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Abstract

Background: Machine learning (ML) is a promising approach to personalize atrial fibrillation 

(AF) management strategies for patients after catheter ablation. Prior AF ablation outcome 

prediction studies applied classical ML methods to hand-crafted clinical scores, and none have 

leveraged intracardiac electrograms (EGM) or 12-lead surface electrocardiograms (ECG) for 

outcome prediction. We hypothesized that (a) ML models trained on EGM or ECG signals can 

perform better at predicting patient outcomes after AF ablation than existing clinical scores and 

(b) multimodal fusion of EGM, ECG, and clinical features can further improve the prediction of 

patient outcomes.

Methods: Consecutive patients who underwent catheter ablation between 2015–2017 with 

panoramic left atrial EGM prior to ablation and clinical follow-up for at least one year following 

ablation were included. Convolutional neural networks (CNN) and a novel multimodal fusion 

framework were developed for predicting 1-year AF recurrence after catheter ablation from EGM, 

ECG signals, and clinical features. The models were trained and validated using 10-fold cross-

validation on patient-level splits.

Results: 156 patients (64.5±10.5 years, 74% male, 42% paroxysmal) were analyzed. Using EGM 

signals alone, the CNN achieved an Area Under the Receiver Operating Characteristics Curve 
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(AUROC) of 0.731, outperforming the existing APPLE scores (AUROC=0.644) and CHA2DS2-

VASc scores (AUROC=0.650). Similarly using 12-lead ECG alone, the CNN achieved an AUROC 

of 0.767. Combining EGM, ECG, and clinical features, the fusion model achieved an AUROC of 

0.859, outperforming single and dual modality models.

Conclusions: Deep neural networks trained on EGM or ECG signals improved the prediction 

of catheter ablation outcome compared to existing clinical scores, and fusion of EGM, ECG, and 

clinical features further improved the prediction. This suggests the promise of using ML to help 

treatment planning for patients after catheter ablation.
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Introduction

Atrial fibrillation (AF) ablation is the cornerstone of therapy for symptomatic AF, and it 

helps improve quality of life and prolongs survival in several populations1,2. Improved tools 

for predicting the success of AF catheter ablation are needed to guide clinicians in better 

patient selection for this procedure, as well as setting realistic patient expectations following 

the procedure.

Clinical scores have been developed to predict success after catheter ablation of AF with 

Area Under the Receiver Operating Characteristics Curve (AUROC) of 0.55–0.65 for 

majority of the models, with rare models reaching an AUROC of 0.753–5. However, none 

of these previous predictive scores have incorporated electrophysiological data, which may 

place specific AF mechanisms within the clinical context to improve predictive accuracy.

We hypothesized that (a) machine learning (ML) models trained on intracardiac 

electrograms (EGM) or surface electrocardiograms (ECG) signals can perform better at 

predicting patient outcomes after AF ablation (i.e., 1-year AF recurrence) compared to 

existing clinical scores and (b) multimodal fusion of EGM, ECG, and clinical features can 

further improve the prediction of patient outcomes.
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Although there are no prior ML-based studies that directly take signals as inputs to predict 

AF ablation outcomes, recent advances in the use of ML in signal analysis of human rhythm 

disorders have led to promising preliminary results. For example, ML models were able 

to predict future ventricular arrhythmia from ventricular signals6. Prior works using ML 

to predict success of AF ablation includes estimation of recurrence by predicting shape 

descriptors directly from magnetic resonance imaging (MRI)7 and combining imaging and 

clinical biomarkers to predict cryoballoon pulmonary vein isolation (PVI) outcomes8. ML 

methods and personalized computational modeling have also been used together to predict 

recurrence following PVI9. In addition, handcrafted features derived from computerized 

tomography (CT) scans have been shown to be associated with likelihood of post-ablation 

AF recurrence10.

Deep neural networks (DNNs) are the state-of-the-art ML models that are able to 

learn complex features directly from large amounts of data without the need of feature 

engineering11. DNNs have shown promising empirical successes across a wide variety 

of medical domains12. Unlike previous works using classical ML models8–10, we aim to 

develop and validate (a) a deep neural network for post-ablation AF recurrence prediction 

from signals (EGM and ECG) and (b) a multimodal fusion framework that leverages the 

three modalities––EGM, ECG, and patients’ clinical features––to further improve the model 

performance (Figure 1A).

Methods

The data that support the findings of this study are available from the corresponding author 

upon reasonable request.

Subject recruitment

This is a retrospective analysis of consecutive adult patients with paroxysmal or persistent 

AF who underwent catheter ablation between 2015–2017 at a tertiary referral center by 5 

providers. To be included, patients were required to have panoramic left atrial electrograms 

recorded prior to ablation and clinical follow-up for at least 12 months following ablation for 

accurate assessment of their AF ablation procedure outcomes. All patients had pulmonary 

vein isolation as a part of the AF ablation procedure; additional ablation lesions per the 

operating physicians’ discretion were allowed. This comprised of ablation of localized AF 

sources via focal impulse and rotor mapping (FIRM, in 100% of patients), ablation of left 

atrial linear lesions (in 24% of patients) and cavotricuspid isthmus (CTI) ablation (in 27% of 

patients).

Clinical and demographic data were obtained from electronic medical records. 12-lead 

ECGs in sinus rhythm obtained within 1 year of the ablation procedure were included. 

Patients with no 12-lead ECG available (n=3) were excluded from the ECG-only model, 

and were imputed with the means of the other patients’ ECG features in the fusion models. 

This study protocol was approved by the Institutional Review Board of Stanford University. 

Due to the retrospective nature of the study, no informed consent was required. The 

corresponding author had full access to all the data in the study and took responsibility 

for its integrity and the data analysis.
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Ablation procedure and clinical follow-up

All procedures were performed under general anesthesia. Various ablation catheters were 

used to achieve PVI which included point-by-point radiofrequency ablation with a contact 

force sensing 3.5mm tip irrigated catheter (Biosense Webster; Abbott) or cryoballoon 

(Arctic Front™, Medtronic). Unipolar panoramic intracardiac signals used for ML analysis 

were obtained prior to any ablation with a 64-pole basket catheter (FIRMap catheter, 

Abbott) during atrial fibrillation. If patients presented to the electrophysiology laboratory 

in normal sinus rhythm, AF was induced with burst pacing.

Patients were followed up routinely in the outpatient setting, and all had 3 month evaluations 

for at least 1 year, that included rhythm assessment with 12-lead ECGs at 3 and 6 months 

and a 14-day event monitor at 1 year. AF recurrence was defined as >30 second duration 

episodes on ECG monitoring, or >1% AF burden on device interrogation for the patients 

with implantable monitors. In this study, we focus on the outcome of whether a patient has 

recurrent AF within one year after catheter ablation.

Demographic and clinical features

The demographic variables extracted from electronic health records included patients’ 

age at the time of ablation, sex, height, weight, body mass index (BMI), race and 

ethnicity. Clinical comorbidities such as presence of hypertension (HTN), hyperlipidemia 

(HLD), transient ischemic attack (TIA), stroke (CVA), coronary artery disease (CAD), 

diabetes mellitus (DM), chronic kidney disease (CKD), congestive heart failure (CHF), and 

obstructive sleep apnea (OSA) were collected. Arrhythmia characteristics such as type of 

AF (paroxysmal, persistent or long standing persistent), and history of prior AF ablation 

were recorded. Structural features extracted from imaging studies included left ventricular 

ejection fraction (LVEF) and left atrial diameter (LAd) from transthoracic echocardiograms; 

and left atrial volume, surface area and sphericity index from computed tomography (CT) 

scans that were routinely obtained within 1 year prior to AF ablation. These variables 

were selected based on the literature on known factors which could impact AF ablation 

outcomes3–5,8,13–16. A complete list of clinical features and number of missing values is 

shown in Supplemental Table I. Missing values were imputed with the most frequent value 

of the feature. Supplemental Table II shows model performance with different missing value 

imputation techniques and Supplemental Table III shows model performance in patients 

without missing values.

Modeling clinical features for AF recurrence prediction

As a baseline method, we built a classifier for predicting 1-year AF recurrence from 

demographic and clinical features. For each patient, a multi-dimensional feature vector was 

constructed from the clinical and demographic features, where continuous variables were 

normalized to have zero mean and unit variance and categorical variables were one-hot 

encoded. We used the categorical boosting (CatBoost) classifier17, a state-of-the-art, gradient 

boosted decision tree-based ML algorithm, for AF recurrence prediction. Briefly, CatBoost 

sequentially builds many weak learners (i.e. decision trees) and creates a strong predictive 

model by greedy search and ensembling. We chose CatBoost because it has been shown to 
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outperform other gradient boosted decision tree-based algorithms and naturally handles both 

continuous and categorical variables17.

Preprocessing of EGM and ECG signals

In each patient, unipolar left atrial intracardiac electrograms (EGM) were recorded during 

atrial fibrillation. Unipolar signals were recorded from a 64-pole basket catheter positioned 

in the mid left atrium (LA) prior to any ablation were exported. Preprocessing of EGM 

signals included QRS subtraction and resampling to 200 Hz. See Supplemental Methods for 

details.

Preprocessing of ECG signals included a bandpass filtering of 0.05–100 Hz and resampling 

to 200 Hz. Eight independent ECG channels were used (channels I, II, and V1–6) as any 

linear dependency can be naturally learned by deep neural networks (i.e. channel III can be 

derived vectorially from channels I and II).

Each EGM and ECG signal was augmented by dividing into 5-sec windows with a 4-sec 

overlap between consecutive windows, resulting in a 1000x64 matrix for each input EGM 

data point and a 1000x8 matrix for each input ECG data point.

Modeling EGM and ECG signals for AF recurrence prediction

We developed a convolutional neural network (CNN) for predicting 1-year AF recurrence 

from EGM or ECG signals.

Similar to Attia et al.14, our CNN consisted of several layers of bottleneck blocks with 

1-dimensional (1D) convolutions operating on the time dimension, followed by a 1D 

convolutional layer operating on the channel dimension. Intuitively, the time-dimension 

convolutional layers capture the temporal dependency in the signal by extracting features 

from signals within one channel, whereas the final channel-dimension convolutional layer 

aggregates the features across channels to obtain a spatial representation of the signal. 

Details of the CNN can be found in Supplemental Methods and Supplemental Figure I.

Fusion model for AF recurrence prediction

Finally, we developed a multimodal fusion framework that leverages more than one modality 

to improve the prediction of AF recurrence (Figure 1B).

First, EGM features were extracted from the CNN that was trained on EGM signals only. All 

the features from the EGM signals from the same patient were averaged to obtain a single 

EGM feature representation for each patient. ECG features for each patient were extracted 

in a similar way. Next, for each patient, the feature vectors of the fused modalities (i.e. 

EGM features, ECG features, and clinical features) were concatenated to form a multimodal 

feature vector. Lastly, a classifier was trained on the patients’ multimodal feature vectors for 

predicting 1-year AF recurrence. As a fair comparison to clinical feature-based models, we 

also applied the CatBoost17 classifier in the fusion framework.
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As ablation experiments, we also validated fusion of two modalities (i.e. EGM and clinical 

features, ECG and clinical features, or EGM and ECG features) and compared the results to 

fusion of three modalities (EGM, ECG, and clinical features).

Model training and validation

Stratified 10-fold cross-validation (patient-wise split) was used to train and validate each of 

the models described above. Specifically, all patients were randomly divided into 10 groups 

(i.e., folds) with the same proportion of AF recurrence in each fold (i.e., stratified 10-fold). 

At the i-th cross-validation step, the i-th fold was used to test the model and the remaining 9 

folds were used to train the model. This above process was repeated 10 times, such that each 

patient only appeared in one of the test folds.

To mitigate overfitting, data augmentation was applied during training. We designed five 

data augmentation methods using electrophysiology domain knowledge: (a) randomly shift 

(forward or backward in time) each 5-sec window by up to 2.5-sec, (b) randomly scale 

the raw signal by a factor within range 0.5 to 2, (c) randomly shift the DC value within 

range −10 to 10 microvolts, (d) randomly masking with zeros for up to 25% of the 5-sec 

window, (e) randomly add Gaussian noise with zero mean and a standard deviation < 0.2. 

Importantly, these data augmentations did not result in invalid signals but naturally increased 

the variability of the training data, which could mitigate overfitting of deep neural networks.

Training for the CNNs on EGM and ECG signals was accomplished using the Adam 

optimizer18 in PyTorch on a single NVIDIA P100 GPU. For CNNs, we followed the 

same model architecture configuration as that in Attia et al. 14 (except for reducing the 

number of bottleneck blocks from 9 to 6 in ECG-based CNN) and did not tune the model 

hyperparameters. Training for CatBoost was done using the CatBoost Python package17, 

and CatBoost hyperparameters were tuned using grid search (see Supplemental Methods 

for details). All models were trained to optimize AUROC. We assessed the model’s ability 

to predict 1-year AF recurrence using AUROC, sensitivity, specificity, accuracy, and F1-

scores. To derive sensitivity, specificity, accuracy, and F1-scores, a probability threshold was 

selected based on the highest F1-score on the 10 fold test sets.

Statistical analysis

For population characteristics, continuous data are reported as mean ± standard deviation, 

unless otherwise stated, and are tested for normality using the Shapiro-Wilk test (p > 0.05). 

Independent-samples t-test and Mann-Whitney U test were run to determine if there were 

differences in mean values between cohorts for analysis of continuous data. Categorical 

variables were compared using the Pearson chi-square test or Fisher’s exact test where 

expected frequencies were less than 5. For model evaluation, we report the mean and 

standard deviation of AUROC, sensitivity, specificity, accuracy, and F1-scores of the 10 

fold test results. In addition, we measure the calibration of the models using Brier score19 

and expected calibration error (ECE)20. Briefly, the Brier score measures the mean squared 

difference between the predicted probability assigned to the possible label and the actual 

label. The ECE approximates the expectation between model confidence and accuracy by 

binning the predictions into equally-spaced bins and taking a weighted average of the bin’s 
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accuracy and confidence difference. For both Brier score and ECE, lower values indicate 

better calibrated models. A statistical significance threshold (α) of 0.05 was used for all the 

reported tests.

Results

Overall summary

Between 2015–2017, 226 consecutive AF ablations were done using a 64-pole basket 

catheter that recorded simultaneous panoramic unipolar electrograms from the left and 

the right atria. Of these, 161 had left atrial signals recorded prior to any ablation. Five 

were excluded due to poor signal quality, leaving 156 patients to be analyzed for this 

study. Baseline characteristics of these patients are shown in Table 1. PVI was done using 

radiofrequency in 118 patients (76%), cryoballoon in 38 patients (24%). 34 patients (21.8%) 

were on an antiarrhythmic drugs (AAD) at the time of follow up (10.2% on class IC 

agents, 3.9% on class III agents (sotalol or dofetilide), 8.3% on amiodarone and 1.9% on 

dronedarone). Additional ablation lesions beyond PVI and ablation of localized sources are 

presented in Table 1.

Catheter ablation outcomes

On follow-up at 1 year, 112 (72%) patients remained free of atrial fibrillation. Patients with 

and without recurrence had a similar age, BMI and comorbidities (Table 1). AAD use was 

not different among groups. 28% of the patients had a prior history of AF ablation. Presence 

of hyperlipidemia and diabetes mellitus correlated with AF recurrence (p=0.04) in univariate 

analysis. Ablation of additional left atrial lines did not correlate with AF ablation outcomes.

Validation of existing AF ablation outcome prediction scores: APPLE and CHA2DS2-VaSC

First, we validated two existing clinical feature-based prediction scores, APPLE3 and 

CHA2DS2-VaSC4, for 1-year AF recurrence prediction using CatBoost17. Detailed 

formulation of APPLE and CHA2DS2-VaSC scores can be found in Supplemental Methods.

The CatBoost classifier achieved an AUROC of 0.644 (SD=0.129) on APPLE scores and an 

AUROC of 0.650 (SD=0.133) on CHA2DS2-VASc scores (Table 2, 1st–2nd rows).

ML-based AF recurrence prediction from clinical features

Using clinical features, the CatBoost classifier achieved an AUROC of 0.755 (SD=0.093; 

Table 2, 3rd row), outperforming the performance of the CatBoost classifier trained on 

APPLE and CHA2DS2-VASc scores. This performance improvement is expected given that 

multiple clinical features were used, whereas APPLE and CHA2DS2-VASc scores only 

accounted for five and seven clinical features, respectively.

Figure 2 shows the model interpretation of the clinical features that contribute the most to 

AF recurrence prediction in our clinical feature-based model, where the five most important 

features are LVEF, height, body mass index (BMI), weight, left atria volume from CT, and 

left atria surface area; which have previously been reported to correlate with development of 

incident AF15,21 or poorer outcomes following AF ablation16,22.
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ML-based AF recurrence prediction from EGM or ECG

Using EGM signals only, the CNN achieved an AUROC of 0.731 (SD=0.105) for AF 

recurrence prediction (Table 2, 4th row); using ECG signals only, the CNN achieved an 

AUROC of 0.767 (SD=0.122; Table 2, 5th row), both of which outperform APPLE and 

CHA2DS2-VASc scores.

In addition, we visualize examples of EGM and ECG learned by the CNNs using the 

Uniform Manifold Approximation and Projection23 (UMAP) dimensionality reduction 

technique. As shown in Supplemental Figure II, the same patient’s EGM features are 

clustered together, whereas different patients’ EGM features are further apart. Moreover, 

EGM/ECG features of patients with AF recurrence are further away from features of 

patients without AF recurrence, suggesting that the CNNs are able to learn distinct patterns 

in patients with different outcomes.

ML-based AF recurrence prediction from fusion of EGM, ECG, and clinical features

Our final fusion model that combines EGM, ECG, and clinical features achieved an AUROC 

of 0.859 (SD=0.082; Table 2, last row), outperforming the APPLE scores, CHA2DS2-

VASc scores, and ECG or EGM signals alone, suggesting the effectiveness of our fusion 

framework.

Figure 3 shows the ROC curves of the clinical feature-based models, the signal-based CNN 

models, and the fusion model. At a low false positive rate (FPR), such as 20% FPR, our 

fusion model had a true positive rate (TPR) of 80%, which translates clinically to missing 

20% recurrent AF patients with 20% of the predicted recurrent AF being false positives. In 

contrast, the CHA2DS2-VASc score-based classifier and the clinical feature-based classifier 

only achieved a TPR of 40% and 58%, respectively, which translates to missing 60% and 

42% recurrent AF patients, respectively, with the same number of false positives.

Moreover, combining two modalities performed better than single modalities (Table 2, 6th–

8th rows), which is intuitive given that two modalities encode additional features than a 

single modality. Model performance in various subgroups are provided in Supplemental 

Results and Supplemental Tables IV–VI.

In addition to discriminative measures (e.g., AUROC, sensitivity, and specificity), we 

evaluate the calibration of the models using Brier score19 and expected calibration error20. 

See Supplemental Results and Supplemental Table VII for details.

Discussion

In this study, we developed a deep convolutional neural network that encodes the 

spatiotemporal dependencies in EGM and ECG signals, as well as a multimodal fusion 

framework that leverages clinical features, EGM, and ECG for predicting 1-year AF 

recurrence after catheter ablation. Our study was based on a cohort of 156 patients.
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To our knowledge, compared to the existing AF recurrence prediction scores to date, this 

provides the highest performance in predicting which patients would be free from AF one 

year following ablation.

Other studies evaluating prediction of AF ablation outcomes using machine learning include 

Shade et al.9 that utilized ML and personalized computational modeling in 32 patients to 

predict AF recurrence following PVI with either cryoballoon or radiofrequency approach. 

In their machine learning model, their sources of information (imaging, clinical data) were 

combined equally9. Late gadolinium enhanced MRI scans were used for imaging data. 

AUROC of 0.82 was reported when clinical variables were included in the model. Firouznia 

et al.10 extracted data from chest CT scans to establish their association with likelihood of 

post-ablation AF recurrence in 203 patients using a random forest classifier. Certain derived 

imaging features such as left atrial surface area, volume and sphericity index used in their 

study were also included in our model as a part of clinical features10. PVI in this study was 

completed with either cryoballoon or radiofrequency catheters. Moreover, posterior wall, 

septal, superior vena cava and CTI ablation were performed according to operator choice, 

although further details of extra-PVI ablation were not discussed in the study or included in 

the models.

In our study, all patients underwent PVI with cryoballoon or radiofrequency approach. 

Similar to Firouznia et al.10, patients undergoing various ablation strategies were included, 

including ablation of localized sources detected by FIRM mapping strategy in 100% of 

patients, left atrial linear lesions in 24% and CTI ablation in 27% of patients. FIRM 

strategy was used in all patients as it allowed simultaneous recording of unipolar signals 

in the left atrium prior to any ablation in this cohort, which was a prerequisite in our 

analysis. Our models were able to predict long-term (one year) freedom from arrhythmias 

independent of the ablation strategy. Clinical benefit of lesions beyond PVI in patients with 

persistent AF has been a subject of debate, with multiple studies showing no additional 

benefit of extra PV lesions in long term freedom from AF24,25, with some demonstrating 

incremental benefit 26,27, and larger multicenter studies underway to evaluate this further 
28. Furthermore, incorporation of intracardiac electrograms indeed improved prediction of 

AF ablation outcomes, suggesting that an AF mechanism might be at play that could 

be delineated further by feature interpretation of these signals. Given the wide variety of 

ablation approaches used in the training and testing cohorts for our machine learning model, 

and limited representation of subgroups such as women, generalizability of our findings to 

the broader population could be limited.

Limitations

This study was performed at a single center, involves a small cohort with 

underrepresentation of women, and results have not been validated externally. Heterogeneity 

in ablation approaches may limit generalizability of the findings to specific ablation 

strategies. Despite this limitation, all the patients underwent PVI, and evidence of benefit 

of further ablation beyond PVI, including linear ablation and ablation of sites of organized 

rotational or focal activation, has not been proven consistently in multicenter randomized 

studies24,29,30. All patients in this study underwent FIRM mapping and ablation that formed 
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the basis of the unipolar EGMs used in the model. The necessity of the use of FIRM 

mapping is a limitation to this study, as this is not a widely used catheter or mapping strategy 

in the community.

Freedom from AF appears higher for a mixed cohort of patients; but is consistent with 

other studies that used intermittent monitoring rather than implanted loop recorders. 

Intermittent monitoring of AF recurrence with 12-lead ECGs and 14-day event monitors 

likely underrepresents true AF recurrence, which could affect the accuracy of our predictive 

model. The retrospective nature of the data limited strict guidelines over AAD use in follow 

up, i.e. for certain patients pre-procedure AADs were continued post ablation due to patient 

or provider preference regardless of procedure outcome. 28% of patients had prior AF 

ablation, which may have impacted intracardiac signal characteristics. 12-lead ECGs in 

sinus rhythm prior to ablation were not available in all patients. When a patient’s 12-lead 

ECGs in sinus rhythm prior to ablation was not available, a 12-lead ECG in sinus rhythm 

immediately after ablation was used for analysis, which could result in bias in analyses. 

While we show that when evaluating the trained models on patients whose pre-ablation 

12-lead ECGs are available, the model performance did not differ significantly from our 

original analysis (i.e., post-ablation 12-lead ECGs are used for patients whose pre-ablation 

ECGs are not available), we did not re-train the models on pre-ablation ECGs only due to 

the limited size of our cohort (n = 107 patients with pre-ablation ECGs). Majority of these 

patients had a 12-lead ECG in sinus rhythm prior to ablation that was not performed at 

our center in an electronic format that could be exported for analysis, due to the tertiary 

referral center status where the study was conducted. Some of the data that were used in 

the models to predict ablation success, including intracardiac signals, are obtained at the 

time of ablation, and may not help in patient selection for ablation procedure, but can 

rather guide medical management and expectations following the procedure. Furthermore, 

while we show that most of the trained models perform similarly on patient subgroups 

(patients with paroxysmal versus non-paroxysmal AF; patients with cryoablation versus 

radiofrequency ablation), future study with a larger cohort that trains models on these 

subgroups independently is needed to further compare these subgroups. Lastly, while we 

show that our CNNs and fusion model are better calibrated than the existing APPLE and 

CHASDS2-VASc scores (Supplemental Table VII), the Brier scores and expected calibration 

errors are still relatively high; advanced calibration techniques31 for deep neural networks 

need to be incorporated in the future to produce better calibrated models.

Conclusions

Our machine learning approach provides an automatic technique to predict freedom from 

atrial arrhythmias in patients undergoing AF ablation, outperforming traditional scoring 

systems. Larger datasets are needed in the future to train and validate this approach even 

further to help develop personalized ablation strategies for AF patients.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Nonstandard Abbreviations and Acronyms

AF Atrial Fibrillation

AUROC Area Under the Receiver Operating Characteristics Curve

ML Machine Learning

EGM Intracardiac Electrogram

ECG Electrocardiogram

MRI Magnetic Resonance Imaging

PVI Pulmonary Vein Isolation

CT Computerized Tomography

DNN Deep Neural Networks

CTI Cavotricuspid Isthmus

BMI Body Mass Index

HTN Hypertension

HLD Hyperlipidemia

TIA Transient Ischemic Attack

CVA Stroke

CAD Coronary Artery Disease

DM Diabetes Mellitus

CKD Chronic Kidney Disease

CHF Congestive Heart Failure

OSA Obstructive Sleep Apnea

LVEF Left Ventricular Ejection Fraction

LAd Left Atrial Diameter
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CatBoost Categorical Boosting Classifier

LA Left Atrium

CNN Convolutional Neural Network

AAD Antiarrhythmic Drugs

SD Standard Deviation
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What is Known:

• Atrial fibrillation (AF) ablation is the cornerstone of therapy for symptomatic 

AF, with increasing evidence on its safety and efficacy.

• Clinical scores have been developed to predict success of catheter ablation, 

to guide better patient selection, with most clinical scores reaching an Area 

Under the Receiver Operating Characteristics Curve (AUROC) of 0.55–0.65 

in accurately predicting AF ablation success.

What the Study Adds:

• Deep neural networks trained on intracardiac signals and 12-lead ECG 

signals, in addition to clinical features, can improve the prediction accuracy of 

catheter ablation outcomes compared to existing clinical scores.

• A convolutional neural network (CNN) using intracardiac signals in AF 

achieves an AUROC of 0.731, similarly a CNN using 12-lead ECG alone 

achieves an AUROC of 0.767. Fusion of EGM, ECG, and clinical features 

further improves the prediction (AUROC = 0.859) compared to models with a 

single modality.

• Machine learning models can help treatment planning for patients after 

catheter ablation of atrial fibrillation through more accurate prediction of 

treatment outcomes.
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Figure 1. (A) Overview of our methods.
The inputs come from three modalities: patient EGM signals, ECG signals, and clinical 

features. A multimodal machine learning model fuses the inputs from the three modalities 

and outputs prediction of AF recurrence. (B) Details of our multimodal fusion 
framework. We first trained a model on EGM signals only for AF recurrence prediction, 

and a separate model on ECG signals only for AF recurrence prediction. We then extracted 

EGM and ECG features from the respective trained models. Finally, the EGM and ECG 

features were concatenated with the clinical features, and were subsequently passed to a 

multimodal fusion model to predict AF recurrence.
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Figure 2. Clinical feature-based model interpretation.
Importance of clinical features in predicting AF recurrence using the CatBoost classifier 

(averaged across 10 folds). The five most important features are: left ventricular ejection 

fraction (LVEF), height, body mass index (BMI), weight, left atria volume from CT, and left 

atria surface area from CT.
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Figure 3. Receiver operating characteristics (ROC) curves of the clinical feature-based models, 
signal-based models, and the fusion model.
The x-axis shows the false positive rate averaged across 10 folds for each model, and the 

y-axis shows the true positive rate averaged across 10 folds for each model.
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Table 1.

Baseline characteristics of population

All Subjects (n=156) Free from AF (n=112) Recurrent AF (n=44) p-value

Demographics

Age (years, mean±SD ) 64.5 ± 10.5 64.5 ± 9.9 64.5 ± 11.9 0.988

Male Gender, n (%) 115 (74%) 87 (78%) 28 (64%) 0.073

Height (m, mean±SD) 1.77 ± 0.1 1.77 ± 0.1 1.77 ± 0.1 0.298

Weight (kg, mean±SD) 96.6 ± 24.4 98.1 ± 24.3 92.6 ± 24.4 0.205

BMI (kg/m2, mean±SD) 30.6 ± 6.8 31.2 ± 7.1 29.3 ± 5.8 0.117

Comorbidities

CAD, n (%) 30 (19%) 25 (22%) 5 (11%) 0.118

CHF, n (%) 32 (21%) 25 (22%) 7 (16%) 0.359

Hypertension, n (%) 104 (67%) 76 (68%) 28 (64%) 0.615

Hyperlipidemia, n (%) 88 (56%) 69 (62%) 19 (43%) 0.037

TIA or CVA, n (%) 13 (8%) 11 (10%) 2 (5%) 0.352

Diabetes mellitus, n (%) 30 (19%) 26 (23%) 4 (9%) 0.037

OSA, n (%) 59 (38%) 43 (38%) 16 (36%) 0.784

CKD, n (%) 24 (15%) 17 (15%) 7 (16%) 0.872

Prior AF ablation, n (%) 43 (28%) 26 (23%) 17 (39%) 0.052

Type of AF 0.210

Paroxysmal AF, n (%) 67 (43%) 47 (42%) 20 (46%)

Persistent AF, n (%) 66 (42%) 45 (40%) 21 (48%)

Long-standing Persistent AF, n (%) 23 (15%) 20 (19%) 3 (7%)

AF Ablation type* 0.248

Left atrial linear ablation 38 (24%) 30 (34%) 8 (18%)

CTI 42 (27%) 35 (31%) 7 (16%)

Antiarrhythmic drug use 34 (22%) 26 (23%) 8 (18%) 0.667

Values are n, mean ± standard deviation, or median (interquartile range). Categorical variables are compared using Fisher’s exact test; continuous 
variables using the t-test or Mann-Whitney U test if data is not normally distributed.

*:
In addition to pulmonary vein isolation and ablation of localized rotational and focal sources by FIRM mapping.

Abbreviations: CAD, coronary artery disease; CHF, congestive heart failure; TIA, transient ischemic attack; CVA, stroke; OSA, obstructive sleep 
apnea; CKD, chronic kidney disease; AF, atrial fibrillation; CTI, cavotricuspid isthmus ablation.
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Table 2.

Results of 1-year AF recurrence prediction

AUROC Sensitivity Specificity Accuracy F1-Score

APPLE Score 0.644 ± 0.129 0.915 ± 0.138 0.350 ± 0.329 0.504 ± 0.213 0.533 ± 0.111

CHA2DS2-VASc Score 0.650 ± 0.133 0.905 ± 0.162 0.427 ± 0.355 0.560 ± 0.226 0.568 ± 0.124

Clinical Feature 0.755 ± 0.093 0.875 ± 0.137 0.680 ± 0.198 0.728 ± 0.121 0.656 ± 0.102

EGM 0.731 ± 0.105 0.885 ± 0.116 0.627 ± 0.131 0.701 ± 0.098 0.630 ± 0.092

ECG 0.767 ± 0.122 0.812 ± 0.176 0.770 ± 0.183 0.781 ± 0.112 0.682 ± 0.108

Fusion of EGM & Clinical Data 0.788 ± 0.110 0.905 ± 0.117 0.706 ± 0.144 0.764 ± 0.107 0.691 ± 0.117

Fusion of ECG & Clinical Data 0.836 ± 0.063 0.865 ± 0.112 0.812 ± 0.124 0.827 ± 0.070 0.747 ± 0.075

Fusion of EGM & ECG 0.833 ± 0.084 0.915 ± 0.138 0.793 ± 0.124 0.826 ± 0.083 0.753 ± 0.096

Fusion of EGM, ECG & Clinical Feature 0.859 ± 0.082 0.870 ± 0.200 0.867 ± 0.121 0.866 ± 0.076 0.784 ± 0.106

Values are mean ± standard deviation across 10-folds. Best mean results for each metric are highlighted in bold.
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