
Guild-Level Microbiome Signature Associated with COVID-19
Severity and Prognosis

Mingquan Guo,a Guojun Wu,c,d Yun Tan,e Yan Li,b Xin Jin,a Weiqiang Qi,a Xiaokui Guo,f Chenhong Zhang,b Zhaoqin Zhu,a

Liping Zhaob,c,d

aDepartment of Laboratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
bState Key Laboratory of Microbial Metabolism and Ministry of Education Key Laboratory of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai
Jiao Tong University, Shanghai, China

cDepartment of Biochemistry and Microbiology, School of Environmental and Biological Sciences and Center for Microbiome, Nutrition, and Health, New Jersey Institute
for Food, Nutrition, and Health, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
dRutgers-Jiaotong Joint Laboratory for Microbiome and Human Health, New Brunswick, New Jersey, USA
eShanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital,
Shanghai, China
fSchool of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China

Mingquan Guo and Guojun Wu are co-first authors. The order was decided because Mingquan Guo started the project first.

ABSTRACT Coronavirus disease 2019 (COVID-19) severity has been associated with
alterations of the gut microbiota. However, the relationship between gut microbiome
alterations and COVID-19 prognosis remains elusive. Here, we performed a genome-
resolved metagenomic analysis on fecal samples from 300 in-hospital COVID-19
patients, collected at the time of admission. Among the 2,568 high quality metage-
nome-assembled genomes (HQMAGs), redundancy analysis identified 33 HQMAGs
which showed differential distribution among mild, moderate, and severe/critical se-
verity groups. Co-abundance network analysis determined that the 33 HQMAGs were
organized as two competing guilds. Guild 1 harbored more genes for short-chain
fatty acid biosynthesis, and fewer genes for virulence and antibiotic resistance, com-
pared with Guild 2. Based on average abundance difference between the two guilds,
the guild-level microbiome index (GMI) classified patients from different severity
groups (average AUROC [area under the receiver operating curve] = 0.83). Moreover,
age-adjusted partial Spearman’s correlation showed that GMIs at admission were cor-
related with 8 clinical parameters, which are predictors for COVID-19 prognosis, on
day 7 in hospital. In addition, GMI at admission was associated with death/discharge
outcome of the critical patients. We further validated that GMI was able to consis-
tently classify patients with different COVID-19 symptom severities in different coun-
tries and differentiated COVID-19 patients from healthy subjects and pneumonia
controls in four independent data sets. Thus, this genome-based guild-level signature
may facilitate early identification of hospitalized COVID-19 patients with high risk of
more severe outcomes at time of admission.

IMPORTANCE Previous reports on the associations between COVID-19 and gut micro-
biome have been constrained by taxonomic-level analysis and overlook the interaction
between microbes. By applying a genome-resolved, reference-free, guild-based metage-
nomic analysis, we demonstrated that the relationship between gut microbiota and
COVID-19 is genome-specific instead of taxon-specific or even species-specific. Moreover,
the COVID-19-associated genomes were not independent but formed two competing
guilds, with Guild 1 potentially beneficial and Guild 2 potentially more detrimental to the
host based on comparative genomic analysis. The dominance of Guild 2 over Guild 1 at
time of admission was associated with hospitalized COVID-19 patients at high risk for more
severe outcomes. Moreover, the guild-level microbiome signature is not only correlated
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with the symptom severity of COVID-19 patients, but also differentiates COVID-19 patients
from pneumonia controls and healthy subjects across different studies. Here, we showed
the possibility of using genome-resolved and guild-level microbiome signatures to identify
hospitalized COVID-19 patients with a high risk of more severe outcomes at the time of
admission.

KEYWORDS COVID-19, guild, gut microbiome

Coronavirus disease 2019 (COVID-19), caused by the novel severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), has been a worldwide pandemic with a

heavy toll on human health and the economy. Over 576 million people have been
infected by SARS-CoV-2, with over 6 million deaths globally (1). Angiotensin-converting
enzyme 2 (ACE-2), which is distributed in multiple tissues and widely expressed on the
luminal surface of the gut, has been identified as a vital entry receptor of SARS-CoV-2
for promoting viral infection and replication (2). This can impair gut barrier and induce
inflammation, which may disrupt the gut microbiome, contributing to cytokine storm
and sepsis in already compromised patients with COVID-19 (2).

Recent studies have shown that dysbiosis of the gut microbiome and its related
metabolites is closely associated with COVID-19 disease. These studies reveal the overall
difference in the gut microbial composition between COVID-19 patients and healthy con-
trols (3–11), association of microbial taxa and metagenomic functions with disease sever-
ity (3, 8, 9, 11) and persistent dysbiosis of the gut microbiota after recovery (3). The enrich-
ment of pathobionts and depletion of beneficial microbes have been reported to be
related to disease severity in COVID-19 (4, 7). However, these studies have suffered from
small sample sizes and lack of cross-study validation and have missed microbiome signa-
tures at admission for COVID-19 prognosis in hospitalized patients (4, 8–11). In addition,
the reported findings are constrained due to analyzing the microbiome at low-resolution
levels, such as species, genus, or even phylum, or broad metagenomic functional catego-
ries (3–11). In the gut microbial ecosystem, the strains/genomes are the minimum
responding units to environmental perturbations and their response and contributions to
the host are not constrained by taxonomy, even in the same species (12).

In this study, we obtained high-quality metagenome-assembled genomes (HQMAGs),
which had completeness . 95%, contamination , 5%, and strain heterogeneity = 0,
from metagenomically sequenced fecal samples collected from 300 in-hospital COVID-
19 patients with mild, moderate, severe, and critical disease severities at the time of
admission. We identified a guild-level microbiome signature of 33 HQMAGs. This signa-
ture classified patients with different severities, associating them with clinical parameters
related to prognosis after 1 week in hospital and the death/discharge outcomes of criti-
cal patients. The capacity of this signature for classifying COVID-19 patients with different
levels of severity and differentiating COVID-19 patients from pneumonia control and
healthy individuals was validated in four independent data sets.

RESULTS
Overall structural changes of the gut microbiome were associated with disease

severity in COVID-19 patients at admission. From May to September 2020, we col-
lected 330 stool samples from 300 in-hospital patients with COVID-19 confirmed by posi-
tive SARS-CoV2-2 reverse transcription-quantitative PCR (RT-qPCR) result. Among the
330 samples, 297 were collected from 297 patients at admission and 33 were collected
from 29 patients during their hospitalization (Table S1 at https://github.com/nightkid03/
SHCOVID-19). To profile the gut microbiome, metagenomic sequencing was performed
on all 330 stool samples. To achieve strain/subspecies-level resolution, we reconstructed
2,568 nonredundant HQMAGs (two HQMAGs were collapsed into one if the average nu-
cleotide identity [ANI] between them was . 99%) from the metagenomic data set. The
HQMAGs accounted for more than 77.17% 6 0.23% (mean 6 standard error of the
mean [SEM]) of the total reads and were used as the basic variables for the subsequent
microbiome analysis.
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The 296 patients with a metagenomic data set at admission (one sample was discarded
due to low mapping rate of the reads against HQMAGs) were classified into the (n = 88),
moderate (n = 196), severe (n = 5), and critical (n = 7) groups based on their symptoms.
Due to the limited sample sizes for severe and critical patients, we combined these two
groups into one for the following analysis. There were significant differences in age
between the patients with mild, moderate, and severe/critical symptoms (Kruskal-Wallis
test, P = 1.6 � 10214); i.e., the more severe symptoms the patients had, the older they
were (Fig. S1). There was no difference in gender among the 3 groups (chi-square test,
P = 0.22).

At admission, in the context of beta-diversity based on Bray-Curtis distance, princi-
pal coordinate analysis (PCoA) revealed separations of the gut microbiota along PC1,
which was in accordance with the severity of symptoms (Fig. 1A to C). A single-factor
permutational multivariate analysis of variance (PERMANOVA) test showed that both
age (R2 = 0.0059, P = 0006) and disease severity (R2 = 0.014, P = 0.001) were signifi-
cantly associated with the overall gut microbial composition. However, a marginal
PERMANOVA test showed that when controlling for age, disease severity was still
significantly associated with the overall gut microbial composition (R2 = 0.012,
P = 0.0002), but age was insignificant (R2 = 0.0033, P = 0.5) when controlling for disease
severity. This showed that in our data set, part of the variation in gut microbiota was
uniquely associated with disease severity, which was independent of age. Pairwise
comparisons between the 3 different severity groups via PERMANOVA showed that the
gut microbial composition of the patients was significantly different from each other
(mild versus moderate: R2 = 0.0081, P = 0.0001; mild versus severe/critical: R2 = 0.026,

FIG 1 The overall structural variations of gut microbiota at admission are associated with disease severity in hospitalized COVID-19
patients. (A) Principal coordinate analysis (PCoA) based on Bray-Curtis calculated from abundance of the 2,568 genomes. (B) and (C)
Comparison of the PC1 and PC2. (D) Comparison of alpha-diversity as indicated by Shannon index. Boxes show medians and
interquartile ranges (IQRs); whiskers denote the lowest and highest values that were within 1.5� the IQR from the first and third
quartiles, outliers are shown as individual points. Kruskal-Wallis test followed by Dunn’s post hoc test (two-sided) was used to
compare groups. Compact letters indicate the significance of the post hoc test (P , 0.05 is significant). Mild, n = 88; moderate,
n = 196; severe/critical, n = 12.
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P = 0.0001; moderate versus severe/critical: R2 = 0.0079, P = 0.0099). The distance
between the mild and moderate groups was significantly smaller than that between
the mild and the severe/critical groups (Fig. S2), which showed that the gut microbiota
of severe/critical group was more different from the mild group compared with the
moderate group. In regards to alpha-diversity, the Shannon index was highest in the
mild group, followed by the moderate group and lowest in the severe/critical group
(Fig. 1D, mild versus moderate: P = 0.0046, mild versus severe/critical: P = 0.0046, mod-
erate versus severe/critical: P = 0.086), which showed a continuous reduction in gut
microbial diversity with increasing symptom severity. These results showed that the
overall gut microbial structure was associated with symptom severity in COVID-19
patients.

Two competing guilds were associated with disease severity of hospitalized
COVID-19 patients at admission. Specific HQMAGs that were associated with the
COVID-19 symptom severity were identified by redundancy analysis (RDA) (Fig. S3). Out of
the 2,568 HQMAGs, we found that 48 had at least 5% of their variability explained by the
constraining variable, i.e., the three severity groups. Among the 48 HQMAGs, 17 were signifi-
cantly higher in the mild group compared to the moderate and severe/critical groups, and
these showed a continuous decrease alongside the symptom severity. These 17 HQMAGs
included 5 from Faecalibacterium prausnitzii, 3 from Romboutsia timonensis, 2 each from
Ruminococcus and Clostridium, and 1 each from Acutalibacteraceae, Allisonella histaminifor-
mans, Coprococcus, Lachnospiraceae, and Negativibacillus (Fig. 2A). The abundance of 31
out of the 48 HQMAGs identified by RDA was higher in the severe/critical group com-
pared with the mild and the moderate groups. Among these 31 HQMAGs, 16 showed
significant differences between the three groups. These 16 HQMAGs included 4 from
Enterococcus, 2 from Lactobacillus, and 1 each from Acutalibacteraceae, Akkerm-
ansia muciniphila, Anaerotignum, Barnesiella intestinihominis, Clostridium bolteae,
Dore, Intestinibacter bartlettii, Lachnospiraceae, Phascolarctobacterium faecium, and
Ruthenibacterium lactatiformans (Fig. 2A). We then focused on the 17 mild group-
enriched HQMAGs and 16 severe/critical group-enriched HQMAGs because they
were all identified by RDA analysis and were significantly different between the 3
severity groups.

Because bacteria in the gut ecosystem are not independent but rather form coher-
ent functional groups (aka “guilds”) to interact with each other and affect host health
(13), we applied co-abundance analysis to these 33 HQMAGs to explore the interac-
tions between them and find potential guild structures with hierarchical clustering and
weighted correlation network analysis (WGCNA) (14). Interestingly, the 33 HQMAGs
organized themselves into two guilds. The 17 HQMAGs with significantly higher abun-
dance in mild group were positively interconnected with each other and formed Guild
1. The 16 severe/critical group-enriched HQMAGs were positively correlated with each
other as Guild 2. Meanwhile, there were only negative correlations between the two
guilds, suggesting a potentially competitive relationship between them (Fig. 2B).

To explore the genetic basis underlying the associations between the two guilds and
symptom severities, we performed a genome-centric analysis of the metagenomes of
the two competing guilds. A previous study showed that a lack of short-chain fatty acids
(SCFAs) is significantly correlated with disease severity in COVID-19 patients (7). For the
terminal genes for the butyrate biosynthetic pathways (i.e., but, buk, atoA/D, and 4Hbt)
(15), 7 HQMAGs in Guild 1 harbored the but gene, while only 1 HQMAGs in Guild 2 pos-
sessed this gene (Fisher’s exact test, P = 0.039) (Fig. S4). Four HQMAGs in Guild 1 har-
bored the buk gene, while no HQMAGs in Guild 2 had this gene (Fisher’s exact test,
P = 0.10). The other butyrate biosynthetic terminal genes were not found in the
HQMAGs in either guild. The numbers of HQMAGs encoding genes for acetate and pro-
pionate production were similar in the two guilds (Fig. S4). From a pathogenicity per-
spective, both guilds had 12 HQMAGs encoding virulence factor (VF) genes. However,
Guild 1 had 17 VF genes from 3 VF categories, while Guild 2 had 58 VF genes from 5 VF
categories (Fig. S5A). In terms of antibiotic resistance genes (ARGs), 3 genomes in Guild 1
encoded 10 ARGs and 5 genomes in Guild 2 encoded 14 ARGs (Fig. S5B). Taken together,
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these data showed that the two competing guilds had different genetic capacities, with
Guild 1 being more beneficial and Guild 2 more detrimental. Thus, the genetic difference
between the two guilds may help explain their associations with disease severity in
COVID-19 patients.

We then calculated the guild-level microbiome index (GMI) based on the average abun-
dance difference between guilds 1 and 2 to reflect the dominance of Guild 1 over Guild 2.
At admission, the GMI was highest in the mild group, followed by the moderate group, and
was lowest in the severe/critical group (Fig. 3C; mild versus moderate: P = 2.46 � 1027; mild
versus severe/critical: P = 6.57 � 1029; moderate versus severe/critical: P = 1.59 � 1024). The
GMI reached an AUROC (area under the receiver operating characteristic curve) of 0.7 and

FIG 2 Two competing guilds composed of differentially abundant gut microbial genomes are associated with symptom severity in COVID-19 patients. (A)
Heatmap of 33 high-quality metagenome-assembled genomes (HQMAGs) identified by redundancy analysis (RDA) and showing differences between the 3
severity groups. RDA analysis was conducted based on the Hellinger transformed abundance of all HQMAGs and used three symptom severity groups as
environmental variables. HQMAGs with at least 5% of the variability in their abundance explained by constrained axes were selected. A Kruskal-Wallis test
followed by Dunn’s post hoc test (two-sided) was used to test the differences between the 3 severity groups. Compact letters indicate the significance of
the post hoc test (P , 0.05 is significant). Heatmap shows the mean abundance of each HQMAGs in each group. Abundance was scaled across each row.
(B) Co-abundance network of the HQMAGs reflects two competing guilds. The co-abundance correlation between the HQMAGs were calculated using
Fastspar (n = 296 subject). All significant correlations with Benjamini-Hochberg (BH)-adjusted P , 0.05 were included. Edges between nodes represent
correlations. Red and blue colors indicate positive and negative correlations, respectively. Node size indicates the average abundance of the HQMAGs in
296 samples. Genomes were clustered into two guilds based on co-abundance correlation and complete linkage followed by weighted correlation network
analysis (WGCNA) analysis. Node color indicates guild: Guild 1, orange; Guild 2, purple. (C) Comparison of guild-level microbiome index (GMI). Data points
which do not share common compact letters are significantly different from each other (P , 0.05). Boxes show medians and IQRs; whiskers denote the
lowest and highest values that lie within 1.5� the IQR from the first and third quartiles, outliers are shown as individual points. A Kruskal-Wallis test
followed by Dunn’s post hoc test (two-sided) was applied to compare the groups. Compact letters indicate the significance of the test (P , 0.05). Mild,
n = 88; moderate, n = 196; severe/critical, n = 12. (D) GMI supports classification of different COVID-19 symptom severities. AUROC (area under the receiver
operating characteristic curve) is shown.
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an AUPRC (area under the precision-recall curve) of 0.8, with a baseline of 0.69 to differenti-
ate between the mild and moderate groups; an AUROC of 0.94 and AUPRC of 0.59 with a
baseline of 0.12 to differentiate between the mild and severe/critical groups; and an AUROC
of 0.86 and AUPRC of 0.32 with a baseline of 0.06 to differentiate between the moderate
and severe/critical groups (Fig. 3D and Fig. S6A–C). This result indicates the feasibility of
using the GMI as a biomarker to differentiate between different symptom severity groups of
COVID-19 patients.

Gut microbiome signature was associated with the COVID-19 prognosis of hos-
pitalized patients. To explore whether our microbiome signature at admission is asso-
ciated with the prognosis of COVID-19 patients during hospitalization, we calculated
correlations between GMI at admission and 72 different clinical parameters on day 7 of
hospitalization. Two and six clinical parameters on day 7 showed significantly (partial
Spearman’s correlation; Benjamini-Hochberg [BH]-adjusted P , 0.1) positive and nega-
tive correlations, respectively, with the GMI values at admission after adjusting for age
(Fig. 3A). Regarding immune indicators, interleukin (IL)-5 is secreted chiefly by Th2 cells
and is essentially anti-inflammatory but also involved in several allergic responses (16).
Some studies have revealed higher levels of IL-5 in severe cases than in mild cases (17,
18). However, others have shown that IL-5 levels have no correlations with COVID-19
and showed no differences between different severity groups (19, 20). Here, we found
positive correlations between the GMI at admission and IL-5 levels after 1 week. The
effects of the microbiome on particular cytokines and its subsequent influences on
COVID-19 require further study. Coagulation disorder occurred during the early stage of
COVID-19 infection (21). D-dimer and fibrin degradation product (FDP) levels increased
in COVID-19 patients and were correlated with clinical classification (21, 22). Moreover,
elevated D-dimer and FDP levels are significant indicators of severe COVID-19 and poor
prognosis (21–24). Here, a higher GMI at admission was correlated with lower D-dimer
and FDP levels after 1 week. Regarding biochemical indicators, compared with health
subjects, total cholesterol (TC) was significantly lower in COVID-19 patients and
decreased with increasing severity (25, 26). A meta-analysis showed that a reduction in
TC was significantly associated with increased mortality in COVID-19 patients, and TC
may assist with early risk stratification (26). Hypocalcemia has been reported to be com-
mon in COVID-19 patients (27). Higher total bilirubin (TBIL) was associated with a signifi-
cant increase in the severity of COVID-19 infection (28). Moreover, COVID-19 patients
with an elevated TBIL at admission had a higher mortality rate (28). In addition to TBIL,

FIG 3 The two competing guilds at admission are associated with COVID-19 severity in hospitalized patients
on day 7 after admission and with endpoint in critical patients. (A) Bar plot shows the correlations between the
GMI at admission and clinical parameters of COVID-19 in hospitalized patients on day 7. Age-adjusted partial
Spearman’s correlation was calculated. Correlations with BH-adjusted P , 0.1 are shown. Blue bar, biochemical
indicators; green bar, coagulation indicators; red bar, immune indicators. (B) GMI at admission associated with
death/discharge outcomes of critical COVID-19 patients. A two-sided Mann-Whitney test was used to determine
significance. *, P , 0.05. Death, n = 3; discharge, n = 4.
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increased direct bilirubin (DBIL) has been reported as an independent indicator of compli-
cations and mortality in COVID-19 patients (29). In particular, DBIL levels on day 7 of hospi-
talization are advantageous for predicting the prognosis of COVID-19 in severe/critical
patients (29). Lactate dehydrogenase (LDH) has been associated with worse outcomes in
viral infection. One meta-analysis showed that LDH could be used as a COVID-19 severity
marker and a predictor of survival (30). Here, the GMI at admission was positively corre-
lated with TC and negatively correlated with TBIL, DBIL, and LDH after 1 week. These
results suggest that the gut microbiome signature in early stages of the disease may
reflect the clinical outcomes of COVID-19 in hospitalized patients.

Moreover, in our cohort, 3 patients died, all of which were in the critical group at
admission. Compared with the other 4 discharged critical patients, the 3 dead patients
were significantly younger (Fig. S7). The GMIs of the 3 dead patients at admission were
significantly lower than those of the 4 discharged critical patients (Fig. 3B). This suggests
an association between the microbiome signature and the final outcome in critical hos-
pitalized COVID-19 patients. Although interesting, this result should be interpreted with
caution given the small sample size.

Themicrobiome signature was validated in independent studies.We then asked
whether this genome-based microbiome signature would be applicable in other
COVID-19 cohorts. To answer this question, we used the genomes of the 33 HQMAGs
as references to perform read-recruitment analysis, a common method for estimating
the abundances of reference genomes from metagenomes (31, 32). In an independent
study, which included 24 mild/moderate and 14 severe/critical COVID-19 patients from
China (9), we validated the associations between the microbiome signature and differ-
ent COVID-19 severities. In this validation data set, the two patient groups had even
distributions of age, gender, and comorbidities, preventing potential biases for our vali-
dation. On average, the 33 HQMAGs accounted for 4.39% 6 0.90% (mean 6 SEM) of
the total abundance of the gut microbial community. In the context of beta-diversity,
as measured via Bray-Curtis distance, the composition of the microbiome signature sig-
nificantly differed between mild/moderate and severe/critical COVID-19 patients
(Fig. 4A). GMI and abundance of Guild 1 were significantly higher in the mild/moderate
patients, while the abundance of Guild 2 was significantly higher in the severe/critical
patients (Fig. 4B). Moreover, GMI had a discriminatory power of AUROC = 0.72 and
AUPRC = 0.63 with a baseline of 0.37 to differentiate the two severity groups (Fig. 4C
and Fig. S6D).

To further test the applicability of the microbiome signature in different geogra-
phies, we included metagenomic sequencing data from 18 moderate and 9 severe
COVID-19 patients from the United States (33) and applied the same validation pro-
cess. On average, the 33 HQMAGs accounted for 4.18% 6 0.59% (mean 6 SEM) of the
total abundance of the gut microbial community. Although the composition of the
microbiome signature between the moderate and severe COVID-19 patients was not
significantly different based on Bray-Curtis distance (Fig. 5A), the GMI and abundance
of Guild 1 were significantly higher in the moderate patients, while the abundance of
Guild 2 was significantly higher in the severe patients (Fig. 5B). GMI had a discrimina-
tory power of AUROC = 0.9 and AUPRC = 0.89 with a baseline of 0.33 to differentiate
the two severity groups (Fig. 5C and Fig. S6E). These results validated our findings of
the associations between genome-resolved microbiome signature and COVID-19 dis-
ease severity in different geographies.

Because this microbiome signature was associated with COVID-19 disease and was
able to classify COVID-19 severity, we were interested in determining whether it could
classify COVID-19 and non-COVID-19 controls as well. We first included metagenomic
sequencing data from 66 COVID-19 patients (first sample after admission), of which 47
were mild/moderate, and 9 community-acquired pneumonia controls which were neg-
ative for COVID-197. The genomes of the 33 HQMAGs were used as reference genomes
to perform read-recruitment analysis. On average, the 33 HQMAGs accounted for
3.75% 6 0.74% (mean 6 SEM) of the total abundance of the gut microbial community.
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In the context of beta-diversity as measured via Bray-Curtis distance, the composition
of the microbiome signature between the two groups was significantly different
(Fig. 6A). The GMI and abundance of Guild 1 were significantly higher in the COVID-19
group, while abundance of Guild 2 was higher in the pneumonia control group
(Fig. 6B). GMI had a discriminatory power of AUROC = 0.75 and AUPRC = 0.32 with a
baseline of 0.12 to differentiate the two groups (Fig. 6C and Fig. S6F).

Next, we included metagenomic sequencing data from 46 COVID-19 patients and
19 age- and sex-matched healthy controls from the study conducted by Li et al. (34).
On average, the 33 HQMAGs accounted for 1.61% 6 0.12% (mean 6 SEM) of the total
abundance of the gut microbial community. Based on the Bray-Curtis distance, the
PCoA plot revealed a separation between the COVID-19 patients and healthy subjects
(Fig. 7A). Compared with the healthy controls, COVID-19 patients had a significantly
lower GMI and abundance of Guild 1 but a higher abundance of Guild 2 (Fig. 7B).
These results suggest that SARS-CoV-2 infection is associated with altered composition
of the 33 HQMAGs. GMI had a discriminatory power of AUROC = 0.75 and AUPRC = 0.9
with a baseline of 0.71 to differentiate the COVID-19 patients and healthy controls
(Fig. 7C and Fig. S6G). These showed that the microbiome signature was related to
host health and could be used as a biomarker to differentiate the COVID-19 subjects
from the pneumonia controls and healthy subjects.

DISCUSSION

In the current study, a genome-based microbiome signature, composed of 33
HQMAGs at the time of admission, was found to be associated with the severity and

FIG 4 Genome-based microbiome signature enables classification of COVID-19 patients from different severity groups in an independent Chinese cohort.
(A) PCoA based on Bray-Curtis distance calculated from the abundance of the 33 HQMAGs. Permutational multivariate analysis of variance (PERMANOVA)
test showed significant differences in the composition of the 33 HQMAGs between the two groups. (B) Significant differences in GMI and abundances of
guilds 1 and 2 between mild/moderate and severe/critical COVID-19 patients. Bar plot summarizes the mean and standard error of the mean (SEM). Mann-
Whitney test (two-sided) was used to compare groups. Mild/moderate, n = 24; severe/critical, n = 14. **, P , 0.01; *, P , 0.05. (C) GMI supports
classification according to different COVID-19 symptom severities.
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prognosis of COVID-19 in hospitalized patients. With these 33 genomes as a reference,
we were also able to validate the microbiome signature in data sets collected from
four independent studies.

We arrived at this finding by way of a unique analytical strategy for the microbiome
data set. Previous studies relied on reference databases to profile gut microbial composi-
tion at taxonomic levels and explored the relationships between different taxa and
COVID-193–11. Our strategy used a reference-free discovery approach which does not
need any prior knowledge. This allowed us to keep the novel part of the data set intact.
In addition, the use of high-quality draft genomes in our study ensured the highest pos-
sible resolution for identifying microbiome signatures associated with COVID-19, over-
coming the pitfalls of taxon-based analysis (13). In previous studies based on taxon-level
analysis, Enterococcus faecium, Enterococcus avium, and Akkermansia muciniphila have
been reported to be enriched in severe/critical COVID-19 patients and positively corre-
lated with symptom severity (3, 9). In our results, a total of 28 A. muciniphila, 2 E. avium,
and 5 E. faecium HQMAGs were assembled in our data set, but only 3 strains of E. faecium
and 1 each of A. muciniphila and E. avium were enriched in the severe/critical group, sug-
gesting that not all strains from these 3 species were associated with COVID-19 severity.
Another example is that Faecalibacterium prausnitzii, a key producer of SCFAs, is consis-
tently depleted in COVID-19 patients and negatively correlated with disease severity (3,
4); however, in our results, only half of the F. prausnitzii HQMAGs in our data set were
negatively associated with COVID-19 symptom severity. These results indicate that the
associations between gut microbiota and COVID-19 are strain/genome-specific. This
means that even species-level analysis may not provide the necessary resolution to
reveal associations of gut microbiome with COVID-19.

FIG 5 Genome-based microbiome signature enables classification of COVID-19 patients from different severity groups in an independent American cohort.
(A) PCoA based on Bray-Curtis distance calculated from the abundance of the 33 HQMAGs. PERMANOVA test showed significant differences in the
composition of the 33 HQMAGs between the two groups. (B) Significant differences in GMI and abundances of guilds 1 and 2 between moderate and
severe COVID-19 patients. Bar plot summarizes mean and SEM. Mann-Whitney test (two-sided) was applied to compare groups. Moderate, n = 18; severe,
n = 9. ***, P , 0.001; **, P , 0.01. (C) GMI supports classification according to different COVID-19 symptom severities.
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In addition to identifying COVID-19 associated gut microbiota at the genome level,
we used guild-based analysis to reveal potential interactions among key gut bacteria
via a co-abundance network. We found that the genomes enriched in the mild/moder-
ate group and the genomes enriched in the severe/critical group formed two guilds,
Guild 1 and Guild 2, respectively. The genomes in Guild 1 had higher SCFA-producing
genetic capacity, while the Guild 2 genomes contained more VF- and ARG-encoding
genes. Reduced abundance of SCFA-producing pathways has been correlated with
more adverse clinical outcomes in COVID-19 patients (7). The expression levels of VF
and ARG, as measured by metatranscriptomic sequencing, were significantly higher in
COVID-19 patients compared with the healthy and non-COVID-19 pneumonia controls
(35). Higher abundance of Guild 1 and lower abundance of Guild 2 were associated
with reduced severity in our COVID-19 patients. Such a two-competing-guilds struc-
ture, in which one beneficial guild and one detrimental guild compete with each other
and influence host health, has been reported as a core microbiome signature associ-
ated with various chronic diseases (36). Our findings suggest that such two competing
guild microbiome signatures may also be applicable to infectious diseases.

In our study cohort, GMI based on the average abundance difference between the
two guilds was able to discriminate between different symptomatic severity groups of
COVID-19 patients at admission. This capacity of GMI to discriminate COVID-19 symptom
severities has been further validated in independent cohorts from China and United
States (9, 33). Moreover, GMI had the capacity to distinguish COVID-19 subjects from
pneumonia controls and healthy subjects in two other independent studies (7, 34).
These indicate the feasibility of using this microbiome signature risk stratification for

FIG 6 Genome-based microbiome signature enabled distinction between COVID-19 and pneumonia subjects in an independent data set. (A) PCoA based
on Bray-Curtis distance calculated from the abundance of the 33 HQMAGs. (B) Significant differences in GMI and abundances of guilds 1 and 2 between
COVID-19 and pneumonia subjects. Bar plot summarizes the mean and SEM. Mann-Whitney test (two-sided) was applied to compare groups. COVID-19,
n = 66; pneumonia, n = 9. **, P , 0.01; *, P , 0.05. (C) GMI supports classification between COVID-19 and pneumonia control group.
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COVID-19 patients. It is worth validating the applicability of the microbiome signature in
COVID-19 diagnosis in cohorts across additional ethnicities and geographies.

A recent mouse-model study showed that SARS-COV-2 infection alone caused gut
microbiome dysbiosis and gut epithelial cell alterations, with an increased number of gob-
let cells and a decreased number of Paneth cells (37). This dysbiotic gut microbiome may
play a role in modulating host immune responses and outcomes of COVID-19 patients by
translocating potential pathogens or their antigens into systemic circulation (37) and
decreasing production of metabolites such as SCFAs and L-isoleucine (7). In the current
study, we found that the microbiome signature, which was related to COVID-19 severity at
admission, was associated with COVID-19 prognosis. The two competing guilds’ micro-
biome signatures at admission were associated with several coagulation, hemogram, and
biochemical indicators of hospitalized patients after 1 week. These indicators included
D-dimer, FDP, TC, TBIL, DBIL, and LDH, which have been reported to play essential roles in
the host response to COVID-19 infection and disease progression (21–30). The microbiome
signature may serve as an early predictor of COVID-19 prognosis because it was positively
associated with bio-clinical parameters that have inverse relationships with poor prognosis
and negatively associated with those that have direct relationships with poor prognosis.
More importantly, early time-point variations of the two competing guilds’ microbiome
signatures were correlated with later changes in these prognosis related bio-clinical pa-
rameters. These results suggest that dysbiosis of the gut microbiota may play a pivotal
role in triggering more severe symptoms after patients are infected with SARS-CoV-2.
More mechanistic studies, such as time-series experiments involving transplanting gut
microbiota from COVID-19 patients with different disease severities or transplanting differ-
ent combinations of the isolates from the two competing guilds into germ-free mice with

FIG 7 Genome-based microbiome signature enables distinction between COVID-19 subjects and heathy controls in an independent data set. (A) PCoA
based on Bray-Curtis distance calculated from the abundance of the 33 MAGs. PERMANOVA test showed significant differences in the composition of the
33 MAGs between the two groups. (B) Significant differences in GMI and abundances of guilds 1 and 2 between COVID-19 and healthy subjects. Bar plot
summarizes the mean and SEM. Mann-Whitney test (two-sided) was applied to compare groups. COVID-19, n = 46; healthy control, n = 19. *, P , 0.05; **,
P , 0.01. (C) GMI supports classification of COVID-19 and healthy control subjects.
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or without SARS-COV-2 infection, and more gut microbiota-targeted intervention studies
on COVID-19 patients, are needed to further understand the relationships between gut
microbiota and COVID-19 prognoses.

Early identification and treatment of high-risk patients is critical for improving
COVID-19 prognosis when the end of the pandemic is not yet in sight due to emerging
SARS-CoV-2 variants such as Omicron. Screening hospitalized COVID-19 patients at the
time of admission using our genome-based guild-level microbiome signature may
facilitate early identification of patients at high risk of more severe outcomes so they
can be put under intensive surveillance and preventive care.

MATERIALS ANDMETHODS
Ethics statement. This study procedure was reviewed and approved by the Ethics Committee of

Shanghai Public Health Clinical Center (SHPHC, no. YJ-2020-S080-02), and informed written consent were
obtained from all subjects according to the Declaration of Helsinki. All experimental procedures were per-
formed in strict accordance with the biosafety operation guidelines of the SARS-CoV-2 Laboratories of the
National Health and Family Planning Commission (no. 2020 [70]) and the Shanghai Municipal Health and
Family Planning Commission (no. 2020 [8]). Table S1 at https://github.com/nightkid03/SHCOVID-19 lists sam-
ple collection and disease severity information.

Subject recruitment and sample collection. This study was retrospectively conducted at the
Shanghai Public Health Clinical Center, a designated hospital for COVID-19 treatment in East China. In
total, 337 COVID-19 patients were recruited for this study; all patients were typed and grouped based on
clinical symptoms by senior clinicians in strict accordance with the criteria of the Diagnosis and Treatment
Plan for SARS-CoV-2 (trial version 7) issued by the General Office of the National Health Commission. The
clinical data of the study subjects, including patient epidemiology (age, gender, disease classification,
length of hospital stay, duration of disease, clinical outcomes) and respective clinical laboratory test results
(hematologic, clinical chemistry, coagulation, immune inflammatory indices, and radiographic indications)
were stored in a computerized database in the hospital medical record system. Stool samples were col-
lected within 48 h of admission from all patients from May to September 2020, ensuring that all patients
did not receive antiviral, antibiotic, probiotic, hormone, or other drug interventions. About 100 mg of each
patient’s feces was collected in a stool collection tube and frozen immediately at280°C until processing.

Clinical laboratory examination and data collection. All laboratory tests were conducted at the
department of laboratory medicine in the Shanghai Public Health Clinical Center. A Sysmex XN-1000
automated hematology analyzer (Hisense Meikang Medical Electronics, Shanghai Co., Ltd.) and its sup-
porting test reagents were used to analyze blood routine tests, including white blood cell count, lym-
phocyte count, platelet count, %neutrophils, %monocytes, %lymphocytes, hemoglobin, hypersensitive
C-reactive protein, etc. Biochemical parameters such as albumin, amylase, cholinesterase, lactate, lactate
dehydrogenase, alkaline phosphatase, glucose, creatinine, uric acid, and prealbumin were measured by
a biochemical immunoassay workstation (ARCHITECT 3600J, Abbott Laboratories Co., USA). Urine routine
(pH value, specific gravity, urobilinogen, leukocyte esterase, nitrite, urine protein, glucose, ketone body,
bilirubin, and occult blood) was measured by a Cobas 6500 urine dry chemical analysis system and sup-
porting test strips (Roche, Switzerland). For the coagulation indicators, an STA Compact Max was used
to measure fibrinogen, D-dimer, fibrinogen degradation products, prothrombin time, activated partial
thromboplastin time, thrombin time, etc.

Plasma cytokine measurements. A FACS Canto II Flow cytometer (BD Biosciences, USA) was used for
lymphocyte analysis, CD31 cell counts, CD41 cell counts, CD81 cell counts, CD191 cell counts, CD161

CD561 cell counts, and to determine CD41/CD81 percentage. Plasma cytokine-related parameters, including
IL-1b , IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12P70, IL-17, tumor necrosis factor alpha, interferon alpha, and inter-
feron gamma, were measured using a microsphere array kit and a FACS Canto II cytometer (Raisecare
Biotechnology, China).

Gut microbiome analysis. (i) DNA extraction and metagenomic sequencing. The laboratory pro-
cedures in this section were performed by trained laboratory personnel under the condition of tertiary
protection in a biosafety level 2 (BSL2)-qualified laboratory. DNA was extracted from fecal samples using
the bead-beating method as previously described (38); a QIAamp PowerFecal Pro DNA kit (Qiagen,
Germany) was used to perform DNA extraction according to the manufacturer’s instructions. Briefly,
fecal samples (;100 mg) were dissolved by Powerlyzer lysate in a PowerBead Pro Tube, followed by vig-
orous shaking for 10 min and centrifugation. Total genomic DNA was captured on a silica membrane in
a spin-column. DNA was then washed and eluted. An A260/A280 ratio of ;1.8, concentration, and curve
observations were used to assess the quality of DNA extraction. Qualified DNA samples were ready for
downstream application. Metagenomic sequencing was performed using an Illumina HiSeq 3000 at
GENEWIZ Co. (Beijing, China). Cluster generation, template hybridization, isothermal amplification, linea-
rization, and blocking, denaturing, and hybridization of the sequencing primers were performed accord-
ing to the workflow specified by the service provider. Libraries were constructed with an insert size of
approximately 500 bp followed by high-throughput sequencing to obtain paired-end reads with 150 bp
in the forward and reverse directions. Table S2 at https://github.com/nightkid03/SHCOVID-19 shows the
number of raw reads for each sample.

(ii) Data quality control. Trimmomatic (39) was used to trim low-quality bases from the 39 end,
remove low quality reads, and remove reads of ,60 bp, with the parameters leading:6 trailing:6,
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slidingwindow:4:20 minlen:60. Reads that could be aligned to the human genome (H. sapiens, UCSC
hg19) were removed (aligned with Bowtie2 [40] using -reorder -no-hd -no-contain -dovetail). Table S2 at
https://github.com/nightkid03/SHCOVID-19 shows the number of high-quality reads of each sample for
further analysis.

(iii) De novo assembly, abundance calculation, and taxonomic assignment of genomes. De novo
assembly was performed for each sample using MEGAHIT (41) (-min-contig-len 500, -presets meta-large).
The assembled contigs were further binned using MetaBAT 2 (42) and MaxBin 2 (43). A refinement step
was then performed using the bin_refinement module from MetaWRAP (44) to combine and improve
the results generated by the 2 binners. The quality of the bins was assessed using CheckM (45). Bins
with completeness . 95%, contamination , 5%, and strain heterogeneity = 0 were retained as high-
quality draft genomes (Table S3 at https://github.com/nightkid03/SHCOVID-19). The assembled high-
quality draft genomes were further dereplicated by using dRep (46). DiTASiC (47), which applies kallisto
for pseudo-alignment (48) and a generalized linear model for resolving shared reads among genomes,
was used to calculate the abundance of the genomes in each sample, estimated counts with P . 0.05
were removed, and all samples were downsized to 30 million reads (one sample at admission with a
read-mapping ratio of ;32%, which could not be well represented by the high-quality genomes, were
removed in further analyses). Taxonomic assignment of the genomes was performed using GTDB-Tk (49)
(Table S4 at https://github.com/nightkid03/SHCOVID-19).

(iv) Gut microbiome functional analysis. Prokka (50) was used to annotate genomes. KEGG Orthologue
(KO) IDs were assigned to the predicted protein sequences in each genome by HMMSEARCH against KOfam
using KofamKOALA (51). Antibiotic resistance genes were predicted using ResFinder (52) with the default param-
eters. Identification of virulence factors was based on the core set of the Virulence Factors of Pathogenic Bacteria
Database (VFDB [53], downloaded July 2020). Predicted protein sequences were aligned to the reference
sequence in VFDB using BLASTP (best hist with E value , 1e-5, identity . 80%, and query coverage . 70%).
Genes encoding formate-tetrahydrofolate ligase, propionyl-CoA:succinate-CoA transferase, propionate CoA-trans-
ferase, 4Hbt, AtoA, AtoD, Buk, and But were identified as described previously (54).

(v) Gut microbiome co-abundance network construction and analysis. Fastspar (55), a rapid and
scalable correlation estimation tool for microbiome study, was used to calculate the correlations between
the genomes with 1,000 permutations at each time point based on the abundances of the genomes across
all patients, and correlations with BH-adjusted P , 0.05 were retained for further analysis. The co-abun-
dance network was visualized using Cytoscape v3.8.1 (56). Complete linkage based on the co-abundance
correlations followed by WGCNA analysis (14) was used to identify the guilds.

(vi) Definition of guild-level microbiome index. We defined the GMI using the abundance of the
33 QHMAGs and their relationships. For each individual sample, the GMI of sample j, denoted as GMIj,
was calculated as follows:

Iguild1j ¼
X

i2N
Aij (1)

Iguild2j ¼
X

i2M
Aij (2)

GMIj ¼
Iguild1j

jNj 2
Iguild2j

jMj (3)

Where Aij is the relative abundance of HQMAG i in sample j; N and M are subsets of HQMAGs in
guilds 1 and 2, respectively; and jNj and jMj are the sizes of these two sets. GMI = 0 indicates equality
between guilds 1 and 2. Theoretically, the range of GMI is 2100 to 100.

(vii) Validation in an independent cohort. Metagenomic sequencing data from 24 mild/moderate
and 14 severe/critical COVID-19 patients were downloaded from the European Nucleotide Archive (ENA)
database under PRJNA792726 (9) (Table S5 at https://github.com/nightkid03/SHCOVID-19). The metagenomic
sequencing data from 18 moderate and 9 were downloaded from ENA under PRJNA660883 (33) (Table S5).
The metagenomic sequencing data from 66 COVID-19 patients (first sample after admission) and 9 commu-
nity-acquired pneumonia controls that were negative for COVID-19 were downloaded from ENA under
PRJNA689961 (7) (Table S5). The metagenomic sequencing data from 46 COVID-19 patients and 19 healthy
controls were downloaded from ENA under PRJEB43555 (34) (Table S5). KneadData (https://huttenhower.sph
.harvard.edu/kneaddata/) was applied to perform quality control of the raw reads with the following parame-
ters: -decontaminate-pairs strict, -run-trim-repetitive, -bypass-trf, -trimmomatic-options = “slidingwindow:4:20
minlen:60.” Reads that could be aligned to the human genome were identified and removed in KneadData
by aligning reads against the Homo sapiens hg37 genome. The abundance of the 33 MAGs were estimated
by using Coverm v0.6.1 (https://github.com/wwood/CoverM) with the following parameters: coverm genome
–min-read-aligned-percent = 90 -min-read-percent-identity = 99 -m relative_abundance.

Statistical Analysis. Statistical analysis was performed in R version 4.1.1. A Kruskal-Wallis test followed
by Dunn’s post hoc test (two-sided) was used to compare the different severity groups. Redundancy analy-
sis was conducted based on the Hellinger transformed abundance to find specific gut microbial members
associated with COVID-19 severity. Both single-factor and marginal PERMANOVA tests including both age
and symptom severity were used to compare overall gut microbial composition. AUROC and AUPRC were
used to evaluate the capacity of GMI to discriminate between groups using the R packages pROC and
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PRROC (57), respectively. AUROC considers the trade-offs between sensitivity and specificity and compares
the performance of classifiers with a baseline value of 0.5 for a random classifier. AUPRC, which considers
the trade-offs between precision and recall with a baseline that equals the proportion of positive cases in
all samples, was used as a complementary assessment, particularly for highly imbalanced data sets.

Code availability. Parameters of the bioinformatic tools applied in the study are listed in Materials
and Methods. Scripts and command lines related to the current study can be found at https://github
.com/nightkid03/SHCOVID-19.

Ethics and inclusion statement. We have carefully considered research contributions and author-
ship criteria when involved in multi-region collaborations involving local researchers to promote greater
equity in research collaborations.

Data availability. The metagenomic sequencing data for the current study have been deposited into
the CNGB Sequence Archive (CNGB) of the China National GenBank Database (CNGBdb) (58) under acces-
sion no. CNP0003849. Supplementary tables can be found at https://github.com/nightkid03/SHCOVID-19.
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