is 90×90 and 100×100 pixels in the 

endometrial carcinomas and breast cancer datasets, respectively.

Methods Patch size
Endometrial Cancer Breast Cancer

POLE Hist. MMR CNV RI-RIII RI-RII RII-RIII

NaroNet Small 0.98 0.98 0.97 0.97 0.73 0.68 0.56

CLAM Small 0.91 0.95 0.92 0.89 0.60 0.57 0.48

Big 0.95 0.92 0.87 0.86 0.59 0.57 0.49

NIC Small 0.98 0.98 0.97 0.94 0.57 0.55 0.47
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Table 4

Study of the effect of the image crop size for PCL.

Endometrial Cancer Breast Cancer

POLE Hist. MMR CNV RI-RIII RI-RII RII-RIII

αL = 1 0.98 0.95 0.95 0.95 0.57 0.56 0.48

αL = 1.15 0.98 0.98 0.97 0.97 0.73 0.68 0.56

αL = 1.30 0.97 0.94 0.95 0.92 0.50 0.48 0.49
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