
Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Abdollahi et al. BMC Bioinformatics           (2023) 24:70  
https://doi.org/10.1186/s12859-022-05112-z

BMC Bioinformatics

Reconstructing B cell lineage trees 
with minimum spanning tree and genotype 
abundances
Nika Abdollahi1,3, Lucile Jeusset1,2, Anne de Septenville2, Frederic Davi2 and Juliana Silva Bernardes1* 

Abstract 

B cell receptor (BCR) genes exposed to an antigen undergo somatic hypermutations 
and Darwinian antigen selection, generating a large BCR-antibody diversity. This pro-
cess, known as B cell affinity maturation, increases antibody affinity, forming a specific 
B cell lineage that includes the unmutated ancestor and mutated variants. In a B cell 
lineage, cells with a higher antigen affinity will undergo clonal expansion, while those 
with a lower affinity will not proliferate and probably be eliminated. Therefore, cellular 
(genotype) abundance provides a valuable perspective on the ongoing evolutionary 
process. Phylogenetic tree inference is often used to reconstruct B cell lineage trees 
and represents the evolutionary dynamic of BCR affinity maturation. However, such 
methods should process B-cell population data derived from experimental sampling 
that might contain different cellular abundances. There are a few phylogenetic meth-
ods for tracing the evolutionary events occurring in B cell lineages; best-performing 
solutions are time-demanding and restricted to analysing a reduced number of 
sequences, while time-efficient methods do not consider cellular abundances. We 
propose ClonalTree, a low-complexity and accurate approach to construct B-cell line-
age trees that incorporates genotype abundances into minimum spanning tree (MST) 
algorithms. Using both simulated and experimental data, we demonstrate that Clon-
alTree outperforms MST-based algorithms and achieves a comparable performance to 
a method that explores tree-generating space exhaustively. Furthermore, ClonalTree 
has a lower running time, being more convenient for building B-cell lineage trees from 
high-throughput BCR sequencing data, mainly in biomedical applications, where a 
lower computational time is appreciable. It is hundreds to thousands of times faster 
than exhaustive approaches, enabling the analysis of a large set of sequences within 
minutes or seconds and without loss of accuracy. The source code is freely available at 
github.com/julibinho/ClonalTree.

Keywords:  B cell receptor repertoire, Lineage Tree, phylogenetics

Background
B cells are essential components of the adaptive immune system. They express a cell sur-
face receptor, the B cell receptor (BCR), recognising a vast array of antigens. The main 
components of the BCR are immunoglobulins (IG), which can be secreted in a soluble 

*Correspondence:   
juliana.silva_
bernardes@sorbonne-universite.fr

1 UMR 7238, Laboratoire de 
Biologie Computationnelle 
et Quantitative, Sorbonne 
University, Paris, France
2 AP‑HP, Hôpital Pitié‑Salpêtrière, 
Department of Biological 
Hematology, Sorbonne 
University, Paris, France
3 IMGT®, The International 
ImMunoGeneTics Information 
System, CNRS, Institute 
of Human Genetics, Montpellier 
University, Montpellier, France

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-022-05112-z&domain=pdf


Page 2 of 19Abdollahi et al. BMC Bioinformatics           (2023) 24:70 

form as antibodies. IGs are heterodimers composed of two identical heavy chains (IGH) 
and two identical light chains (IGL); each chain possesses a variable and a constant 
region. The variable regions are responsible for antigen-binding specificities, whereas 
the constant regions are associated with cell-signalling components of the BCR and 
facilitate interactions with other immune-system molecules. The variable regions are 
encoded by Variable (V), Diversity (D) in the case of heavy chains, and Joining (J) genes, 
which are rearranged during lymphopoiesis by a complex genetic mechanism known 
as V(D)J recombination [1]. During this process, the combinatorial diversity is gener-
ated by connecting these genes into an exon, further enhanced by random deletions and 
insertion at their joining sites. These mechanisms allow newly-formed naive B cells to 
express a vast repertoire of distinct BCRs ( > 1013 ) [2].

When exposed to an antigen, naive B cells’ genes encoding the IG undergo multiple 
rounds of mutations, e.g., Somatic HyperMutations (SHM) and Darwinian antigen selec-
tion. This stage of the B cell development is known as affinity maturation since it leads 
to a progressive increase of the IG’s affinity for their cognate antigens and occurs in spe-
cialised structures of secondary lymphoid organs, the germinal centres. During affinity 
maturation, B cells encounter numerous biological processes such as antigen presenta-
tion, proliferation, and differentiation. Natural selection selects B-cells with higher IG-
antigen affinities, which will proliferate and undergo clonal expansion, while those with 
lower affinity will be eliminated [3]. Affinity maturation produces a functionally hetero-
geneous population with different B cell lineages, each formed by the naive/unmutated B 
cell and its variants. Thus, the number of unique variant sequences and their respective 
abundances (genotypes) provide an important perspective on the ongoing evolutionary 
process and help elucidate clonal selection.

Understanding BCR repertoire evolution is necessary to answer fundamental biologi-
cal questions such as clonal selection during antigen challenges, immune senescence, 
development of efficient vaccines, therapeutic monoclonal antibodies, or further under-
standing of B cell tumour developments. Recently, an evolutionary approach was used 
to quantify dissimilarity between BCR repertoires of young and aged individuals after 
influenza vaccination [4]. Antibody evolutionary studies have also been used to guide 
the clonal reconstruction of BCR repertoires [5, 6].

Several studies have analysed B cell lineage trees to understand the evolutionary 
mechanisms involved in several diseases [7, 8]. In this later contribution, the authors 
showed that lineage trees are largely shaped by antigen-driven selection occurring 
during an immune response. Genetic evolution, such as observed during affinity mat-
uration, is often modelled through phylogenetic inference. This well-known method-
ology describes the evolution of related DNA or protein sequences in various species. 
Theoretically, phylogenetic inference methods could be used to build B cell lineage 
trees by replacing species with BCR IGH sequences (with different mutations). How-
ever, in a phylogenetic tree, the root is usually unknown, the observed sequences are 
usually represented only in the leaves, and the inner nodes represent the relationships 
among sequences. Conversely, in a B cell lineage tree, the root, the BCR IGH sequence 
of the unmutated B cell giving rise to the lineage, can be deduced by aligning the IG 
variable region sequences with sequences stored in a reference database [9]. This 
alignment allows identifying the germline V, (D) and J genes in the ancestor cell from 



Page 3 of 19Abdollahi et al. BMC Bioinformatics           (2023) 24:70 	

which the B-cell lineage derives [10]. Another distinct point is that B cells with differ-
ent BCR mutations can coexist; therefore, the observed BCR IGH sequences can be 
leaves or internal nodes in the tree [11, 12]. Due to simultaneous divergence, multi-
furcations are also common [13]. IG sequences are under intense selective pressure, 
and the neutral evolution assumption is invalid. Moreover, the context dependence of 
SHM violates the assumption that sites evolve independently and identically. Under 
these circumstances, conventional phylogenetic tree algorithms seem unsuitable for 
reconstructing B cell lineage trees. The performance of such methods varies substan-
tially in terms of the tree topology and the ancestral sequence, as shown previously 
[13, 14].

Some computational tools have been explicitly designed to build B-cell lineage trees. 
Igtree [15] employs the maximum parsimony criterion to find the minimal set of 
events that could justify the observed sequences. It first constructs a preliminary tree, 
which only contains observed sequences, then uses a combined score based mainly on 
sequence mutations to gradually add internal nodes (unobserved sequences). IgPhyML 
combines the maximum likelihood approach [16] with a codon substitution model that 
uses a Markov process to describe substitutions between codons [17]. IgPhyML has 
modified the codon substitution model to incorporate hot/cold-spot biases observed in 
BCR IGH sequences [18]. GCtree [19] employs the maximum parsimony principle and 
incorporates the cellular abundance of a given genotype in phylogenetic inference. This 
information is used for ranking parsimonious trees, obtained by dnapars [20] with the 
assumption that more abundant parents are more likely to generate mutant descend-
ants. GCtree uses a likelihood function based on the Galton-Watson Branching process 
[21]. It is an accurate method, but its computational complexity is high, especially for a 
high number of BCR IGH sequences. GLaMST [22] is another method for creating B cell 
lineage trees. It is based on a minimum spanning tree (MST) algorithm and it iteratively 
builds the lineage tree from the root to leaves by adding minimal edge costs. GLaMST is 
more time-efficient than GCtree, but it ignores genotype abundance information.

Here we propose ClonalTree, a method to build B cell lineage trees, combining 
MST and genotype abundances. ClonalTree is a multi-objective-based approach that 
first minimises edge costs and then maximises genotype abundances to infer maxi-
mum parsimony trees. Using simulated and experimental data, we demonstrate that 
ClonalTree outperforms GLaMST and achieves a comparable performance to GCtree. 
ClonalTree has however a lower time complexity and great potential for many appli-
cations, particularly in clinical settings where time constraint is essential.

Methods
In this section, we describe our approach, the data sets used in our experiments, and 
the metrics used to evaluate the performance of inferred trees.

Approach

ClonalTree reconstructs B cell lineage trees based on the minimum spanning tree (MST) 
and cellular (genotypes) abundances. We start with a formal description of the B-cell 
lineage tree reconstruction problem and minimum spanning tree algorithms. Next, we 
describe how we model the problem as a multi-objective optimisation by modifying the 



Page 4 of 19Abdollahi et al. BMC Bioinformatics           (2023) 24:70 

Prim’s algorithm [26] to incorporate genotype abundance information. Ultimately, we 
discuss how the BCR IGH sequence distance was computed, and show how trees can be 
improved by creating intermediate nodes that describe non-observed sequences or by 
performing editing operations.

Problem statement

Given a set of observed BCR IGH sequences with the same V(D)J rearrangement event 
and an inferred naive/unmutated BCR IGH sequence, we look for a minimum-sized 
directed tree structure, the B-cell lineage tree, which might represent the affinity matu-
ration process. Vertices (nodes) represent BCR IGH sequences, and the weight of edges 
connecting vertices represents the distance between sequences in terms of mutation, 
insertion, and deletion operations. All observed sequences are reachable from the root 
(the inferred naive/unmutated BCR IGH sequence).

Minimum spanning tree

Given a connected undirected graph (V, E), where V is a set of vertices, and E is the 
weight edges, its minimum spanning tree (MST) is a subset of vertices and edges that 
form a tree (a connected graph without cycles/loops) so that the sum of the weights of 
all the edges (the cost) is at minimum. For a given connected undirected graph, several 
MSTs can exist. All trees have similar costs, but their topologies are different. Most 
MST construction algorithms are greedy approaches [26, 27], where edges are sorted 
according to their weights and selected according to some criteria. In each step, greedy 
algorithms make a locally-optimal choice hoping that this choice will lead to a globally 
optimal solution.

Multi‑objective optimisation

To find the most parsimonious B-cell lineage tree, we model the problem as a multi-
objective optimisation problem. Thus, we have two objective functions: the first one 
minimises the sum of edge weights, while the second function maximises the genotype 
abundance. There are many methods to solve a multi-objective problem [28]; we used 
the hierarchical optimisation criteria [29], in which two or more objective functions are 
ranked from the most to the least important, and are optimised in this pre-established 
order. The first function can be modelled by some minimum spanning tree algorithm, 
such as Prim’s [26] or Kruskal’s [27]. Both are greedy approaches and present low time 
complexity. However, Prim’s algorithm runs faster than Kruskal’s in dense graphs [30]. 
Therefore, we modified Prim’s algorithm to incorporate the second objective function. 
We start at the root and add all its neighbours with minimum edge weight to a priority 
queue. We then iteratively extract from the priority queue the node with the lowest edge 
weight (the first objective function) and highest genotype abundance (the second objec-
tive function). If no cycle is formed, the node and the edge are added to the tree. For 
each added node, all its neighbours with minimum edge weights are included in the pri-
ority queue. We keep on adding nodes and edges until we cover all nodes. To decrease 
the time complexity of the algorithm, we add each node only once to the priority queue.

We highlight the fact that the original Prim’s algorithm has only one objective function, 
which minimises the sum of edge weights (cost). Here we included a second objective 



Page 5 of 19Abdollahi et al. BMC Bioinformatics           (2023) 24:70 	

function to maximise genotype abundance. If a set of edges have the same weight, we 
will choose the one that connects nodes with high abundance. Prim’s algorithm has a 
time complexity of O(|V |2) in the worst case but can be improved up to O(|E| + log |V |) 
when using data structures based on Fibonacci heaps [31]. Figure  1 shows a simple 
example of the tree construction process.

Measuring genotype abundances

A B cell lineage tree might represent the relationships between the unmutated ances-
tral BCR IGH sequence and its mutated descendants. Multiple copies of a given vari-
ant could indicate its importance in affinity maturation and clonal expansion processes. 
Thus, we used variant abundances (here called genotype abundance) to guide the B cell 
lineage tree reconstruction. A genotype can be defined differently and can represent a 
set of identical or similar sequences (some mutations are allowed). A common way of 
defining a BCR genotype is to group sequences with the same IGHV and IGHJ genes and 
identical complementarity determining region 3 (CDR3, the most variable part of the 
variable region) amino acid sequences. In both cases, the genotype abundance accounts 
for the number of such elements within a population of BCR IGH sequences.

Computing BCR IGH sequence distances

The reconstruction of B cell lineage trees requires a distance measurement between 
clonally-related sequences. This distance is usually used to weigh edges in the graph. 
Several works have used pairwise edit distances, such as Levenshtein [32]. However, its 
computation usually requires dynamic programming algorithms that become computa-
tionally expensive in time and memory when the number of sequences per lineage tree 
is large. Another weak point of pairwise distances is that they provide a local landscape 
without considering mutated regions across all the sequences. ClonalTree first performs 
a multiple sequence alignment to consider evolutionary events such as mutations, inser-
tions, and deletions over all clonally-related sequences. Next, it computes a normalised 

Fig. 1  ClonalTree construction example. We start with a connected weighted graph (a) where nodes 
represent BCR genotype sequences, edge weights their distances, and node weights their abundances. The 
graph can be fully connected, or one can disable edges whose weight is lower than a threshold δ . Then, we 
first place the inferred ancestral sequence (the root) (b) and iteratively add nodes to the tree with the lowest 
edge weight and highest genotype abundance (c, d); when edges have the same weight (e), we choose that 
connected to the node with the highest abundance (f), we repeat until all nodes were added to the tree (g), 
the final tree is shown in (h)



Page 6 of 19Abdollahi et al. BMC Bioinformatics           (2023) 24:70 

hamming distance [33] between each pair of genotype sequences and then uses it as the 
weight edge connecting two genotypes. In order to avoid a fully connected graph, we can 
apply a threshold δ , that will disable edges whose weight is lower than δ.

Editing the reconstructed lineage tree

A greedy algorithm makes the optimal choice at each step, attempting to find the opti-
mal way to solve the optimisation problem. It never reconsiders its choices, while opti-
mal algorithms always find the best solution. A way to review decisions and improve the 
ClonalTree algorithm is to edit the obtained lineage tree. Thus, we implemented two 
strategies: adding unobserved intermediate nodes to the tree and removing/restoring 
sub-trees.

Unobserved internal nodes might represent unobserved sequences that were not sam-
pled or disappeared during affinity maturation. In those cases, the evolutionary rela-
tionships were also lost. One way to recover them is to analyse the reconstructed tree 
to identify common ancestors not yet represented. This process is similar to building 
a phylogenetic tree among species, where unobserved internal nodes represent com-
mon ancestors of descendants. However, only leaves’ nodes are observed in a classical 
phylogenetic tree, and all internal nodes are unobserved. In contract, internal nodes can 
be observed or unobserved in a B cell lineage tree. When we detect a missing common 
ancestral in the tree, we add an unobserved internal node. It generally happens when we 
observe a distance between sister nodes that is smaller or equal to the distance for their 
parent, see nodes {d, e} in Additional file 1: Fig S3-A. To add unobserved internal nodes, 
we traverse the tree in a pre-order manner, and for each pair of sister nodes, we verify if 
a common ancestor is missing. If it is the case, we add an unobserved internal node in 
the tree, connect it to the observed nodes by direct edges Additional file 1: Fig S3-B, and 
update edge weights Additional file 1: Fig S3-C. For this later, let dpm and dpn be the edge 
weights connecting a pair of sister nodes m and n to their parent p, respectively. Let dmn 
be the distance between the sister nodes and i an unobserved internal node added to the 
tree. The edge weights are updated as follows:

We can detach a sub-tree from an internal node by removing its edge and reattach it to 
another internal node or leaf. We perform this editing operation to reduce the depth 
of the lineage tree by keeping the overall cost. Here, the motivation is to try to find the 
most parsimonious tree. We consider all branching nodes (i.e., nodes with more than 
one descendant) for this edition operation. Then, we try to detach and reattach each 
node (under edition condition) to any other node in the lineage tree. If this operation 
reduces the tree depth, we accept it and examine the resulting lineage tree again for 
additional edition operations that may further reduce the tree depth. We repeat this pro-
cess until no editing operation can reduce the depth of the tree (see an illustration in 
Additional file 1: Fig S4).

(1)
dpi = max(dpm − dmn, dpn − dmn, 1)

dim = dpm − dpi

din = dpn − dpi



Page 7 of 19Abdollahi et al. BMC Bioinformatics           (2023) 24:70 	

Data sets

We used two types of data sets to measure the ClonalTree performance and compare it 
with existing algorithms: simulated and experimental. GCtree simulator produced simu-
lated data [19], while one of two experimental data sets was created during routine diag-
nostic procedures of a patient with CLL at the Pitié Salpêtrière hospital (Paris-France), 
and the second one is a public data set [11]. In the former case, informed consent for use 
of the diagnostic sample for research purposes was obtained.

Simulated lineage trees

To create simulated lineage trees, we used the B cell lineage simulator provided by 
GCtree. The simulator produces a B cell lineage by randomly selecting IGHV, IGHD, and 
IGHJ germline genes from the IMGT database [9]. Then, nucleotide(s) can be added to 
or removed from the junction region: IGHV-IGHD and IGHD-IGHJ. Next, it performs 
a branching process, and point mutations can be included in the descendants. Somatic 
hypermutations are simulated by a sequence-dependent process, where mutations are 
preferentially introduced within specific hot-spot motifs [34]. We kept the simulator 
default parameters and generated 92 artificial lineage trees. The sizes of simulated trees 
ranged from 6 to 99 nodes, the number of observed sequences between 20 and 200, the 
degree of root nodes varied from 1 to 42, and depth trees from 2 to 7, see Table 1.

Experimental data

We used a public data set from a previously reported experiment [11], where the 
authors combined multiphoton microscopy and single-cell mRNA sequencing to 
obtain IGH sequences extracted from germinal B cells of a lineage sorted from the 
mouse germinal centre. The data set, labelled as TAS-42, contains 65 IGHV sequences 
and 42 genotypes. For this data set, a genotype is a group of identical sequences. The 
ancestor IGHV gene was inferred with Partis [35], and the final data set contains 66 
sequences: 65 from the original data set plus one representing the reconstructed ger-
mline sequence.

The second experimental data set was generated by sampling sequences from the most 
abundant clone of a BCR repertoire associated with a CLL patient. The data set con-
tains 3406 sequences, annotated with IGHV4-34*01/IGHD3-3*01/IGHJ4*02 genes using 
IMGT/HighV-QUEST software [24]. For this data set, a genotype groups identical BCR 
IGH sequences; we obtained 20 genotypes with different abundances. Thus, the data set 
was labelled as CLL-20. To predict the hypothetical unmutated ancestral sequence (the 
root of this lineage tree), we considered the germline sequences of the corresponding 
IGHV and IGHJ genes provided by IMGT/HighV-QUEST. For the junction, we took it 
from the sequence with the lowest number of mutations on the IGHV gene compared to 
the germline determined by IMGT/HighV-Quest. Eventually, we concatenated germline 
IGHV, the junction sequence, and the IGHJ sequences to obtain the hypothetical unmu-
tated sequence.



Page 8 of 19Abdollahi et al. BMC Bioinformatics           (2023) 24:70 

Tree comparison and evaluation

To evaluate the performance of B cell lineage reconstruction algorithms, we used two 
types of metrics to compare tree topologies (graph editing distances [23]) and ancestral 
sequence inferences (MRCA [13] and COAR [19]), explained in more details below.

Graph editing distance

Let G 1 and G 2 be two graphs; the Graph Editing Distance (GED) finds the minimum 
set of graph transformations able to transform G 1 into G 2 through edit operations on 
G 1 . A graph transformation is any operation that modifies the graph: insertion, deletion, 
and substitutions of vertices or edges. GED is similar to string edit distances such as 
Levenshtein distance [32] when we replace strings by connected directed acyclic graphs 
of maximum degree one. We used two versions of GED, one applied to the whole tree 
(GED tree-based) and another to each branch separately (GED path-based). The latter 
version is more stringent than the first one since any difference in the path from each 
leaf to the root is considered a transformation.

The problem of computing graph edit distance is NP-complete [36], and there is no 
optimal solution in a reasonable time. This problem is difficult to approximate, and most 
approximation algorithms have cubic computational time [37, 38]. Here we could use 
an optimal algorithm implementation since the number of nodes of evaluated trees was 
small. Nevertheless, we favoured a grid cluster to compute GED for trees with more than 
50 nodes.

Ancestral reconstruction distances

We also compared trees by measuring their ancestral sequence reconstruction agree-
ment. For that, we used two measures previously defined: The Most Recent Common 
Ancestor (MRCA) [13], and The Correctness Of Ancestral Reconstruction (COAR) [19]. 
The MRCA metric focuses on the most recent common ancestral, while COAR con-
siders the entire evolutionary pathway. Both measures emphasise the importance of a 
correct ancestral reconstruction and do not penalise minor differences in the tree topol-
ogies whether the ancestral reconstruction is accurate.

The classical MRCA distance is calculated by iterating through all pairs of leaves. It 
compares the most recent ancestral sequence of each pair of leaves presenting into two 
trees simultaneously - for instance, the ground truth (T1) and the inferred tree (T2) . 
Since internal nodes in the B cell lineage trees can also represent observed genotypes, 
we modified MRCA to consider all node pairs instead of leaves only. For a given pair of 
observed nodes i and j, where (i, j) ∈ T1 and (i, j) ∈ T2 , the MRCA(i, j) is the normalised 
hamming distance between the most recent ancestral sequences in T1 and T2 trees, given 
by:

where Si and Sj are the nucleotide sequences associated to nodes i and j, and Ham-
ming(Si, Sj) computes the hamming distance between Si and Sj . Then, the MRCA metric 
is obtained by:

(2)MRCA(i, j) =
Hamming(Si, Sj)

max(|Si|, |Sj|)



Page 9 of 19Abdollahi et al. BMC Bioinformatics           (2023) 24:70 	

where n is the number of observable nodes in T1 , or T2 , and Cn
2  gives the total number of 

node pairs; see an example in Additional file 1: Fig S5.
COAR [13] is another measure to evaluate the reconstruction of ancestral sequences. 

It compares evolutionary paths in the trees from the root (the unmmutated sequence) 
to any leaf. To compute it, we consider each leaf i ∈ T1 , find the path pi from i until the 
root, and compare it to all paths pj ∈ T2 that contain i. To compare paths and obtain 
COAR(i), we used the Needleman–Wunsch alignment algorithm [39] with a scoring 
matrix based on negative hamming distance and gap penalties. The COAR metric is the 
average of the COAR(i) of all leaves in T1:

where NL is the number of leaves in T1 , and COAR(i) is computed by the Additional 
file 2: Algorithm 1. See also, an example in Additional file 1: Fig S6.

The numeric values of MRCA and COAR range in the interval [0, 1], where 0 repre-
sents a perfect ancestral sequence reconstruction, and 1 is the worst case. To see more 
details of these distance calculations, please refer to [13] and [19].

Computational tools used for comparisons

There are only a few B cell lineage reconstruction softwares; some are not available for 
download [15], others are specific for Windows operating system [40], and others are 
very time consuming. Among the available methods, we selected two state-of-art tools 
to compare with ClonalTree: GCtree [19] and GLaMST [22]. GCtree is an exhaustive 
solution; it uses dnapars [20] to find a parsimony forest and then ranks parsimonious 
trees according to genotype abundance information. On the other hand, GLaMST [22] is 
a time-efficient algorithm that uses MST but does not consider genotype quantities. The 
authors have shown a higher performance of these tools in the respective publications, 
with GCTree outperforming IgPhyML [13], and GLaMST surpassing IgTree. Thus, we 
decided to keep only GCTree and GLaMST for evaluation and comparison.

Results
To reconstruct B-cell lineage trees, ClonalTree starts placing the root (the inferred 
ancestral sequence) and iteratively adds nodes presenting minimal edge cost and maxi-
mum genotype abundance; therefore, it optimises two multi-objective functions rather 
than a single one based only on edge costs as implemented in other approaches. We first 
validated our method with several artificial lineage trees that simulate the affinity matu-
ration process. Then, we used two data sets containing experimental B cell lineages for 
biological validations.

(3)MRCA(T1,T2) =
i,j MRCA(i, j)

Cn
2

(4)COAR(T1,T2) =

∑
i∈T1

COAR(i)

NL



Page 10 of 19Abdollahi et al. BMC Bioinformatics           (2023) 24:70 

Reconstructing B cell lineage trees from simulated data

To evaluate ClonalTree performance and compare it to GCtree and GLaMST, two state-
of-art tools (see “Computational tools used for comparisons” section), we generated 
simulated data sets using 92 different settings, varying the root gene sequence and the 
relative probabilities of mutation, insertion, and deletion (see “Simulated lineage trees” 
section, and Table 1). The simulated lineage trees served as ground truth that we would 
like to recover using B cell lineage tree algorithms. Thus, the performance measures how 
close reconstructed trees are to simulated ground truths. To quantify this resemblance, 
we computed different types of distances based on graph editing distances (GED) that 
measure the dissimilarity between two graphs/trees [23], and two previously defined dis-
tances related to the correctness of common ancestral inferences [13, 19]. We computed 
two types of GED distances, based on the entire tree (GED tree-based) and separated 
paths (GED path-based), see “Graph editing distance” section, and used MRCA [13] 
and COAR [19], to measure the correctness of ancestral reconstruction, see “Ancestral 
reconstruction distances” section.

ClonalTree parameter settings

We first varied ClonalTree parameters to determine the best configuration. ClonalTree 
has three Boolean parameters, ‘a’ considers genotype abundances, ‘r’ adds unobserved 
internal nodes when necessary, and ‘t’ tries to reduce the tree depth by performing 
attach/detach operations, see “Approach” section. Table 2 shows all possible variations 

Table 1  Statistics of simulated lineage trees

Min Mean Max Std

Tree depth 2 4 7 1

Degree of Root 1 11 42 9

Number of nodes 6 34 99 21

Number of leaves 5 25 82 16

Number of observed sequences 30 81 200 48

Table 2  Parameter setting evaluation

‘×’ indicates that the parameter was turned on, while an empty box indicates that it was turned off

Median* is the median without considering the outliers. ‘Correct paths’ reports the number of correct reconstructed paths 
(from leaf to root) in the tree, that is, when the GED path-based distance was zero

Parameters Performance metrics

a r t Median Median* Correct paths

× × × 3 2 41

× × 4 4 39

× × 4 4 35

× 4 4 34

× × 4 4 41

× 4 4 41

× 4 4 35

4 4 35



Page 11 of 19Abdollahi et al. BMC Bioinformatics           (2023) 24:70 	

for these parameters, where an ‘x’ indicates that the parameter was turned on, and an 
empty box indicates that it was turned off. To measure the performance of each configu-
ration, we computed the GED path-based distance between inferred and ground truth 
trees. GED path-based compares tree paths, from leaves to the root, being more sensi-
tive to topology changes and resulting in higher distance values than the GED tree-based 
ones. Thus, it is more appropriate to perform configuration comparisons. We measured 
the performance by the overall median, the median without outliers, and the number 
of correct paths (GED path-based equal to zero). ClonalTree produced the best results 
when all three parameters were turned on. We observed that when ‘a’ was turned on, ‘t’ 
played an important role; when it was turned off, the number of correct paths decreased. 
It is also interesting to note that when only the parameter ‘a’ was turned on, ClonalTree 
produced fewer outliers and the maximum GED path-based distance was 20; however, 
this configuration produced higher median values. Note that the original Prim’s algo-
rithm corresponds to the last row in Table 2 and the last box-plot in Additional file 1: Fig 

Fig. 2  Performance comparison between GCtree, ClonalTree, and GLaMST using GED distances. Box-plots in 
a present GED tree-based distances, while b display GED path-based ones



Page 12 of 19Abdollahi et al. BMC Bioinformatics           (2023) 24:70 

S1, when all parameters were turned off. This configuration achieved fewer outliers but 
produced higher medians and inferred fewer correct paths. Thus, we kept all parameters 
turned on for the rest of the computational experiments.

Comparison with state‑of‑art methods

We compared ClonalTree to two state-of-art tools, GCtree [19], based on an exhaustive 
approach that uses genotype abundance information to find the most parsimonious tree, 
and GLaMST [22], which uses a MST-based method that does not explore genotype 
quantities, see “Computational tools used for comparisons” section. Figure 2 shows box-
plots of GED distances for each compared method on the 92 simulated lineages trees. 
GCtree and ClonalTree had comparable performances, but ClonalTree outperformed 
GLaMST. Reconstructed B cell lineage trees of GCtree and ClonalTree displayed similar 
topologies, while trees produced by GLaMST were different. For GED tree-based dis-
tances (Fig. 2A), median values were 0, 2, and 12 and the highest distances 37, 38, and 
120 for GCtree, ClonalTree and GLaMST, respectively. GLaMST presented the highest 
median value and the highest distance. ClonalTree produced 39 correct trees (GED tree-
based distance equal to zero), while GLaMST produced only two.

Figure 2B, which displays GED path-based distances, confirms that GCtree and Clon-
alTree reconstructed B cell lineage trees with similar paths. Median values were 0, 3, 
and 18, with the highest distances 56, 58, and 180 for GCtree, ClonalTree, and GLaMST, 
respectively. As observed for GED tree-based, GLaMST presented the highest median 
value and distance. ClonalTree produced 41 correct paths (GED path-based distance 
equal to zero), while GLaMST produced only one path. In order to better evaluate 
the performance, we split the trees into three categories according to their number of 
sequences: small (between 30 and 50), medium (between 60 and 80), and large (hav-
ing more than 90 sequences), see Additional file 1: Fig S2. We observed a slight differ-
ence between GCtree and ClonalTree, mainly in the small and large groups, with worse 
results obtained in the medium group. On the other hand, we observed that GLaMST 
had difficulties in all groups; GED distances increased as the number of sequences grew.

The GED metric depends on the tree topologies, mainly the GED-based path that 
penalises each path difference. Therefore, it is also essential to estimate the accuracy of 
ancestral reconstructions without penalising minor differences in the tree topologies. 
For that, we used two metrics: the MRCA and the COAR, see “Ancestral reconstruction 
distances” section. MRCA distance focuses on the most recent common ancestor and 
does not consider the entire evolutionary lineage. On the other hand, COAR measures 
the correctness of ancestral reconstruction from the root to any leaf. We first compared 
ClonalTree and GLaMST to ground truth trees, and then both tools with GCtree. The 
latter comparison is important since it gives us a basis for evaluating these methods on 
experimental data sets, where the true lineage evolution is unknown. Figure  3 shows 
MRCA distance distributions for ClonalTree and GLaMST when compared to ground 
truth trees (A) or GCtree (B). For both plots, we observed better performance for Clon-
alTree, which could reconstruct recent ancestral relationships more accurately. Figure 4 
shows COAR distance distributions when comparing ClonalTree and GLaMST with 
ground truth trees (A) or with GCtree ones (B). Similarly, we observed that the trees 
produced by our approach are closer to both ground truth and GCtree trees.



Page 13 of 19Abdollahi et al. BMC Bioinformatics           (2023) 24:70 	

Biological validation using BCR sequencing data

We performed a biological validation on two experimental data sets: TAS-42 and CLL-
20 (see “Data sets” section). Since ground truth trees are unavailable for these samples, 
we compared the inferred trees of ClonalTree and GLaMST with the trees inferred by 
GCtree. We considered trees generated with GCtree as references for the experimental 
validation since such a tool achieved the best performance on simulated data sets.

The TAS-42 is a public data set generated by lineage tracing and single-cell germinal 
centre BCR sequencing [11]. TAS-42 contains 66 sequences, used as input for GCtree, 
GLaMST, and ClonalTree. The 2 nd and 3 rd columns of Table 3 show tree distances for 
ClonalTree and GLaMST when compared to GCtree, respectively. The GED tree-based 
distance was smaller for ClonalTree, producing a tree with ten differences from GCtree. 
GLaMST produced a more disparate tree than ClonalTree; Its GED tree-based distance 
was 47. GED path-based distances also showed that ClonalTree produced more similar 

Fig. 3  Most Recent Common Ancestor (MRCA) distance distributions. a compares ClonalTree, and GLaMST 
with ground truth trees, and b with trees generated by GCtree



Page 14 of 19Abdollahi et al. BMC Bioinformatics           (2023) 24:70 

evolutionary paths to GCtree than GLaMST. Only 22 evolutionary paths differ from 
GCtree against 230 for GLaMST. Most GLaMST paths contained various unobserved 
nodes, producing many mismatches compared to GCtree. We temporarily removed 
them to evaluate the tool’s performance. In the absence of unobserved nodes, Clon-
alTree presented just one mismatched path, while GLaMST produced seven. We also 
evaluated the agreement of ancestral sequence reconstructions. MRCA values were low 
for ClonalTree and GLaMST; both tools detected recent ancestral accurately for most 
node pairs. We did not observe a significant difference between MRCA values pre-
sented in Table 3. However, COAR distance values indicated that ClonalTree had better 
reconstructed entire evolutionary paths; we observed significantly lower COAR values 
for ClonalTree than GLaMST. Since ClonalTree achieved a lower GED path-based dis-
tance, it was expected to present lower COAR distances. COAR also considers sequence 

Fig. 4  Correctness Of Ancestral Reconstruction (COAR) distance distributions. a compares ClonalTree, and 
GLaMST with ground truth trees, while b with trees generated by GCtree



Page 15 of 19Abdollahi et al. BMC Bioinformatics           (2023) 24:70 	

dissimilarities as GED path-based distance rather than only differences in the paths. 
Both measures confirmed that ClonalTree produces trees that are closer to the GCtree 
ones.

The CLL-20 data set was obtained from the blood samples of a patient with CLL 
(Chronic lymphocytic leukaemia). We only analysed the most abundant clone, which 
contains 3406 sequences and 20 different genotypes. For these sequences, IMGT/HighV-
QUEST [24] inferred ancestor IGHV, IGHD, and IGHJ genes using germline sequences 
from the IMGT [9] database. The 4th and 5th columns of Table 3 show tree distances 
for ClonalTree and GLaMST, respectively. ClonalTree GED tree-based distance was the 
smallest among experimental data sets, showing that ClonalTree generated a tree with 
a very similar topology to the one generated with GCtree. Likewise, GED path-based 
distance was smaller for ClonalTree. GLaMST presented an extremely high GED path-
based distance; it added many unobserved nodes, causing several mismatches when 
comparing tree paths. We also evaluated tree path agreement without considering unob-
served nodes. ClonalTree presented only two different paths against 13 of GLaMST. 
As observed in the data set TAS-42, we noted a slight difference between ClonalTree 
and GLaMST MRCA values, indicating that both tools reconstructed the most recent 
ancestral properly. However, a notable difference was again observed in COAR, with the 
ClonalTree distance being smaller than the GLaMST one. This result is coherent with a 
better GED path-based distance since COAR accounts for the entire path from a leaf to 
the root.

These experimental results show that the trees generated by ClonalTree were closer 
to those obtained by GCtree; when compared to GLaMST, all distance metrics were 
smaller for ClonalTree, especially GED path-based and COAR distances. In summary, 
ClonalTree reconstructed whole evolutionary lineages more accurately than GLaMST.

Time complexity and running time

The time complexity of a phylogenetic reconstruction algorithm is a function that rep-
resents the computing time required to analyse an instance of the problem. Typically, 
it depends on the number of treated sequences n and possibly other parameters. The 
computational cost of algorithms that exhaustively explore the tree-generating space, 
producing eventually optimal solutions, increases considerably with input size. On the 
other hand, time-efficient approaches solve problems faster but can sacrifice accuracy, 
precision, or completeness. GCtree is an exhaustive approach that explores the entire 

Table 3  Performance evaluation of ClonalTree, and GLaMST on experimental BCR repertoire data 
sets.*GED path-based when removing unobserved nodes

Metric TAS-42 CLL-20

ClonalTree GLaMST ClonalTree GLaMST

GED tree-based 10 47 3 36

GED path-based 22 230 18 1616

GED path-based ∗ 1 7 2 13

MRCA * 10−4 5.16 5.7 6.4 7.5

COAR 0.02 0.54 0.11 0.78



Page 16 of 19Abdollahi et al. BMC Bioinformatics           (2023) 24:70 

tree-generating space to find the most parsimonious tree. It uses dnapars with O(n3 ) 
complexity to produce a forest of equally parsimonious trees. Then GCtree ranks the 
equally parsimonious trees through the abundance of genotypes. Although ranking par-
simony trees requires just a polynomial increase in the dnapars runtime, finding the 
parsimony forest is computationally demanding and restricted to analysing small-sized 
problems. MST-based algorithms are time-efficient; they are faster than GCtree because 
they construct a single tree instead of a forest. Their time complexity is determined by 
the MST algorithm’s complexity and the pairwise distance calculation. GLaMST and 
ClonalTree use Prim’s algorithm to grow the tree from the root node and interactively 
add edges and nodes (possibly unobserved). The time complexity of Prim’s algorithm 
is O(|E| + log |V |) , where |V | = n and E is the number of edges or connections among 
nodes. However, GLaMST computes pairwise edit distances using a dynamic program-
ming algorithm with time complexity around O(n2 ). Contrarily to GCtree and GLaMST, 
ClonalTree uses hamming distance since sequences are previously aligned with Clustal 
Omega [25]. Both alternatives decrease the ClonalTree time complexity substan-
tially. Hamming distance is computed in O(n), while multiple sequence alignment is in 
O(n ∗ (log(n))2).

In order to provide an estimation of running times of different tools, we choose three 
data sets with different properties: number of sequences and genotypes. Table 4 shows 
the execution times of each compared tool. Data set D1 corresponds to a simple simula-
tion, containing 30 sequences and six genotypes. D1 is the simplest case, and all tools 
took less than 1 second. D2 is a data set provided by GLaMST, containing 684 observed 
sequences and 541 different genotypes. GCtree took 118 hours, GLaMST spent 55 min-
utes, and ClonalTree took less than 15 minutes to reconstruct a lineage tree for this data 
set. D3 is the CLL-20 data set, containing 3406 sequences but just 20 genotypes. Clon-
alTree achieved the lowest execution time (less than 1 second), while GLaMST took 1.5 
seconds. GCtree needed 118 hours to produce a tree for the D3 data set. Although D3 
had more sequences than D2 , it contained fewer genotypes, which explains why execu-
tion times were lower for D3 , compared to D2.

Table 4  ClonalTree, GLaMST and GCtree running times on three data sets

Times were measured in (s)econds, (m)inutes, and (h)ours. Note that we used a pre-compiled version of GLaMST since we 
did not have Matlab software to recompile the source code

Data set Number of sequences Number of genotypes Tool Running time

D1 30 6 ClonalTree 0.006 (s)

GLaMST 0.035 (s)

GCtree 0.6 (s)

D2 685 541 ClonalTree 15 (m)

GLaMST 55 (m)

GCtree 100 (h)

D3 3406 20 ClonalTree 0.032 (s)

GLaMST 1.5 (s)

GCtree 118 (h)



Page 17 of 19Abdollahi et al. BMC Bioinformatics           (2023) 24:70 	

Discussion
We have explored 92 simulated B cell lineage trees, ranging in trees’ depths, degrees of 
roots, number of nodes and leaves, and number of observed sequences, among other 
tree properties. Our simulations showed that ClonalTree reconstructed accurate trees, 
preserving the correctness of ancestral reconstruction, compared to ground truth trees. 
Our approach outperformed GLaMST, a method based only on the minimum span-
ning tree; ClonalTree systematically produced more maximum parsimonious trees than 
GLaMST. Compared to GCtree, an exhaustive sequence-based phylogenetic method, 
ClonalTree presented a comparable performance in most cases, and we observed 
few differences in the obtained trees. We also evaluated ClonalTree on experimental 
BCR sequencing data. As observed on simulated data sets, ClonalTree outperformed 
GLaMST, producing trees closer to GCtree. Our approach obtained similar tree topolo-
gies for both experimental data sets, with minor errors in ancestral reconstructions.

ClonalTree is time efficient, showing the lowest time complexity among the compared 
tools. Its computational efficiency is directly linked to the algorithms choices and pro-
gramming language. ClonalTree employs multiple sequence alignments, which are 
faster to compute and preserve important evolutionary properties that would otherwise 
be lost when using pairwise sequence comparison. Moreover, it is coded in python and 
uses freely available libraries/software, without any operating system requirement, and is 
available for scientific community usage. On the other hand, GLaMST is coded in Matlab, 
a proprietary programming language, and only an executable for Windows is available for 
users that do not possess a Matlab licence, limiting its usage by the scientific community. 
Due to its ability to process a high number of sequences within a reasonable amount of 
time, it is particularly adapted to large datasets obtained by high-throughput repertoire 
sequencing. ClonalTree may have a great potential for studying the dynamics of immune 
responses in various disease conditions, such as chronic infectious diseases, autoimmune 
diseases and lymphoid malignancies. It can compare trees generated in these situations to 
those generated in normal immune response dynamics. Moreover, it can help understand 
B-cell clonal lineage evolution by comparing trees of a specific B-cell lineage at different 
time points, for example, before and after vaccination or treatment.

However, ClonalTree has some limitations; for instance, it does not consider hot spot 
mutated positions to define a distance between sequences; in the current version, all 
positions have the same weight. Moreover, it considers only nucleotide sequences as 
input and does not provide tree visualisations. Future work will address these limitations 
to provide a more flexible and user-friendly tool.

Conclusion
We addressed the computational problem of reconstructing lineage trees from high-
throughput BCR sequencing data. It is challenging since this data often contains a sub-
set of BCR IGH sequences, partially representing the dynamic process of BCR affinity 
maturation. Therefore, efficient algorithms must reconstruct the entire evolutionary 
events from partially observed sequences. Here we propos ClonalTree, a fast method that 
combines minimum spanning trees with genotype abundance information to reconstruct 
accurate evolutionary trees. ClonalTree outperformed MST-based methods on simulated 
and experimental data, and presented similar performances, mainly on experimental 



Page 18 of 19Abdollahi et al. BMC Bioinformatics           (2023) 24:70 

data, compared to exhaustive and time-consuming methods such as GCtree. However, 
ClonalTree is computationally more efficient, presenting a lower time complexity. It was 
hundreds to thousands of times faster than GCtree, allowing the analysis of large data sets 
within minutes or seconds and with minor loss of accuracy. ClonalTree’s high and fast 
performance allows the users to consider all the available genotypes when reconstruct-
ing lineage trees. It can help researchers understand B cell receptor affinity maturation, 
mainly when data from a dense quantitative sampling of diversifying loci are available. 
Integrating ClonalTree into existing BCR sequencing analysis frameworks could speed 
up lineage tree reconstructions without compromising the quality of evolutionary trees.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​022-​05112-z.

Additional file 1: Fig. S1. ClonalTree configuration performance; Fig. S2. Performance comparison among GCtree, 
ClonalTree, and GLaMST using GED distances on three categories of trees; Fig. S3. Editing the reconstructed B cell 
lineage tree by adding unobserved internal nodes; Fig. S4. Editing the reconstructed BCR lineage tree to reduce the 
depth of the tree while keeping its overall cost; Fig. S5. An example of MRCA calculation; Fig. S6. An example of 
COAR calculation for a given leaf.

Additional file 2. COAR algorithm.

Acknowledgements
The authors are grateful to Thibaud Verny for his insightful comments and fruitful discussion. We also acknowledge the 
anonymous reviewers that contributed to improving the manuscript and the method.

Author contributions
JSB and FD designed the project. NA and JSB developed the tool. NA and ADS collected data, and produced simu-
lated benchmarks. JSB, LJ and ADS tested and evaluated the method. JSB wrote the manuscript. All authors read and 
approved the final manuscript.

Funding
This work has been supported by “2016 Programme Doctoral de Cancérologie” from Sorbonne University, and SIRIC 
CURAMUS (Cancer United Research Associating Medicine, University and Society, INCA-DGOS-Inserm_12560) and by an 
ERA-NET TRANSCAN-2/French National Cancer Institute grant (NOVEL consortium).

Availability of data and materials
The data supporting this work’s findings can be found at https://​github.​com/​matse​ngrp/​GCtree/​tree/​master/​examp​le 
and https://​github.​com/​julib​inho/​Clona​lTree/​tree/​main/​Data. The source code and install instructions are available at 
https://​github.​com/​julib​inho/​Clona​lTree/.

Declarations

Ethics approval and consent to participate
Informed consent for use of the patients samples for research purposes was obtained.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 5 October 2022   Accepted: 13 December 2022

References
	1.	 Bassing CH, Swat W, Alt FW. The mechanism and regulation of chromosomal v (d) j recombination. Cell. 

2002;109(2):45–55.
	2.	 Tonegawa S. Somatic generation of antibody diversity. Nature. 1983;302(5909):575–81.
	3.	 Victora GD, Nussenzweig MC. Germinal centers. Annu Rev Immunol. 2012;30:429–57.
	4.	 de Bourcy CF, Angel CJL, Vollmers C, Dekker CL, Davis MM, Quake SR. Phylogenetic analysis of the human 

antibody repertoire reveals quantitative signatures of immune senescence and aging. Proc Natl Acad Sci. 
2017;114(5):1105–10.

	5.	 Safonova Y, Pevzner PA. Igevolution: clonal analysis of antibody repertoires. bioRxiv, 2019;725424

https://doi.org/10.1186/s12859-022-05112-z
https://github.com/matsengrp/GCtree/tree/master/example
https://github.com/julibinho/ClonalTree/tree/main/Data
https://github.com/julibinho/ClonalTree/


Page 19 of 19Abdollahi et al. BMC Bioinformatics           (2023) 24:70 	

	6.	 Lee DW, Khavrutskii IV, Wallqvist A, Bavari S, Cooper CL, Chaudhury S. Brilia: integrated tool for high-throughput 
annotation and lineage tree assembly of b-cell repertoires. Front Immunol. 2017;7:681.

	7.	 Greaves M, Maley CC. Clonal evolution in cancer. Nature. 2012;481(7381):306–13.
	8.	 Hoehn KB, Fowler A, Lunter G, Pybus OG. The diversity and molecular evolution of b-cell receptors during infection. 

Mol Biol Evol. 2016;33(5):1147–57.
	9.	 Giudicelli V, Chaume D, Lefranc M-P. IMGT/GENE-DB: a comprehensive database for human and mouse immuno-

globulin and T cell receptor genes. Nucleic Acids Res. 2004;33(Database issue):256–61.
	10.	 Alamyar E, Duroux P, Lefranc M-P, Giudicelli V. Imgt® tools for the nucleotide analysis of immunoglobulin (ig) and t 

cell receptor (tr) v-(d)-j repertoires, polymorphisms, and ig mutations: Imgt/v-quest and imgt/highv-quest for ngs. 
In: Immunogenetics. Springer, p. 569–604 (2012)

	11.	 Tas JM, Mesin L, Pasqual G, Targ S, Jacobsen JT, Mano YM, Chen CS, Weill J-C, Reynaud C-A, Browne EP. Visualizing 
antibody affinity maturation in germinal centers. Science. 2016;351(6277):1048–54.

	12.	 Kuraoka M, Schmidt AG, Nojima T, Feng F, Watanabe A, Kitamura D, Harrison SC, Kepler TB, Kelsoe G. Complex anti-
gens drive permissive clonal selection in germinal centers. Immunity. 2016;44(3):542–52.

	13.	 Davidsen K, Matsen FA IV. Benchmarking tree and ancestral sequence inference for b cell receptor sequences. Front 
Immunol. 2018;9:2451.

	14.	 Yermanos A, Greiff V, Krautler NJ, Menzel U, Dounas A, Miho E, Oxenius A, Stadler T, Reddy ST. Comparison of 
methods for phylogenetic b-cell lineage inference using time-resolved antibody repertoire simulations (absim). 
Bioinformatics. 2017;33(24):3938–46.

	15.	 Barak M, Zuckerman NS, Edelman H, Unger R, Mehr R. Igtree: creating immunoglobulin variable region gene lineage 
trees. J Immunol Methods. 2008;338(1–2):67–74.

	16.	 Felsenstein J. Evolutionary trees from dna sequences: a maximum likelihood approach. J Mol Evol. 
1981;17(6):368–76.

	17.	 Liò P, Goldman N. Models of molecular evolution and phylogeny. Genome Res. 1998;8(12):1233–44.
	18.	 Hoehn KB, Lunter G, Pybus OG. A phylogenetic codon substitution model for antibody lineages. Genetics. 

2017;206(1):417–27.
	19.	 DeWitt WS III, Mesin L, Victora GD, Minin VN, Matsen FA IV. Using genotype abundance to improve phylogenetic 

inference. Mol Biol Evol. 2018;35(5):1253–65.
	20.	 Felsenstein J. PHYLIP (phylogeny Inference Package), Version 3.5 C. Joseph Felsenstein (1993)
	21.	 Harris TE. The theory of branching process (1964)
	22.	 Yang X, Tipton CM, Woodruff MC, Zhou E, Lee FE-H, Sanz I, Qiu P. Glamst: Grow lineages along minimum spanning 

tree for b cell receptor sequencing data. BMC Genomics. 2020;21(9):1–11.
	23.	 Sanfeliu A, Sanfeliu A, Fu KS. A distance measure between attributed relational graphs for pattern recognition. IEEE 

Trans Syst Man Cybern. 1983;SMC–13(3):353–62.
	24.	 Lefranc M-P, Duroux P, Li S, Giudicelli V, Alamyar E. IMGT/highv-quest: the IMGT web portal for immunoglobulin 

(ig) or antibody and t cell receptor (tr) analysis from ngs high throughput and deep sequencing. Immunome Res 
2012;08(01).

	25.	 Sievers F, Higgins DG. Clustal omega, accurate alignment of very large numbers of sequences. In: Multiple Sequence 
Alignment Methods. Springer, p. 105–116 (2014)

	26.	 Prim R. Shortest connection networks and some generalizations. Bell Syst Tech J. 1957;36(6):1389–401.
	27.	 Kruskal JB. On the shortest spanning subtree of a graph and the traveling salesman problem. Proc Am Math Soc. 

1956;7(1):48–50.
	28.	 Marler RT, Arora JS. Survey of multi-objective optimization methods for engineering. Struct Multidiscipl Optim. 

2004;26(6):369–95.
	29.	 Waltz F. An engineering approach: hierarchical optimization criteria. IEEE Trans Autom Control. 1967;12(2):179–80.
	30.	 Huang F, Gao P, Wang Y. Comparison of prim and Kruskal on shanghai and Shenzhen 300 index hierarchical struc-

ture tree. In: 2009 International Conference on Web Information Systems and Mining (2009). p. 237–241.
	31.	 Fredman ML. Fibonacci Heaps and Their Uses in Improved Network Optimization Algorithms. Technical Report 3.
	32.	 Levenshtein VI. Binary codes capable of correcting deletions, insertions, and reversals. Sov Phys Doklady. 

1966;10:707–10.
	33.	 Hamming RW. Error detecting and error correcting codes. Bell Syst Tech J. 1950;29(2):147–60.
	34.	 Yaari G, Vander Heiden J, Uduman M, Gadala-Maria D, Gupta N, Stern JN, O’Connor K, Hafler D, Laserson U, Vigneault 

F. Models of somatic hypermutation targeting and substitution based on synonymous mutations from high-
throughput immunoglobulin sequencing data. Front Immunol. 2013;4:358.

	35.	 Ralph DK, Matsen FA IV. Likelihood-based inference of b cell clonal families. PLoS Comput Biol. 2016;12(10):1005086.
	36.	 Garey MR, Johnson DS. Computers and intractability: a guide to the theory of NP-completeness. Mathematical Sci-

ences Series. W.H. Freeman (1979)
	37.	 Neuhaus M, Bunke H. Bridging the gap between graph edit distance and kernel machines. Series in machine per-

ception and artificial intelligence. Singapore: World Scientific; 2007.
	38.	 Riesen K. Structural pattern recognition with graph edit distance: approximation algorithms and applications. 

Advances in Computer Vision and Pattern Recognition. Springer (2016)
	39.	 Needleman SB, Wunsch CD. A general method applicable to the search for similarities in the amino acid sequence 

of two proteins. J Mol Biol. 1970;48(3):443–53.
	40.	 Kepler TB. Reconstructing a b-cell clonal lineage. i. statistical inference of unobserved ancestors. F1000Research 

2013;2.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


	Reconstructing B cell lineage trees with minimum spanning tree and genotype abundances
	Abstract 
	Background
	Methods
	Approach
	Problem statement
	Minimum spanning tree
	Multi-objective optimisation
	Measuring genotype abundances
	Computing BCR IGH sequence distances
	Editing the reconstructed lineage tree

	Data sets
	Simulated lineage trees
	Experimental data

	Tree comparison and evaluation
	Graph editing distance
	Ancestral reconstruction distances
	Computational tools used for comparisons


	Results
	Reconstructing B cell lineage trees from simulated data
	ClonalTree parameter settings
	Comparison with state-of-art methods

	Biological validation using BCR sequencing data
	Time complexity and running time

	Discussion
	Conclusion
	Acknowledgements
	References


