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In Brief
To investigate novel, prognostic
protein biomarkers, we
conducted label-free liquid
chromatography–tandem mass
spectrometry using frozen
plasma samples obtained from
patients with newly diagnosed
high-grade serous ovarian
carcinoma. Candidate
biomarkers underwent validation
with an independent set of
plasma samples via ELISA. By
combining clinical factors and
ELISA results, we successfully
developed models and
nomograms to predict the 18-
month progression-free survival
rate for clinical use.
Highlights
• We aimed to investigate novel, blood-based prognostic biomarkers in HGSOC.• MS-based label-free quantification was conducted using frozen plasma samples.• Candidate biomarkers were validated with an independent set of samples via ELISA.• Plasma GSN was identified as an independent poor prognostic biomarker for PFS.• We successfully developed models predicting the 18-month PFS rate for clinical use.
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RESEARCH
Proteomic Discovery of Plasma Protein
Biomarkers and Development of Models
Predicting Prognosis of High-Grade Serous
Ovarian Carcinoma
Se Ik Kim1, Suhyun Hwangbo2 , Kisoon Dan3, Hee Seung Kim1, Hyun Hoon Chung1,
Jae-Weon Kim1, Noh Hyun Park1, Yong-Sang Song1, Dohyun Han3,4,*, and Maria Lee1,5,*
Ovarian cancer is one of the most lethal female cancers.
For accurate prognosis prediction, this study aimed to
investigate novel, blood-based prognostic biomarkers for
high-grade serous ovarian carcinoma (HGSOC) using
mass spectrometry–based proteomics methods. We con-
ducted label-free liquid chromatography–tandem mass
spectrometry using frozen plasma samples obtained from
patients with newly diagnosed HGSOC (n = 20). Based on
progression-free survival (PFS), the samples were divided
into two groups: good (PFS ≥18 months) and poor prog-
nosis groups (PFS <18 months). Proteomic profiles were
compared between the two groups. Referring to prote-
omics data that we previously obtained using frozen
cancer tissues from chemotherapy-naïve patients with
HGSOC, overlapping protein biomarkers were selected as
candidate biomarkers. Biomarkers were validated using
an independent set of HGSOC plasma samples (n = 202)
via enzyme-linked immunosorbent assay (ELISA). To
construct models predicting the 18-month PFS rate, we
performed stepwise selection based on the area under the
receiver operating characteristic curve (AUC) with 5-fold
cross-validation. Analysis of differentially expressed pro-
teins in plasma samples revealed that 35 and 61 proteins
were upregulated in the good and poor prognosis groups,
respectively. Through hierarchical clustering and bio-
informatic analyses, GSN, VCAN, SND1, SIGLEC14,
CD163, and PRMT1 were selected as candidate bio-
markers and were subjected to ELISA. In multivariate
analysis, plasma GSN was identified as an independent
poor prognostic biomarker for PFS (adjusted hazard ratio,
1.556; 95% confidence interval, 1.073–2.256; p = 0.020). By
combining clinical factors and ELISA results, we con-
structed several models to predict the 18-month PFS rate.
A model consisting of four predictors (FIGO stage, residual
tumor after surgery, and plasma levels of GSN and VCAN)
showed the best predictive performance (mean validated
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AUC, 0.779). The newly developed model was converted to
a nomogram for clinical use. Our study results provided
insights into protein biomarkers, which might offer clues
for developing therapeutic targets.

Ovarian cancer is one of the most lethal cancers among
women. Annually, 313,959 new ovarian cancer cases and
207,252 related deaths are expected worldwide (1). The
absence of disease-specific early symptoms and effective
screening methods leads to ovarian cancer being diagnosed
at an advanced stage and having high recurrence and
mortality rates despite treatment, consisting of extensive
cytoreductive surgery followed by taxane- and platinum-
based chemotherapy (2–4). Meanwhile, ovarian cancer is
not a single disease but a heterogeneous disease
comprising various histologic subtypes with different carci-
nogenic routes and clinical features. Among the subtypes of
ovarian cancer, high-grade serous ovarian carcinoma
(HGSOC) is the most common and responds very well to
chemotherapy; however, it frequently relapses, with acqui-
sition of chemoresistance (4).
Since The Cancer Genomic Atlas reported results from in-

tegrated genomic analyses of HGSOC (5), the management of
HGSOC rapidly evolved. Maintenance therapy with poly(ADP-
ribose) polymerase (PARP) inhibitors, such as olaparib and
niraparib, was incorporated into the primary treatment of
HGSOC based on landmark phase III randomized controlled
trials (6–8). After a complete or partial response to first-line
platinum-based chemotherapy, olaparib maintenance ther-
apy can be offered to patients with BRCA1/2 mutated,
advanced HGSOC to improve survival outcomes, while nir-
aparib maintenance therapy confers survival benefits in
advanced HGSOC, regardless of BRCA1/2 mutational status
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Blood-Based Prognostic Biomarkers in Ovarian Cancer
or homologous recombination deficiency. Accurate prediction
of prognosis is necessary to facilitate molecular profiling–
based HGSOC treatment.
In this regard, our research team has focused on discov-

ering prognostic protein biomarkers in HGSOC using mass
spectrometry (MS) proteomics. This emerging technology al-
lows high-throughput and individualized characterization and
quantification of proteins in biospecimens (9). Previously, we
identified six protein biomarkers associated with progression-
free survival (PFS) through the label-free quantitative proteo-
mic analysis of frozen primary HGSOC tissues and validated
them using immunohistochemical staining in an independent
sample set (10).
However, liquid biopsy has many advantages, such as

noninvasiveness, swiftness, real-time monitoring, and the
possibility of overcoming tumor heterogeneity (11, 12). Thus,
we aimed to investigate whether we could identify novel,
prognostic protein biomarkers for HGSOC from blood sam-
ples using MS-based proteomics. Biomarker candidates were
validated using an enzyme-linked immunosorbent assay
(ELISA) in an independent dataset. We also developed models
to predict 18-month PFS rates in patients with HGSOC.
EXPERIMENTAL PROCEDURES

Ethics Statement

This study was approved by the Institutional Review Board of Seoul
National University Hospital (SNUH; No. H-2010-152-1167) and was
conducted in accordance with the Declaration of Helsinki. At our
institution, we routinely asked patients with newly diagnosed ovarian
cancer who were scheduled to undergo primary treatment to donate
their biospecimens (e.g., blood, urine, and cancer tissues) for research
purposes with written informed consent since June 2012.

Sample Collection

In this study, we used plasma samples from HGSOC patients that
were obtained 1 day before primary debulking surgery (PDS) or initi-
ation of neoadjuvant chemotherapy (NAC) and stored at the Seoul
National University Hospital Hunan Biobank. The process for the
collection of plasma from whole blood was as follows: Collect 6 ml of
blood sample into the EDTA tube, and centrifuge for 10 min at 1551g
at 4 ◦C. After centrifugation, carefully collect the plasma layer with a
transfer pipette without disturbing the buffy coat layer. Pipette 700 μl
of plasma into a 1.8-ml labeled cryovial, up to four vials. Place all al-
iquots upright in a labeled rack in a −196 ◦C LN2 tank. All the plasma
samples used in this study had never been thawed before.

Experimental Design and Statistical Rationale

This study included three phases: (1) biomarker discovery through
proteomic and bioinformatic analyses, (2) prognostic validation of
candidate biomarkers using ELISA, and (3) construction of models
predicting the 18-month PFS rate in patients with HGSOC
(supplemental Fig. S1).

For the first phase (discovery), we retrieved the frozen plasma
obtained from patients who met the following criteria: (1) newly
diagnosed with HGSOC between June 2012 and December 2016,
without any history or evidence of other malignancies; (2) completed
primary treatment, consisting of primary debulking surgery (PDS; not
2 Mol Cell Proteomics (2023) 22(3) 100502
NAC–interval debulking surgery [IDS]) and taxane- and platinum-
based adjuvant chemotherapy; and (3) patients whose disease
relapsed within 18 months after PDS, that is, PFS <18 months (poor
prognosis group) or those whose disease did not relapse for at least
18 months after PDS, that is, ≥18 months of PFS (good prognosis
group). Twenty patients from the two groups (10 in each group) were
selected for further proteomic analyses. The order of sample prepa-
ration was randomized and independent of the patient list. The pro-
teomic profiles of the two groups were compared.

In the second phase (validation), we retrieved pretreatment frozen
plasma of patients who met the following conditions: (1) newly
administered HGSOC between June 2012 and December 2019,
without any history or evidence of other malignancies; (2) completed
primary treatment, consisting of either PDS or NAC-IDS, followed by
postoperative taxane- and platinum-based adjuvant chemotherapy.
We excluded patients if they had enrolled in clinical trials for primary
treatment; did not provide written informed consent; or were lost to
follow-up during primary treatment or within 18 months after initiation
of primary treatment, without relapse or disease progression. A total of
202 consecutive patients with HGSOC were included in this phase,
and the sample size was adequate for multivariate survival analysis
and further development of predictive models. The order of sample
preparation was also randomized and independent of the patient list.
ELISA was conducted with technical triplicates on pooling samples for
the standard curve and batch control.

In the medical record review, we collected patients’ clinicopatho-
logic data. Disease progression was ascertained based on computed
tomography scans by applying the Response Evaluation Criteria in
Solid Tumors version 1.1 (13). PFS and overall survival (OS) were
defined as the time intervals from the date of initial diagnosis to the
date of disease progression and to the date of cancer-related death or
last follow-up, respectively.

Proteomic and Bioinformatic Analyses

The overall workflow of proteomic and bioinformatic analyses are
depicted in Figure 1A.

Sample Preparation–Protein digestion was performed using 2 μl of
each plasma sample as previously described, with some modifications
(14, 15). Briefly, 23 μl of protein digestion buffer, including reduction
and alkylation reagents, was added to 2 μl plasma samples in 96-well
plates. The mixture was boiled for 25 min at 60 ◦C to denature and
alkylate the proteins. After cooling samples to room temperature,
protein digestion was performed at 37 ◦C overnight using a trypsin/
LysC mixture (Promega) at a 100:1 protein-to-protease ratio. The
second digestion was performed at 37 ◦C for 2 h using trypsin
(enzyme-to-substrate ratio [w/w], 1:1000). All resulting peptides were
acidified with 10% trifluoroacetic acid (TFA). The acidified peptides
were loaded onto custom-made styrene divinylbenzene reversed-
phase sulfonate-StageTips according to previously described pro-
cedures (15, 16). The StageTip was washed three times with 100 μl
0.2% TFA. Three fractionations were performed using elution buffers
with a step gradient of increasing acetonitrile (40%, 60%, and 80%) in
1% ammonium hydroxide. All the eluted peptides were dried using a
SpeedVac centrifuge (Thermo Fisher Scientific).

Liquid Chromatography With Tandem MS Analysis–All liquid
chromatography with tandem MS (MS/MS) analyses were conducted
using an Ultimate 3000 UHPLC system (Dionex) coupled with a Q-
Exactive HF-X mass spectrometer (Thermo Fisher Scientific), as previ-
ously described,with somemodifications (17). Peptideswere separated
on a two-column system equipped with a trap column (Thermo Fisher
Scientific, Acclaim PepMap, C18 5 μm, 100 Å, 300 μm I.D. × 5 mm) and
an analytical column (Thermo Fisher Scientific, EASY-Spray column,
C18 1.9 μm, 100 Å, 75 μm I.D.× 50 cm) using 90-min gradients from 7%
to30%acetonitrile at a flow rate of 300nl/min.Column temperaturewas



FIG. 1. Proteomic analysis of ovarian cancer blood samples with respect to survival outcome. A, overall workflow of proteomic analysis;
B, total number of proteins identified in each sample; C, dynamic range of proteins quantified in our study. Well-known ovarian cancer marker
candidates are color coded.
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maintained at 60 ◦C using a column heater. MaxQuant.Live version 1.2
was used for BoxCar acquisition (18). The MS1 resolution was set to
120,000atm/z200 for BoxCar, and the acquisition cycle comprised two
BoxCar scans at 12 boxes (scaled width, 1 Th overlap) with a maximum
ion injection time of 20.8 per box, with the individual AGC target set to
250,000. MS/MS spectra were acquired at a higher-energy collisional
dissociation-normalized collision energy of 30, with a resolution of
17,500 atm/z 200. The maximum ion injection durations for the full and
MS/MS scans were 20 ms and 100 ms, respectively.

Data Processing–All raw MS files were processed using MaxQuant
(version 1.6.1.0) (19). MS/MS spectra were searched against the
Human UniprotKB protein sequence database (December 2014, with
88,657 entries of 20,459 human genes) using the Andromeda search
engine (20). Primary searches were performed using 6 ppm precursor
ion tolerance for total protein-level analysis. MS/MS ion tolerance was
set at 20 ppm. Cysteine carbamidomethylation was used as a fixed
modification. Protein N-acetylation and methionine oxidation are
considered variable modifications. Enzyme specificity was set to full
tryptic digestion. Peptides with a minimum length of six amino acids
and up to two missed cleavages were considered. The required false
discovery rate (FDR) was set to 1% at peptide, protein, and modifi-
cation levels. To maximize the number of quantification events across
samples, we enabled the “Match between Runs” options on the
MaxQuant platform. The MS proteomics data have been deposited to
the ProteomeXchange Consortium via the PRIDE (21) partner re-
pository with the dataset identifier PXD034646. Annotated MS/MS
spectra can be accessed through MS-Viewer (22) (https://msviewer.
ucsf.edu/cgi-bin/mssearch.cgi?report_title=MS-Viewer&search_
key=bzgazjrsgb&search_name=msviewer) with the following search
keys: bzgazjrsgb.

Label-Free Quantification and Statistical Analysis–For label-free
quantification, the intensity-based absolute quantification (iBAQ) algo-
rithm (23) was used on the MaxQuant platform. Briefly, iBAQ values,
determined using MaxQuant, are the raw intensities divided by the
number of theoretical peptides (23). Thus, the iBAQ values were pro-
portional to the molar quantities of the proteins. Perseus software was
used for statistical analysis (24). First, we eliminated proteins identified
as “reverse” and “only identified by site.” After filtering values of at least
70% in each group, missing values were imputed by random numbers
drawn from a normal distribution with a width of 0.3 and a down-shift of
1.8. Finally, data were normalized using a width-adjustment function
that subtracts the medians and scales all values in a sample to yield
equal interquartile ranges (25). For pairwise proteome comparisons, we
performed a two-sided t test with a significance level (p value) of <0.05
and a fold-change of >1.5. Support vector machine analysis was per-
formed using the R/Bioconductor package “GNC” (26).

Bioinformatic Analysis–Principal component analysis was per-
formed using Perseus software with proteomic expression profiles
Mol Cell Proteomics (2023) 22(3) 100502 3
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Blood-Based Prognostic Biomarkers in Ovarian Cancer
(24). Gene ontology (GO) enrichment analysis was performed using
the EnrichR analysis tool (https://maayanlab.cloud/Enrichr/), accord-
ing to the biological process in the GO analysis (27). EnrichR uses the
Fisher exact test to calculate p values. Statistical significance was set
at p value <0.05, and GO analysis was used to identify significant GO
biological process terms.

Enzyme-Linked Immunosorbent Assay

ELISA kits for human proteins were used to quantify the plasma
levels of endogenous proteins, according to the manufacturer’s in-
structions. ELISA kits for gelsolin (GSN; abx253831), versican (VCAN;
abx153474), staphylococcal nuclease, tudor domain containing 1
(SND1; abx383338), sialic acid–binding Ig-like lectin 14 (SIGLEC14;
abx545882), and protein arginine methyltransferase 1 (PRMT1;
abx258982) were purchased from Abbexa, whereas a kit for CD163
(DC1630) was purchased from R&D Systems.

After determining the optimal dilution factor for each protein, the
concentrations of GSN, VCAN, SND1, CD163, SIGLEC14, and PRMT1
were measured and quantified in the pretreatment frozen plasma
samples (n = 202). Absorbance at 450 nm was measured using a
SPARK multimode microplate reader (Tecan Systems, Inc).

Model Construction

We constructed regression-based models to predict 18-month PFS
rates using clinical variables and the ELISA results for protein bio-
markers in patients with HGSOC (n = 202). The 18-month PFS rate
was defined by binarizing the PFS for 18 months. Each of the six
identified protein biomarkers was binarized based on the optimal
cutoff obtained from maximally selected log-rank statistics (maxstat)
(28). To select important predictors for the 18-month PFS rate, step-
wise selection was performed based on the area under the receiver
operating characteristic curve (AUC). During stepwise selection, pre-
dictors contributing to AUC improvement were selected in a stepwise
fashion (29). From variable selection to model evaluation, 5-fold cross-
validation was used, considering the two-class proportions of the 18-
month PFS rate. The AUC, sensitivity, and specificity were used as
evaluation measures. The optimal cutoff for calculating sensitivity and
specificity was determined as a value corresponding to the maximum
value of balanced accuracy, defined as the average of the sensitivity
and specificity. Based on the logistic regression model including the
selected predictors, we developed a nomogram for clinical use.

R statistical software (version 4.0.3; R Foundation for Statistical
Computing) was used to construct predictive models and plot
nomograms.

Statistical Analysis

Clinicopathologic characteristics were compared between the good
and poor prognosis groups by using Student’s t and Mann–Whitney U
tests for continuous variables and Pearson’s chi-squared and Fisher’s
exact tests for categorical variables. The Pearson’s correlation
coefficient test was used to measure the relationship between contin-
uous variables. For survival analysis, we used the Kaplan–Meier method
with the log-rank test. In the multivariate analysis, a Cox proportional
hazards model was constructed and adjusted hazard ratios (aHRs) and
95% confidence intervals (CIs) were calculated.

Statistical analyseswere performed using SPSSStatistics (version 25.0;
IBM Corp) and GraphPad Prism 5 (GraphPad Inc). All statistical tests were
two sided, and a p value <0.05 was considered statistically significant.

RESULTS

Characteristics of Patients in the Discovery Phase

The clinicopathologic characteristics of 20 patients with
HGSOC for whom proteomic analysis was performed are
4 Mol Cell Proteomics (2023) 22(3) 100502
presented in supplemental Table S1. The mean patient age
was 54.9 years, which was similar between the good and poor
prognosis groups (p = 0.609). Between the two groups, there
was no differences in parity, menopausal status, initial serum
CA-125 levels, International Federation of Gynecology and
Obstetrics (FIGO) stage, residual tumor after PDS, and total
number of cycles of postoperative adjuvant chemotherapy
(supplemental Table S2). In relation to germline BRCA muta-
tional status, 7 and 2 patients had BRCA1 and BRCA2 mu-
tations, respectively, while the other 11 patients harbored
wildtype BRCA1/2. None of the patients received first-line
PARP inhibitor maintenance therapy. The median length of
observations was 34.0 months, during which 15 patients
experienced disease recurrence. Patients in the good prog-
nosis group had a significantly better PFS than those in the
poor prognosis group (median, 48.4 versus 12.4 months; p <
0.001).

Results of Proteomic and Bioinformatic Analyses

Global Proteomic Analysis of Plasma Samples–To identify
prognostic biomarkers for HGSOC, we performed MS-based
label-free quantification using frozen plasma samples from
chemotherapy-naïve patients (n = 20). To increase the prote-
ome depth, we applied BoxCar acquisition using a small
amount (2 μl) of plasma sample, without depletion of highly
abundant proteins. In total, 1912 proteins were identified at
the protein FDR 1% level. An average of 1082 protein groups
were quantified per sample (Fig. 1B). Signal intensities for the
quantified proteins overall spanned approximately seven or-
ders of magnitude (Fig. 1C) and included several previously
reported ovarian cancer marker candidates, such as HE4,
MSLN, VCAM-1, CEA, CRP, PROZ, LCAT, and M-CSF. Details
of the identified and quantified proteins are presented in
supplemental Table S3.
To identify the differences within and between groups, the

protein profiles were plotted as multiscatter plots. Pearson's
correlation coefficient values for proteome pairs were calcu-
lated (supplemental Fig. S2). The intragroup correlation dis-
played average Pearson's correlation coefficient values of 0.84
and 0.83 in the good and poor response groups, respectively.
The average intergroup Pearson's correlation coefficient value,
between the good and poor response group, was 0.82.
Label-Free Quantification–Next, we assessed significant

quantitative differences between samples from patients with
good and poor prognosis, based on pairwise comparisons.
First, we compared the good and poor prognosis groups via
principal component analysis of afiltered listwith approximately
1028proteins (with 70%valid iBAQvalues in at least onegroup).
Although tumor proteomes were correlated regardless of
prognosis (supplemental Fig. S2), the two good and poor
response groups were separated independently (Fig. 2A).
Pairwise comparisons via t test and filtering (p < 0.05; fold-

change, >1.5) revealed significant alterations in 96 proteins, of
which 35 proteins had higher expression in the good
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FIG. 2. Statistical and functional differences between good and poor prognosis groups. A, principal component analysis; B, volcano plot;
C, gene ontology (GO) biological process enrichment tree-map of upregulated proteins in the good prognosis group; D, GO biological process
enrichment tree-map of upregulated proteins in the poor prognosis group.
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prognosis group than the poor prognosis group. The other 61
proteins had higher expression in the poor prognosis group
than the good prognosis group (Fig. 2B and supplemental
Table S4). Using the stringent filtering criterion of FDR
<0.05, PLXND1, SIGLEC14, SND1, and PRMT1 were found to
be upregulated in patients with a poor prognosis. GO
enrichment analysis based on biological processes revealed
that proteins upregulated in the good prognosis group were
significantly enriched for terms such as “actin filament orga-
nization,” “regulation of lipase activity,” “cellular response to
chemical stress,” “glucose 6-phosphate metabolic process,”
and “regulation of cell death” (Fig. 2C and supplemental
Table S5). In contrast, proteins upregulated in the poor
prognosis group were significantly enriched in “neutrophil
degranulation,” “neutrophil-mediated immunity,” “aspartate
metabolic process,” and “negative regulation of lipoprotein
particle clearance” GO-BPs (Fig. 2D and supplemental
Table S5).
Selection of Candidate Prognostic Biomarkers–Potential

plasma biomarker candidates for sequential validation experi-
ments were first selected among differentially expressed pro-
teins that met one or more of the following criteria: (1) identified
as differentially expressed proteins (PLXND1, SND1,
SIGLEC14, and PRMT1) with FDR-adjusted p value <0.05 and
(2) previously found to be differentially expressed in frozen tis-
sues between the good and poor prognosis groups of patients
with HGSOC (10), considering that increased levels of cancer
tissue-specific proteins can be released into the blood (30).
Consequently, we first selected 18 potential biomarkers (GSN,
VCAN, SND1, SIGLEC14, CD163, PRMT1, PLXND1, F12, HPR,
HSPA5, ACY1, CD248, C5, GRHPR, MCAM, PPP1R7, STAB1,
and UGGT1). Among the 14 proteins that overlapped with our
previous tissuedata, 6proteins (GSN,VCAN,CD163, F12,HPR,
andHSPA5)were selected according to concordant expression
patterns between tissue and plasma. We further selected
prognostic biomarker candidates on the basis of the following
parameters: (1) the targeted proteins were upregulated in pa-
tients with a poor prognosis (upregulated proteins are more
suitable as biomarkers than downregulated proteins), (2) a
commercial ELISA kit was available for the protein, and (3)
proteins could be detected in our validation cohort using the
selected ELISA kits. Finally, GSN, VCAN, SND1, SIGLEC14,
CD163, and PRMT1 were selected as candidate biomarkers for
the validation stage (supplemental Fig. S3).
Mol Cell Proteomics (2023) 22(3) 100502 5
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Validation of Protein Biomarkers Through ELISA–Protein
biomarkers underwent prognostic validation by using inde-
pendent plasma samples obtained from patients with HGSOC
(n = 202). Clinicopathologic characteristics of the patients are
presented in Table 1. Of all patients, 88.6% had advanced-
stage (FIGO stage III–IV) disease and 92.1% underwent PDS,
rather than NAC followed by IDS. Optimal debulking (with no
gross residual tumor)wasachieved in 71.8%of cases.Germline
and/or somaticBRCA1/2 testingwasconducted in 158patients
(78.2%), and 36.1% (57/158) had mutations in BRCA1 or
TABLE

Clinicopathologic characteristics o

Characteristics All (n = 202, %) Good pr

Age, years
Mean ± SD 57.0 ± 10.8

Parity
Median (range) 2 (0–8)

Menopausal status
Menopause 142 (70.3)

Serum CA-125, IU/mL
Median (range) 800.5 (5.1–10000) 65

FIGO stage
I–II 23 (11.4)
III 131 (64.9)
IV 48 (23.8)

Primary treatment strategy
PDS 186 (92.1)
NAC-IDS 16 (7.9)

Residual tumor after surgery
No gross 145 (71.8)
<1 cm 33 (16.3)
≥1 cm 24 (11.9)

Chemotherapy regimen
Paclitaxel-Carboplatin 184 (91.1)
Paclitaxel-Carboplatin-BEV 18 (8.9)

Total cycles of chemotherapy
4–6 168 (83.2)
7–9 34 (16.8)

Recurrence
No 68 (33.7)
Yes 134 (66.3)
PSRa 104 (77.6)
PRR 30 (22.4)

Platinum sensitivity
Platinum sensitiveb 172 (85.1)
Platinum resistant 30 (14.9)

g/tBRCA mutational statusc

Not tested (unknown) 44 (21.8)
Tested 158 (78.2)
Both wildtype 101 (50.0)
BRCA1 mutation 40 (19.8)
BRCA2 mutation 17 (8.4)

Abbreviations: BEV, bevacizumab; CA-125, cancer antigen 125; FIGO
debulking surgery; NAC, neoadjuvant chemotherapy; PDS, primary de
sensitive recurrence; SD, standard deviation.

aPSR was defined as relapse ≥6 months after completion of taxane- an
bIn addition to PSR, the patients who completed taxane- and platin

during at least 6 months of follow-up period were considered platinum-
cGermline and/or somatic BRCA1/2 mutational status.
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BRCA2. Three patients received first-line PARP inhibitor
maintenance therapy (olaparib). The median length of obser-
vation was 43.8 months, during which 134 patients (66.3%)
experienced relapse and 30 (14.9%) died of the disease. The
median PFS was 24.6 months, and the 18-month PFS rate was
62.9% (127/202) (supplemental Fig. S4).
Table 1 also compares clinicopathologic characteristics be-

tween the good and poor prognosis groups. Patients in the poor
prognosis group (n = 75) were significantly older (p = 0.029) and
hadmore advanced disease (p = 0.001), comparedwith those in
1
f the patients in validation phase

ognosis (n = 127, %) Poor prognosis (n=75, %) P

55.8 ± 10.4 59.2 ± 11.2 0.029

2 (0–6) 2 (0–8) 0.008

85 (66.9) 57 (76.0) 0.173

4.0 (5.1–10000) 1459.0 (19.5–10000) 0.028
0.001

20 (15.7) 3 (4.0)
86 (67.7) 45 (60.0)
21 (16.5) 27 (36.0)

0.267
119 (93.7) 67 (89.3)
8 (6.3) 8 (10.7)

<0.001
106 (83.5) 39 (52.0)
17 (13.4) 16 (21.3)
4 (3.1) 20 (26.7)

0.027
120 (94.5) 64 (85.3)
7 (5.5) 11 (14.7)

0.089
110 (86.6) 58 (77.3)
17 (13.4) 17 (22.7)

68 (53.5) 0 <0.001
59 (46.5) 75 (100.0)
59 (46.5) 45 (60.0) <0.001

0 30 (40.0)
<0.001

127 (100.0) 45 (60.0)
0 30 (40.0)

25 (19.7) 19 (25.3) 0.347
102 (80.3) 56 (74.7)
57 (44.9) 44 (58.7) 0.017
31 (24.4) 9 (12.0)
14 (11.0) 3 (4.0)

, International Federation of Gynecology and Obstetrics; IDS, interval
bulking surgery; PRR, platinum-resistant recurrence; PSR, platinum-

d platinum-based chemotherapy, whereas PRR as relapse <6 months.
um-based chemotherapy and did not experience disease recurrence
sensitive.
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the good prognosis group (n = 127). While the two groups had a
similar proportion of PDS (p = 0.267), optimal debulking was
less frequently achieved in the poor prognosis group (52.0%
versus 83.5%; p < 0.001). Among the patients who received
germline and/or somatic BRCA1/2 testing, BRCA1/2mutations
were less frequently observed in the poor prognosis group
(21.4% versus 44.1%; p = 0.004). Comparing the survival out-
comes, the poor prognosis group showed worse PFS (median,
12.5 versus 54.1 months; p < 0.001) and OS (5-year OS rate,
57.1% versus 94.0%; p < 0.001), compared with the good
prognosis group (supplemental Fig. S4).
Six protein biomarkers, GSN, VCAN, SND1, SIGLEC14,

CD163, and PRMT1, were subjected to further prognostic
validation using ELISA (supplemental Table S6). The ELISA
results are summarized in Table 2 and supplemental Fig. S5.
Table 2 also compares ELISA results between the good and
poor prognosis groups. Plasma GSN levels were significantly
higher in the poor prognosis group than those in the good
prognosis group (median, 23.150 versus 19.300 ng/ml; p =
0.001). However, plasma levels of VCAN, SND1, SIGLEC14,
CD163, and PRMT1 were similar between the two groups.
No correlation was observed between serum CA-125 levels

and the plasma levels of each protein biomarker
(supplemental Table S7). Plasma GSN levels were significantly
correlated with plasma VCAN (Pearson’s correlation coeffi-
cient r = 0.224; p = 0.001), SND1 (r = 0.177; p = 0.012), and
CD163 levels (r = 0.351; p < 0.001), but the correlations were
TABLE

ELISA results of the six pla

Protein All (n=202, %) Good progn

GSN, ng/mL
Median (range) 20.525 (8.300–96.200) 19.300 (
Mean ± SD 22.462 ± 10.095 21.19
Cutoff 24.350

VCAN, ng/mL
Median (range) 4.339 (1.676–15.041) 4.218 (1
Mean ± SD 4.571 ± 1.754 4.53
Cutoff 5.832

SND1, ng/mL
Median (range) 17.670 (1.800–45.040) 17.700 (
Mean ± SD 18.440 ± 7.276 19.0
Cutoff 25.900

SIGLEC14,a ng/mL
Median (range) 5.250 (2.700–29.070) 5.125 (2
Mean ± SD 5.941 ± 3.082 5.82
Cutoff 6.300

CD163, ug/uL
Median (range) 0.583 (0.000–1.608) 0.576 (
Mean ± SD 0.643 ± 0.263 0.63
Cutoff 0.394

PRMT1, ng/mL
Median (range) 2.496 (0.816–12.520) 2.456 (0
Mean ± SD 3.043 ± 1.800 3.18
Cutoff 4.840

Abbreviation: SD, standard deviation.
Missing data: a1.
weak. A weak positive correlation was also observed between
plasma VCAN and SND1 levels (r = 0.167; p = 0.017). Plasma
VCAN levels were moderately correlated with plasma
SIGLEC14 levels (r = 0.501; p < 0.001) and weakly correlated
with plasma CD163 levels (r = 0.341; p < 0.001). Using the
cutoff values determined by maxstat (28), the validation set
was divided into high (≥cutoff value) and low (<cutoff value)
plasma level groups for each protein.
We then compared the clinicopathologic characteristics of

the patients with high and low plasma levels of the six protein
biomarkers (supplemental Table S8). Patients with high GSN
levels (n = 62) were significantly older (p = 0.001), had higher
initial serum CA-125 levels (p = 0.043), had more advanced
disease (p = 0.012), less commonly achieved optimal
debulking (p = 0.011), and more commonly showed platinum
resistance (p = 0.040) than did those with low GSN levels (n =
140). For VCAN, high plasma levels were associated with old
age at the initial diagnosis (p < 0.001). For SND1, high plasma
levels were associated with advanced disease (p = 0.032) and
suboptimal debulking (p = 0.027). However, for SIGLEC14,
CD163, and PRMT1, no significant differences in patient age,
FIGO stage, or residual tumor after surgery were observed
between the high and low expression groups.
In assessing the platinum sensitivity of patients with respect

to the plasma levels of each protein biomarker, we observed a
significant difference only for GSN. Patients with high GSN
levels were less sensitive to platinum-based chemotherapy
2
sma protein biomarkers

osis (n = 127, %) Poor prognosis (n = 75, %) P

0.001
8.300–96.200) 23.150 (11.000–62.950)
7 ± 10.344 24.603 ± 9.341

0.679
.687–10.513) 4.408 (1.676–15.041)
7 ± 1.676 4.629 ±1.888

0.193
1.800–45.040) 17.120 (6.160–38.020)
89 ± 7.733 17.342 ± 6.326

0.315
.720–29.070) 5.440 (2.700–20.010)
8 ± 3.036 6.129 ± 3.169

0.339
0.240–1.608) 0.608 (0.000–1.511)
5 ± 0.255 0.655 ± 0.277

0.947
.816–12.520) 2.640 (1.056–6.016)
4 ± 2.090 2.804 ± 1.126
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than those with low GSN levels (77.4% versus 88.6%; p =
0.040).
In survival analysis, the high GSN group showed signifi-

cantly worse PFS than did the low GSN group (median, 15.6
versus 29.4 months; p = 0.001). In contrast, the high VCAN
group showed significantly better PFS than did the low VCAN
group (median, not reached versus 23.2 months; p = 0.042).
PFS was also better in the high than in the low SND1 group,
but the difference was not statistically significant (median,
40.2 versus 22.6 months; p = 0.066). No differences in PFS
were observed between groups with high and with low plasma
levels of SIGLEC14, CD163, and PRMT1 (Fig. 3).
In the multivariate analysis adjusted for patient age, FIGO

stage, and residual tumor after surgery, a high plasma GSN
level was identified as an independent poor prognostic
biomarker for PFS (aHR, 1.556; 95% CI, 1.073–2.256; p =
0.020). However, subsequent multivariate analyses revealed
no influence of VCAN (aHR, 0.617; 95% CI 0.370–1.030; p =
0.065) and SND1 (aHR, 0.789; 95% CI 0.454–1.372; p = 0.401)
plasma levels on PFS (Table 3).

Development of Models Predicting 18-Month PFS Rate

Next, we constructed regression-based models predicting
the 18-month PFS rate using clinical variables and plasma
levels of five plasma protein biomarkers in patients with
FIG. 3. Comparison of progression-free survival based on the plas
CD163; F, PRMT1.
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HGSOC (n = 202). Herein, SND1 was excluded as the high-
SND1 group showed better PFS than did the low-SND1
group in the validation phase, which was contrary to the re-
sults in the development phase. Through stepwise selection
methods, four predictors were selected: FIGO stage, residual
tumor after surgery, GSN, and VCAN. Various models were
developed using these predictors. Each predictive model un-
derwent 5-fold cross-validation to compute the AUC. Among
them, the model using cutoff plasma values for GSN
(24.350 ng/ml) and VCAN (5.832 ng/ml) showed the best
predictive performance, with an AUC of 0.779 (Fig. 4 and
supplemental Table S9). This model also showed better pre-
dictive performance than did the model using continuous
values for plasma GSN and VCAN levels, and those replacing
the two protein biomarkers, GSN and VCAN, with serum CA-
125 levels (supplemental Table S9).
Using regression-based models, nomograms were then

developed for clinical use (Fig. 5). Finally, we fitted a user-
friendly interface onto the developed nomograms and pos-
ted them on a website (http://asiansgo.org/software/
nomogram_ovarian).
DISCUSSION

Our proteomic analysis study identified plasma protein
biomarkers that might be associated with the prognosis of
ma levels of proteins. A, GSN; B, VCAN; C, SND1; D, SIGLEC14; E,

http://asiansgo.org/software/nomogram_ovarian
http://asiansgo.org/software/nomogram_ovarian


TABLE 3
Factors associated with progression-free survival

Characteristics
Univariate analysis Multivariate Analysis

HR 95% CI P aHR 95% CI P aHR 95% CI P aHR 95% CI P

Age, years
<55 Ref. Ref. Ref. Ref.
≥55 1.253 0.892–1.761 0.194 1.064 0.754–1.503 0.723 1.181 0.829–1.682 0.357 1.087 0.770–1.534 0.637

FIGO stage
I-II Ref. Ref. Ref. Ref.
III 2.644 1.281–5.457 0.009 2.151 1.027–4.506 0.042 2.022 0.961–4.253 0.063 2.112 1.006–4.433 0.048
IV 4.440 2.064–9.551 <0.001 3.177 1.442–7.000 0.004 3.208 1.454–7.076 0.004 3.283 1.484–7.264 0.003

Residual tumor
after surgery

No gross Ref. Ref. Ref. Ref.
Gross 2.313 1.617–3.308 <0.001 1.898 1.311–2.747 0.001 1.954 1.355–2.817 <0.001 1.949 1.349–2.816 <0.001

GSN
Low Ref. Ref.
High 1.850 1.292–2.648 0.001 1.556 1.073–2.256 0.020

VCAN
Low Ref. Ref.
High 0.601 0.365–0.988 0.045 0.617 0.370–1.030 0.065

SND1
Low Ref. Ref.
High 0.607 0.355–1.040 0.069 0.789 0.454–1.372 0.401

Abbreviations: aHR, adjusted hazard ratio; CA-125, cancer antigen 125; CI, confidence interval; FIGO, International Federation of Gynecology
and Obstetrics; HR, hazard ratio; Ref., reference.
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HGSOC. In validation with ELISA, high plasma levels of GSN
were associated with worse PFS, while VCAN, SND1,
SIGLEC14, CD163, and PRMT1 did not affect the survival
outcomes of patients with HGSOC. We also developed
models and nomograms to predict the 18-month PFS rate for
clinical purposes.
FIG. 4. Predictive performance of the developed models. Receiv
operating characteristic curves (AUCs) for 18-month progression-free
validation. A, a model using the cutoff values for plasma GSN and VCAN
GSN, a calcium-dependent multifunctional actin-binding
protein, has cytoplasmic and plasma isoforms, which are
encoded by the same gene (31). Plasma GSN is a well-known
poor prognostic biomarker for PFS and OS in patients with
ovarian cancer. In addition, the expression and secretion of
GSN were higher in chemoresistant ovarian cancer cells than
er operating characteristic curves with the areas under the receiver
survival rate. The regression-based models underwent 5-fold cross-
; B, a model using the continuous values for plasma GSN and VCAN.
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FIG. 5. Regression-based nomograms predicting 18-month progression-free survival rate. A, a nomogram using the cutoff values for
plasma GSN and VCAN; B, a nomogram using the continuous values for plasma GSN and VCAN.
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in chemosensitive ovarian cancer cells (32). Consistently, the
current study showed that high plasma GSN levels were
associated with poor prognostic factors, such as advanced-
stage disease and residual tumor after surgery, loss of plat-
inum sensitivity, and reduced PFS. Recently, Asare–Werehene
et al. demonstrated that plasma GSN confers chemo-
resistance in ovarian cancer by inhibiting the antitumor func-
tions of macrophages through apoptosis and modulating the
tumor microenvironment (33).
VCAN, a large extracellular matrix proteoglycan, is known to

play role in promoting tumorigenesis and enhancing tumor
progression and metastasis (34). Researchers have reported
positive associations between high tissue expression of VCAN
and poor survival outcomes in various malignancies including
breast cancer (35) and renal cell carcinoma (36). In advanced-
stage serous ovarian cancer, Ghosh et al. reported that high
VCAN expression in the tumor stroma was associated with
increased angiogenesis and significantly worse PFS and OS
than low VCAN expression (37). However, such an association
seems to differ depending on the specimen type. In contrast
to this study, we measured plasma VCAN levels instead of
tissue expression and observed that VCAN did not affect PFS
in patients with HGSOC.
SND1, a component of the RNA-induced silencing complex,

is an oncogene involved in tumorigenesis, tumor progression,
and metastasis in multiple malignancies, including breast
cancer (38) and colorectal cancer (39). In ovarian cancer,
SND1 promotes epithelial-to-mesenchymal transition, which
facilitates metastasis of ovarian cancer (40). Furthermore,
Wang et al. reported that miR-1224-5p inhibits the prolifera-
tion and invasion of ovarian cancer by targeting SND1 (41).
Recently, Cui et al. suggested a potential correlation between
the tissue expression of SND1 and tumor mutational burden or
microsatellite instability across all The Cancer Genome Atlas
tumors (42). In contrast, our study showed that high or low
10 Mol Cell Proteomics (2023) 22(3) 100502
plasma SND1 levels did not affect PFS in patients with
HGSOC. Such inconsistent results between our study and
previous studies might originate from differences in specimen
types, histological subtypes, and sample sizes. To the best of
our knowledge, no previous study has investigated the rela-
tionship between plasma SND1 levels and survival outcomes
in ovarian cancer. Therefore, further prospective studies are
warranted to investigate the relationship between plasma
SND1 levels and survival outcomes.
CD163, a multifunctional receptor containing a scavenger

receptor cysteine-rich domain, is specifically expressed in
monocytes and macrophages and can be cleaved from the
cell membrane of monocytes and macrophages (43). Besides
its multiple functions, such as immune modulation, high serum
CD163 levels have been associated with poor survival out-
comes in various malignancies (44–46), including ovarian
cancer. No et al. reported that high serum CD163 levels were
an independent poor prognostic factor for PFS in patients with
epithelial ovarian cancer (n = 55) (47). In contrast, no reduction
in PFS due to high plasma CD163 levels was observed in our
study. While a previous study examined serum samples of
patients with all histological subtypes and grades of epithelial
ovarian cancer, the current study examined plasma samples
of patients with HGSOC. Such differences may underlie the
inconsistent results.
PRMT1 mediates epigenetic modifications. Aberrant

expression of PRMT1 has been reported to be involved in
tumorigenesis (48) and is an unfavorable prognostic biomarker
in breast cancer (49) and colorectal cancer (50). In non–small
cell lung cancer, PRMT1 has been suggested to be a regu-
lator of epithelial-to-mesenchymal transition (51). Recently,
Matsubara et al. investigated the prognostic role of PRMT1
tissue expression in patients with ovarian serous carcinoma
(n = 51) (52). They found that high PRMT1 expression was
associated with platinum resistance and reduced OS. In
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contrast, we could not identify any association between
plasma PRMT1 levels and response to platinum-based
chemotherapy or PFS.
SIGLEC family proteins play diverse immune and nonim-

mune regulatory roles in the tumor microenvironment and
participate in tumor progression. Facilitating tumor immune
escape is one of the mechanisms by which tumors progress
(53). Compared with other SGILEC family proteins, the prog-
nostic role of SIGLEC14 in ovarian cancer is not fully under-
stood. We observed no association between plasma
SIGLEC14 levels and PFS in patients with HGSOC.
In the current study, we developed two regression-based

models and nomograms to predict the 18-month PFS rate in
patients with newly diagnosed HGSOC. In both models, only
two (GSN and VCAN) of the six protein biomarkers were
selected and incorporated. Although independent multivariate
analyses indicated GSN as the solitary independent prog-
nostic factor for PFS, the addition of VCAN to GSN seems to
confer further improvement in performance in predicting the
18-month PFS rate. In the validation phase, we could not
conduct external validation due to the scarcity of resources
and time to conduct a prospective multicenter study that
could collect plasma samples from the enrolled subjects.
Instead, we implemented 5-fold cross-validation, a well-
established statistical method, to prevent overfitting and in-
crease the robustness and prediction accuracy of the
developed model. A further increase in the predictive perfor-
mance is expected if the multiomics data of patients with
HGSOC are integrated into the developed models.
Throughout the study, patients’ BRCA1/2 mutational status

and the use of first-line PARP inhibitor maintenance treatment
were not considered, because of their low frequency in our
study. In particular, only a few patients were eligible (n = 3 in
the second phase). Such a low frequency might have origi-
nated from the sociomedical environment in Korea. In October
2019 and August 2020, the Korean Ministry of Food and Drug
Safety approved olaparib and niraparib as first-line mainte-
nance therapies based on the SOLO1 (6) and PRIMA trials (7),
respectively. Furthermore, it was not until October 2021 that
the National Health Insurance System started to cover both
olaparib and niraparib in patients with BRCA1/2 mutated
HGSOC. Despite the approval of PARP inhibitors, patients
with HGSOC find these difficult to use beyond insurance
coverage because of their high cost.
In the era of precision cancer medicine, it is critical to pre-

dict prognosis or survival outcomes precisely. Our results
indicated that adding plasma levels of GSN and VCAN to the
clinical factors in predictive models improved the models’
performance. Applying the developed models, if a patient with
HGSOC was predicted to be at high risk of disease progres-
sion within 18 months from the initiation of primary treatment,
physicians might consider incorporating bevacizumab into
conventional taxane- and platinum-based chemotherapy. In
particular, based on the germline/somatic BRCA1/2
mutational status and homologous recombination deficiency,
first-line PARP inhibitor maintenance therapy may be recom-
mended more strongly (54). After completion of chemo-
therapy, a high-risk patient might undergo more intensive
surveillance.
Our study had several limitations. First, as this study had a

retrospective design, inevitable issues, such as selection bias,
might exist. Second, the sample size might have been insuf-
ficient for discovering and validating plasma protein bio-
markers. In particular, in the validation phase, we failed to
observe a relationship of high plasma SND1 levels with poor
prognosis, which was marked in the development phase.
Third, external validation of the developed models is needed.
Fourth, we only investigated statistical correlations but did not
evaluate the biological interactions between protein bio-
markers. Lastly, we did not investigate longitudinal changes in
each plasma protein biomarker over the course of the primary
treatment. Such information might enable us to calculate the
kinetics of each biomarker during a specific period and predict
the primary treatment success more accurately.
In conclusion, we successfully generated proteomic profiles

of plasma samples from patients with HGSOC. A subsequent
ELISA study assessed the prognostic value of the six protein
biomarkers. Plasma GSN was identified as a poor prognostic
biomarker for PFS in HGSOC, but plasma VCAN, SND1,
SIGLEC14, CD163, and PRMT1 levels were not. Combined
with clinical factors, we developed models and nomograms to
predict the 18-month PFS rate for clinical purposes. Our study
results provided insights into the protein biomarkers that
might potentially develop HGSOC and offered clues for
developing therapeutic targets. Further translational and pro-
spective validation studies are needed.
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