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Abstract 

Allosteric transcription factor (aTF) based biosensors can be used to engineer genetic 
circuits for a wide range of applications. The literature and online databases contain 
hundreds of experimentally validated molecule-TF pairs; however, the knowledge is 
scattered and often incomplete. Additionally, compared to the number of compounds 
that can be produced in living systems, those with known associated TF-compound 
interactions are low. For these reasons, new tools that help researchers find new possi‑
ble TF-ligand pairs are called for. In this work, we present Sensbio, a computational tool 
that through similarity comparison against a TF-ligand reference database, is able to 
identify putative transcription factors that can be activated by a given input molecule. 
In addition to the collection of algorithms, an online application has also been devel‑
oped, together with a predictive model created to find new possible matches based 
on machine learning.
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Introduction
Biosensors allow researchers from various fields to use biological systems to detect 
external or internal signals and to react to those signals in a designed manner [1]. 
Among other inputs, biosensors can be used to detect small molecules that may play 
important roles in areas such as bioremediation, metabolic engineering, or biocomput-
ing. An important class of biosensors is the one based on allosteric transcription factors 
(aTFs) that bind to the molecule, triggering the expression or repression of a particular 
gene (e.g., a reporter gene). Even though biosensors have been used for a wide range of 
applications, the number of known responsive TFs is still limited compared to the num-
ber of potential chemical targets of interest in many applications.

During recent years, both computer and experimental assays have been reported in the 
literature describing different methods to discover new TF-ligand interactions, includ-
ing bioprospecting and metagenomics. However, such multi-step process may, collec-
tively, involve years of research. The efforts required to find a new TF from the available 
genomic knowledge, characterize it properly, and validate its functionality against a new 
molecule presents a high toll to pay for the biosensor designer. For these reasons, more 

*Correspondence:   
pablo.carbonell@upv.es

1 Institute of Industrial Control 
Systems and Computing (AI2), 
Universitat Politècnica de 
València (UPV), 46022 Valencia, 
Spain
2 Institute for Integrative Systems 
Biology I2SysBio, Universitat de 
València-CSIC, 46980 Paterna, 
Spain

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-023-05201-7&domain=pdf


Page 2 of 15Tellechea‑Luzardo et al. BMC Bioinformatics           (2023) 24:71 

computational databases and tools are needed to help in the design of new biosensors, 
especially in the prototype phase. For example, Sensipath [2] is specialized in finding 
the closest detectable compounds connected through metabolic pathways to the query 
compound. Basically enabling the use of indirect sensing when the query has not known 
TFs that can be used to measure it directly. Other tools like DeepTFactor [3] try to fill 
the gap of known TFs by using AI to discover new TFs by other means than homology-
based prediction.

Here we present Sensbio, a set of easy-to-use Python algorithms and notebooks and a 
web application that find new possible TF-ligand interactions by protein sequence and 
molecular similarity analysis that can be additionally assisted by machine learning-based 
recommendations. The Sensbio open-source toolbox provides a set of tools to help in 
the design of transcription-factor based biosensor circuits. Based on a dataset contain-
ing 451 chemical compounds and 3507 transcription factor sequences, Sensbio assists 
synthetic biologists by suggesting potential new TF-ligand interactions based on six dif-
ferent sources of transcription factor data, finding similar molecules and candidate tran-
scription factors to the inputs. Compared to other tools and databases, Sensbio collates 
the information from the available databases simplifying the research task for the users. 
It also provides a molecular-string (SMILES) based searching algorithm, thus remov-
ing the confusion often found using the molecule’s common name making the search 
of similar compounds unambiguous. Finally, the result of the molecular tool provides 
a similarity score. Previous databases/tools lacked this feature. With Sensbio, similar 
alternative compounds to the user’s query are suggested as starting points for biosen-
sor design. In that way, Sensbio allows users to identify existing and novel transcription 
factor-based biosensors for applications ranging from genetic circuits design, screening, 
production, and bioremediation of chemicals to diagnostics.

Material and methods
Databases, packages and tools used in this study

The dataset published by Koch et  al. [4] was used as a starting point for the Sensbio 
database. It contains a 2018 collection of TF-ligand interactions from different databases 
and literary resources. To expand and update this dataset, data dumps detailing aTFs 
and their triggering compounds were collected, cleaned and formatted accordingly from 
the following databases: BioNemo [5], RegulonDB [6], RegPrecise [7], RegTransBase [8], 
Sigmol [9] and GroovDB [10].

Custom Python 3 scripts (using standard libraries like Pandas and Numpy) were 
used to populate, clean, format and analyze the database and to build a web applica-
tion through the Streamlit framework (https://​strea​mlit.​io/). Molecular fingerprints 
were extracted, analyzed and compared using the RDKit python library [11]. Networkx 
python module was used to describe and produce the molecular network. A local 
BLAST+ installation allowed the scoring and ranking of the protein sequences. Ete3 
python toolkit [12] produced the phylogenetic trees of the TF sequences. Deep learning 
techniques were applied to build the predictive model through the Tensorflow and Keras 
Python libraries.

Classyfire [13] and iFragment [14] external web applications were used to classify 
the different molecules by chemical and metabolic categories respectively. Classyfire 
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produces a hierarchical list of ontologies. In this case, the parent ontology was kept as 
the representative category for each molecule. iFragment on the other hand, produces a 
list of KEGG [15] metabolic pathways ordered by the probability of the input compound 
to belong to that particular pathway. The three pathways with the lowest p-value were 
selected. Using the KEGG restful API (https://​www.​kegg.​jp/​kegg/​rest/​kegga​pi.​html), 
the parent ontology was extracted for each pathway and assigned as the final metabolic 
category.

Implementation

First, the Sensbio database was built detailing both molecular (molecule common name, 
SMILES, InChI and information on the metabolic paths where the molecule plays a role) 
and protein sequence information (TF name, origin species, protein sequence, NCBI 
and Uniprot accession numbers and database and literature references) for each of the 
TF-ligand pairs mined from the previously detailed databases and bibliographic sources.

The toolbox built around the database can be used both for searching for novel TF-
molecule interactions, and to analyze the state-of-the-art of the aTF-mediated biosens-
ing space. Sensbio accepts protein sequences and chemical compounds as inputs. Two 
possible use cases for the tool are envisioned:

Molecular search: use case 1

When the user wants to determine if a chemical compound can be sensed using TF-
based biosensors they can use the molecular similarity tool (“molecule” script / note-
book) (Fig.  1, red flow). The tool calculates the Tanimoto distance (using the RDkit 
library) of the input molecule against all the molecules in the database one by one. First, 
Morgan fingerprints are calculated for the query molecule and the database molecule. 
This fingerprint is similar to ECFP (Extended-Connectivity Fingerprints) [16] which is 
one of the most common algorithms for general chemoinformatics purposes.

Then, the Tanimoto similarity score is calculated from both fingerprints. This metric 
was chosen for several reasons. Firstly, Tanimoto score and other similar metrics were 
compared for molecular similarity tasks using ECFP and has been proven to be a good 
metric for this task in previous works [17]. In addition, experimental works showing that 
alternative ligand molecules can trigger similar TF-mediated gene regulation used Tani-
moto as the metric to find the best alternative molecule to the known activating ligand 
[18, 19].

Once all the Tanimoto distances have been calculated, the tool outputs a rank of the 
entries in the database linked to each of the molecules (including score, paired molecule, 
TF sequence, and the remaining information of the entry).

Sequence search: use case 2

When the user wants to check a predicted putative TF for sensing capabilities they can 
use the sequence similarity tool (“sequence” script / notebook) (Fig. 1, green flow). The 
tool uses the user’s input as a query and BLAST + as alignment algorithm, and the TF 
sequences as BLAST database. It queries the user protein input against the TF sequences 
dataset and it provides the top significant set of entries in the database closest to the 

https://www.kegg.jp/kegg/rest/keggapi.html
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input sequence as output. This can be used to determine possible molecular ligands and 
to fast-track a literature search on the closest transcription factors for the query protein.

The repository containing the tool files and requirements is available at: https://​github.​
com/​jonat​han-​telle​chea/​sensb​io.

Predictive model

Moreover, a predictive system has been developed with the aim of having a machine-
learning based recommendation system for finding new possible TF-ligand interac-
tions. In order to train the model, the Sensbio database was initially used. For the TF 
sequences, the one-hot encoding technique was used. For the molecules, fingerprints 
from SMILES were extracted. Also, negative cases, i.e., cases where there is no affinity 
between the TF and the molecule were generated. For this purpose, a molecule that does 
not resemble the molecule associated with a given TF based on their Tanimoto index 
was randomly selected for each sequence.

Fig. 1  Sensbio workflows. Red flow: a molecular input by the user produces an ordered rank of similar 
molecules paired with the aTF that is activated or repressed by them. Green flow: a protein sequence input 
produces a ranked list of sequences and their binding molecule

https://github.com/jonathan-tellechea/sensbio
https://github.com/jonathan-tellechea/sensbio
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The network architecture (Fig.  2) is based on two branches (one for each type of 
input), which are then concatenated. For the TF branch a LSTM (long-short term 
memory) layer was considered as it can learn from sequential data [20]. The optimizer 
used for the model is the Adam algorithm, and the activation function for both neu-
ron type is ReLU. The hyperparameters were optimized using Bayesian optimization. 
These parameters were the learning rate, the batch size, and the number or epochs.

In terms of model training, a cross-validation was carried out to test the different 
possibilities of the hyperparameters of the model. Clustering was used to group the 
data in the different training and validation set. Each cluster is made following the 
dissimilarity between the molecules to ensure that the data is evenly split in terms 
of similarity. The model returns a score between 0 and 1, where a value close to 0 
indicates that there is no affinity between the TF and the effector molecule, and a 
value close to 1 indicates that there exists a potential interaction between both. The 
repository containing the codes required to build and train this model is available at: 
https://​github.​com/​pablo​carb/​biose​nsor_​predi​ctor.

In order to verify the performance of our model, several comparisons have been 
made with other classifiers. They are the following: SVM, Random Forest and Gauss-
ian Naive Bayes classifier. Moreover, the 1-hot encoding technique was compared 
with a higher-dimensional embedding representation of the protein sequence using 
the Embedding layer available in Keras.

Results
Molecular similarity

Next, we describe the results of the molecular similarity tool. For this pur-
pose, naringenin (O=C1CC(c2ccc(O)cc2)Oc2cc(O)cc(O)c21) and pinocembrin 
(C1C(OC2=CC(=CC(=C2C1=O)O)O)C3=CC=CC=C3) molecules are used as 
examples. When naringenin is fed into the chemical tool, it produces the dataset 
shown in Table  1. The Tanimoto score of 1 for the first 5 entries confirms that the 
database contains the target molecule and provides information on 5 TFs that have 
been described to be activated by this compound. This result informs the user that 
the input molecule has been described as the activator of these TFs so they can make 
a decision on their following experimental workflow.

When a molecule that is not in the database is provided as input, the tool pro-
vides the set of entries ordered by Tanimoto score. In the case of the pinocembrin, 

Fig. 2  Network architecture diagram

https://github.com/pablocarb/biosensor_predictor
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the application ranks naringenin as the highest entries by close similarity to the com-
pound, suggesting that pinocembrin could be sensed though naringenin-activated 
TFs. This was experimentally confirmed in Trabelsi et al. [18]. This information could 
be used by the user to find TFs that are likely to sense their input compound and build 
prototype biosensor circuits around this information.

The complete results of these two examples and other three example molecules that 
were not present in the original database can be found in the Additional file 1.

Sequence similarity

Here we showcase the behavior of the tool when using its sequence similarity feature. 
Given a TF sequence that is present in the database (e.g. AseR, B. subtilis, NP_388414.1 
which is triggered by arsenite) the algorithms produce the ranked entries shown in 
Table 2 (a summarized view of the whole output data). In essence, the software recog-
nizes the sequence as present in the database by giving it the highest rank (based on the 
BLAST+ scoring system) and 100% identity score. It also provides the user with other 
relevant sequences that recognize the same compound that may be worth studying fur-
ther for increased biosensor design space in the laboratory.

When a TF that is not present in the database is fed to the sequence similarity tool 
(e.g. ArsR, Micromonospora maris, WP_043720559.1) one should expect the results 
shown in the lower half of Table 2. Again, the script returns a list of the most similar pro-
teins in the database together with information on the species and triggering molecules. 
This information could be used after discovering a new TF to assess possible molecular 
targets, together with other sources of information before experimental validation.

Table 1  Sensbio molecular results examples

Input Molecule Species TF NCBI Accession Sequence Tanimoto score

Naringenin Naringenin Sinorhizobium 
meliloti

nodD1 WP_010967456 MRFRGLDLNLL‑
VALD…

1

Naringenin Herbaspirillum 
seropedicae

fdeR WP_013233032 MRFNKLDLNLL‑
VALD…

1

Naringenin Pseudomonas 
putida

TtgR BAN52789.1 MVRRT‑
KEEAQETRA…

1

Naringenin Azorhizobium 
caulinodans 
ORS571

nodD CAA88827.1 MRFKGLDLNLL‑
VALN…

1

Naringenin Azorhizobium 
caulinodans

nodD WP_012172315.1 MRFKGLDLNLL‑
VALN…

1

Pinocembrin Naringenin Sinorhizobium 
meliloti

nodD1 WP_010967456 MRFRGLDLNLL‑
VALD…

0.648

Naringenin R. leguminosarum nodD WP_207159894.1 MRFKGLDLNLL‑
VALD…

0.648

Naringenin Azorhizobium 
caulinodans

nodD WP_012172315.1 MRFKGLDLNLL‑
VALN…

0.648

Naringenin Azorhizobium 
caulinodans 
ORS571

nodD CAA88827.1 MRFKGLDLNLL‑
VALN…

0.648

Naringenin Pseudomonas 
putida

TtgR BAN52789.1 MVRRT‑
KEEAQETRA…

0.648
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Database analysis

Finally, we highlight in this section the most important features of the Sensbio data-
base, which was collected from several sources as previously described. It contains 
451 unique molecules and 3507 protein sequences which interact among themselves 
producing 5387 unique TF-ligand pairs.

Using the RDkit python library, the Tanimoto score of all the molecules against 
each other was calculated. For all the possible pairs, the score was stored and plotted 

Table 2  Sensbio example sequence results

Input Molecule Species TF NCBI Accession Sequence Identity % e-value bit-
score

AseR, B. 
subtilis, 
NP_388414.1

Arsenite Bacillus 
subtilis subsp. 
subtilis str. 
168

AseR NP_388414.1 MTIDVAAMTR‑
CLK…

100 1.91E−82 233

Arsenite Bacillus 
clausii KSM-
K16

AseR YP_174335.1 MGFKSLS‑
SEEIAT…

50.485 8.61E−38 120

Arsenite Bacillus 
amylolique-
faciens subsp. 
plantarum 
str. FZB42

AseR YP_001423145.1 MERRH‑
HALSSEGI…

54.286 4.29E−36 116

Arsenite Bacillus 
halodurans 
C-125

AseR NP_243866.1 MASVKQQLE‑
VAT…

42.593 4.76E−32 105

Arsenite Geobacillus 
kaustophilus 
HTA426

AseR YP_146440.1 MQKTV‑
VEIEKASH…

47.059 2.38E−31 103

ArsR, 
Micromonos-
pora maris

Arsenite Nocardia 
farcinica IFM 
10152

ArsR YP_118660.1 MSNP‑
SLPVAPVD…

48.718 2.56e−31 104

Cadmium(cd2+) Nocardia 
farcinica IFM 
10152

ArsR YP_118660.1 MSNP‑
SLPVAPVD…

48.718 2.56e−31 104

Silver(ag+) Nocardia 
farcinica IFM 
10152

ArsR YP_118660.1 MSNP‑
SLPVAPVD…

48.718 2.56e−31 104

Arsenate Nocardia 
farcinica IFM 
10152

ArsR YP_118660.1 MSNP‑
SLPVAPVD…

48.718 2.56e−31 104

Arsenite Nocardia 
farcinica IFM 
10152

SahR YP_122073.1 MSKSKLVVT‑
PVQA…

50.515 3.39e−30 102

Fig. 3  Tanimoto score distribution of the whole molecular collection (451 molecules)
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in Fig.  3. This figure shows that most of the molecule pairs have a similarity score 
between 0 and 0.2.

Further analysis using the network python library NetworkX shows how the mol-
ecules are related and clustered together by the similarity score (Fig. 4). The network 
figure groups the molecules in 5 molecule clusters pertaining to similar molecular 
families (e.g. sugars, quorum sensing).

The molecules can be classified using different criteria. First, molecules were clas-
sified using chemical ontologies using the Classyfire tool. Figure  5 shows the dif-
ferent chemical categories present in the database and their abundance. The most 
common category was established as “Hydrocarbon derivatives” (simple and com-
plex sugars, etc.), followed by “Carbonyl compounds” (some amino acids, lactones, 
etc.).

Another classification can be made using metabolism as main criteria. The iFrag-
ment tool was used to assign biological pathways to each of the compounds in the 
database searching against the KEGG pathways dataset. Figure  6 shows the distri-
bution of different KEGG pathways found. Note that the three most likely KEGG 

Fig. 4  Molecular network and clustering of the database. Two molecules are connected together if they have 
a Tanimoto similarity score higher than 0.25. The color of the node represents the number of connections of 
that node
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functions assigned to each compound were kept. Most of the molecules in the dataset 
are related to amino acid metabolism.

The protein sequences in the database were analyzed by their relationship with their 
compound pair. The table in Fig. 7 details how the sequences are related to the chemi-
cal categories.

87.7% of the 3507 unique sequences have been associated to a single molecular 
ontology. The rest are "promiscuous" TFs and are triggered by more than one molecu-
lar category.

The 3507 sequences were aligned and assembled in a phylogenetic tree using Clustal 
Omega. The ete3 python library was used to produce the tree figures coupled with 
the categorical information. The chemical and metabolic categories previously deter-
mined were paired with each sequence in the tree producing the Figs. 7 and 8.

Predictive model performance

For the machine learning-based model shown in Fig.  2, loss and accuracy metrics 
were used during the validation process. Their evolution curves over the epochs of 
training during the last validation are shown in Figs. 9 and 10. The average loss value 
was 1.67 and the accuracy value was 80.7%.

Fig. 5  Frequency of molecular ontologies discovered in the database. A total of 25 molecular categories are 
present
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The stabilization of both, accuracy and loss curves, and the evolution of the valida-
tion curve with respect to the train one, show that the number of epochs is enough to 
obtain acceptable results without overfitting.

After the validation, the actual model training was carried out. The scores obtained 
when predictions were made with the test data have been 0.3 of loss and 96,048% of 
accuracy. The ROC curve (Fig. 11) and the AUC value have also been obtained.

The evolution of the ROC curve and the AUC value associated led to the conclusion 
that the model performs reasonably well as a classifier between positive (there is affinity 
between the TF and the ligand) and negative (there is no affinity) cases.

Lastly, to compare the performance of each class (affinity between the TF and the 
molecule or not), a F1-score close to 0.9 has been obtained for both positive and nega-
tive cases. The similarity between the F1-score of the two groups demonstrates that the 
model is well balanced for predicting either the affinity between a TF and a molecule or 
the impossibility of using the TF to sense the molecule.

In order to verify the performance of our model, we have compared the results with 
other classification algorithms. These results are shown in Table 3 below:

Conclusions and future directions
In this study, we present two resources that may ease the biosensor design process and 
help researchers prototype biosensor circuits faster.

Fig. 6  Frequency of metabolic categories found in the database
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The first one is the Sensbio toolbox. By importing the algorithms into a notebook or 
another Python application or through the GUI-app, the system can suggest putative 
aTFs that may be able to detect a given input compound. The tool can also be used to 
determine the possible ligand molecule of a newly discovered TF sequence by homology 
to the database. The tool is available at https://​bit.​ly/​3OF4m​sH.

Secondly, the ML model built in this study can be used to find extra TF-ligand 
interactions through a predictive system. Even if the results are promising, predic-
tions of the ML-based model still lack enough specificity, as we are expecting to use 
this tool in order to refine the homology search. Future work will test other model 
architectures, including using the homology search results as additional input to 
the model.

Besides the improvement of ML-based predictions, the current dataset can be aug-
mented with TF homologues in the positive dataset to improve further the prediction 
metrics. In the future, the ML model will be improved and integrated in the application. 
This could add an extra layer of certainty to trust the predicted TF-ligand interaction 

Fig. 7  Phylogenetic tree of the protein sequences in the database paired with the chemical categories of the 
compound(s) that bind to the TF

https://bit.ly/3OF4msH
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Fig. 8  Phylogenetic tree of the protein sequences in the database paired with the metabolic categories of 
the compound(s) that bind to the TF

Fig. 9  Example of accuracy curve for one of the validation processes of the final model
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based on factors  other than sequence or molecular similarity. An additional layer of 
information useful to the users may be the computation of structural-based scores for 
each TF-ligand pair from tools like molecular docking.

Fig. 10  Example of loss curve for one of the validation processes of the final model

Fig. 11  ROC curve resulting from test and its AUC value

Table 3  Performance comparison between different models

Model Mean Accuracy (%) Accuracy Std Mean Loss

Original 96.048 0.490 0.292

SVM 88.581 0.706 0.711

RandomForest 95.496 0.408 1.551

Naive Bayes 76.002 0.453 8.649

Embedding 94.128 1.092 0.442
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