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ABSTRACT The alteration of gut microbiota structure plays a pivotal role in the patho-
genesis of abnormal glycometabolism. However, the microbiome features identified in
patient groups stratified solely based on glucose levels remain controversial among dif-
ferent studies. In this study, we stratified 258 participants (discovery cohort) into three
clusters according to an unsupervised method based on 16 clinical parameters involving
the levels of blood glucose, insulin, and lipid. We found 67 cluster-specific microbiome
features (i.e., amplicon sequence variants [ASVs]) based on 16S rRNA gene V3-V4 region
sequencing. Specifically, ASVs belonging to Barnesville and Alistipes were enriched in clus-
ter 1, in which participants had the lowest blood glucose levels, high insulin sensitivity,
and a high-fecal short-chain fatty acid concentration. ASVs belonging to Prevotella copri
and Ruminococcus gnavus were enriched in cluster 2, which was characterized by a mod-
erate level of blood glucose, serious insulin resistance, and high levels of cholesterol and
triglyceride. Cluster 3 was characterized by a high level of blood glucose and insulin defi-
ciency, enriched with ASVs in P. copri and Bacteroides vulgatus. In addition, machine
learning classifiers using the 67 cluster-specific ASVs were used to distinguish individuals
in one cluster from those in the other two clusters both in discovery and testing cohorts
(n = 83). Therefore, microbiome features identified based on the unsupervised stratifica-
tion of patients with more inclusive clinical parameters may better reflect microbiota
alterations associated with the progression of abnormal glycometabolism.

IMPORTANCE The gut microbiota is altered in patients with type 2 diabetes (T2D) and
prediabetes. The association of particular bacteria with T2D, however, varied among
studies, which has made it challenging to develop precision medicine approaches for
the prevention and alleviation of T2D. Blood glucose level is the only parameter in
clustering patients when identifying the T2D-related bacteria in previous studies. This
stratification ignores the fact that patients within the same blood glucose range differ
in their insulin resistance and dyslipidemia, which also may be related to disordered
gut microbiota. In addition to parameters of blood glucose levels, we also used addi-
tional parameters involving insulin and lipid levels to stratify participants into three
clusters and further identified cluster-specific microbiome features. We further vali-
dated the association between these microbiome features and glycometabolism with
an independent cohort. This study highlights the importance of stratification of
patients with blood glucose, insulin, and lipid levels when identifying the microbiome
features associated with the progression of abnormal glycometabolism.
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Alinkage between gut microbiota dysbiosis and type 2 diabetes (T2D) has been
extensively explored (1–3). The alterations of the gut microbiota of patients with

T2D are characterized by a decrease in the abundance of beneficial bacteria (e.g.,
Akkermansia muciniphila, the genera of Bifidobacterium and Roseburia spp.) and an
increase in opportunistic pathogens, including Clostridium bolteae and Desulfovibrio sp.
(1, 4–6). The loss of potential butyrate-producing bacteria, such as Faecalibacterium
prausnitzii, and the deficiency in butyrate production are the most common findings in
patients with T2D, as well as in patients with prediabetes (1, 3, 5–7). Nonetheless, the
association of particular bacteria with T2D has varied among studies. For instance,
Zhang et al. found that A. muciniphila was less abundant, whereas Clostridiales sp. strain
SS3/4 was more abundant in patients with T2D (4), but the abundances of these two
taxa showed the opposite result from those reported in the study by Qin (1). This confu-
sion has led to difficulty in using bacterial features to elucidate the mechanism of gut
microbiota in the development of T2D for developing new biomarkers and therapies.

One possible reason for the challenge in identifying gut microbial characteristics in
patients with T2D and prediabetes is that all of the previous studies have solely used
blood glucose levels as the criteria to stratify their cohorts. Clinical investigation, how-
ever, has shown that people within the same blood glucose range, as defined by the
American Diabetes Association (ADA) and World Health Organization (WHO) criteria, are
heterogeneous in insulin sensitivity and islet b-cell function (8, 9). Insulin resistance and
islet b-cell dysfunction are the two pathogeneses of abnormal glycometabolism and
occur much early than the onset of hyperglycemia (10). In addition, the condition of dys-
lipidemia, a risk factor of T2D and diabetic complications, is varied in people within the
same blood glucose range. For example, in the Framingham Heart Study, 19% of the
men and 17% of the women with diabetes had increased total plasma triglyceride levels,
and the prevalence of increased total plasma triglyceride levels in men and women with
normal blood glucose levels were 9 and 8% (11). Recently, apart from blood glucose lev-
els, additional variables related to insulin resistance and sensitivity, as well as dyslipide-
mia, have been proposed for use in glycometabolism classifications (12–14). In addition
to blood glucose levels, a study classified individuals, including healthy people and peo-
ple with prediabetes, into six distinct clusters by including parameters such as insulin
secretion, insulin resistance, and high-density lipoprotein-cholesterol (HDL), and moni-
tored them for 4.1 years and 16.3 years (mean follow-up years in two cohorts, respec-
tively) (12). Longitudinal follow-up revealed that different clusters had different risks of
diabetes and diabetic complications. Individuals in one of the clusters experienced
slower progression to overt T2D than those in other clusters but had a higher risk of ne-
phropathy. In addition to the hyperglycemia, the disorder of gut microbiota has been
shown to have a causative role in the progression of obesity and insulin resistance both
in mouse models and in human studies by gut microbiota transplantation. For example,
the Enterobacter cloacae B29 strain isolated from a morbidly obese human’s gut induced
obesity and insulin resistance in germfree mice (15). A gut microbiota transplantation
study on humans revealed that gut microbiota from lean donors increased the insulin
sensitivity in obese recipients with metabolic syndrome (16). In addition, the gut micro-
biota could regulate insulin resistance by producing metabolites, such as imidazole propio-
nate, which could directly impair insulin signaling at the level of insulin receptor substrate
(17). Furthermore, a study in germfree and conventionally raised mice showed that the gut
microbiota had an effect on the host’s serum lipidomes, especially the triglyceride levels (18).
In obese mice fed a high-fat diet, supplementation with probiotics, such as Lactobacillus cur-
vatus, alone or together with L. plantarum, reduced cholesterol in plasma; supplementation
with Bifidobacterium spp. decreased the levels of circulating triglycerides and low-density lip-
oprotein-cholesterol (LDL) and increased the HDL level (19–21). Therefore, it is essential to
consider insulin and lipid levels in the criteria for cohort stratification when studying the
association of glycometabolism and gut microbiota.

In this study, to identify the microbiome features that correlate with progression of
abnormal glycometabolism, we classified 258 individuals into three glycometabolism
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clusters according to variables related to blood glucose level, insulin resistance, and
dyslipidemia. We found that the gut microbiota structure was different among the
three glycometabolism clusters, and the characteristics of gut microbiota were associ-
ated with metabolic phenotypes. Moreover, we identified cluster-specific microbiome
features and further validated their association with glycometabolism with a testing
cohort.

RESULTS
Unsupervised-stratification-based clusters of patients with abnormal glycome-

tabolism. During a survey of patients with T2D conducted at Sijing Community Health
Service Center of Shanghai Songjiang District, we recruited 267 participants as a discovery
cohort and examined 33 bioclinical parameters of these participants. According to ADA crite-
ria (8), 84 participants had normal glucose tolerance (NGT), 52 had isolated impaired fasting
glucose (IFG), 34 had isolated impaired glucose tolerance (IGT), 38 had combined glucose
intolerance (CGI), and 59 had T2D. We observed that the coefficients of variation (CV) of insu-
lin levels for the oral glucose tolerance test (OGTT), homeostatic model assessment for insu-
lin resistance (HOMA-IR), b-cell function (HOMA-b), serum triglyceride level, and cholesterol
levels (total cholesterol, HDL, and LDL) were high in participants with the same classification
based on ADA criteria (Fig. 1A). We evaluated insulin resistance and insulin secretion using
the HOMA-IR and HOMA-b index, which also showed significant variations in participants
within the same glucose range (Fig. 1B; see also Fig. S1 in the supplemental material). These
results confirmed that the subjects with same glucose level had high heterogeneity of meta-
bolic state.

Then, we reclassified the same group of participants in the discovery cohort accord-
ing to variables, including HbA1c, OGTT-derived glucose levels (five-time point blood
glucose levels during OGTT), and insulin levels (five-time point blood insulin levels dur-
ing OGTT), and anthropometric variables (body mass index [BMI], waist circumference,
hip circumference), as well as variables related to dyslipidemia and insulin resistance
(fasting triglyceride, HDL cholesterol). We standardized the variables before the cluster-
ing procedure. We excluded nine participants (NGT = 1, IFG = 2, IGT = 2, CGI = 1,
T2D = 3) with at least one outlier variable. By using the K-Mediods clustering algorithm
(22), we classified 258 participants into three clusters that were determined according
to the maximum silhouette coefficient (silhouette coefficient = 0.21) (Fig. 1C and D).
The participants with NGT and prediabetes were clustered only into clusters 1 and 2.
Specifically, 80.7% participants with NGT were clustered into cluster 1 and the rest with
NGT were clustered into cluster 2. In addition, 68% with IFG, 37.5% with IGT, and 45.9%
with CGI were clustered into cluster 1 and the remainder were clustered into cluster 2.
In contrast, most of T2D (53.6%) were clustered into cluster 3, only 3.6 and 42.9% were
clustered into clusters 1 and 2, respectively. Finally, the Jaccard coefficient means for
the three clusters were greater than 0.7 (0.78, 0.71, and 0.83, respectively), which indi-
cated the three clusters were stable.

Compared to cluster 1, clusters 2 and 3 showed more serious disruptions in glyco-
metabolism and lipometabolism and an increased inflammatory state (Table 1). The
levels of HbA1c, FBG (fasting blood glucose), 0.5-h PBG (postprandial blood glucose),
1-h PBG, 2-h PBG, and 3-h PBG were lowest in cluster 1 and highest in cluster 3 (Fig. 1E
and H and Table 1). The insulin levels during OGTT except 3-h insulin level were signifi-
cantly higher in cluster 2 than in clusters 1 and 3 (Fig. 1I and Table 1), and the HOMA-
IR index was significantly higher in clusters 2 and 3 than in cluster 1 (Fig. 1F), indicating
that cluster 1 had the highest insulin sensitivity, and cluster 2 had compensatory secre-
tion insulin, whereas the cluster 3 was insulin deficiency (Fig. 1G). In addition, BMI,
waist-to-hip ratio (WHR), and systolic blood pressure (SBP) were significantly higher in
cluster 2 than those in the other two clusters (Fig. 1J and Table 1). The levels of total
cholesterol, triglyceride, and leptin were significantly higher in clusters 2 and 3 than
those in cluster 1 (Fig. 1J and Table 1). The lipopolysaccharide (LPS)-binding protein
(LBP) level, an indicator of chronic inflammation, was lowest in cluster 1 and highest in
cluster 3 (Table 1).
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FIG 1 Metabolic characteristics of the unsupervised-stratification-based clusters. (A, top panel) Coefficients of variation (CV) of clinical variables in each
ADA group. The size of the circle indicates the CV value. (Bottom panel) Heatmap of clinical variables. The values were scale transformed by column. (B)

(Continued on next page)
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Taken together, participants in cluster 1 showed high insulin sensitivity and the lowest
glucose levels and serum lipids. Participants in cluster 2 had serious insulin resistance and
high serum lipids levels. Participants in cluster 3 had insulin deficiency, with the highest
levels of blood glucose and chronic inflammation.

Differences in gut microbiota in unsupervised-stratification-based clusters. To
investigate the differences in the gut microbiota among three unsupervised-stratification-
based clusters, we performed 16S rRNA gene V3-V4 region sequencing on fecal samples
collected from all of the participants. Although there were no significant differences in di-
versity and richness of the gut microbiota (see Fig. S2), the PCA of phylogenetic-ILR (PhILR;
phylogenetic-isometric log ratio transformation)-transformed Euclidean distances and score
plots of the linear discriminant analysis (LDA) showed that the structure and composition of
the gut microbiota differed significantly among the three clusters (Fig. 2A and B). Moreover,
the distance between cluster 1 and cluster 3 was larger than it was between cluster 1 and
cluster 2 (Fig. 2C).

Then we constructed a coabundance network of prevalent ASVs (shared by more than
20% of the samples) in each cluster based on Pearson correlation coefficient to explore
the ecological relationship of the members in gut microbial community (Fig. 2D). We cal-
culated the topological parameters of networks in three clusters to explore whether any
differences existed in complexity among the microbial networks. The total numbers of
nodes were similar (168, 153, and 158) among the three networks, whereas the total num-
bers of edges varied relatively (638, 420, and 332); in particular, the network in cluster 3
had the lowest number of edges. The network density, which is defined as the ratio of
the number of actual edges and the number of possible edges, decreased progressively
in the three clusters (the density values in clusters 1, 2, and 3 were 0.045, 0.036, and
0.027, respectively). Moreover, the network degree centrality, a measure of the relative
connectivity of each node in a network, decreased from cluster 1 to cluster 3 (Fig. 2E).
These results suggested that cluster 1 had more microbial interactions than the other two
clusters. Since bacteria act as functional groups (guilds) in the gut ecosystem (23), we
next clustered the 188 nodes (i.e., ASVs) of the three networks into 29 coabundance
groups (CAGs). Correlation analysis between CAGs and clinical parameters showed signifi-
cant correlation between gut microbiota and glycometabolism, insulin secretion, and lipid
levels (see Fig. S3).

Moreover, we measured the content of short-chain fatty acids (SCFAs) in the fecal sam-
ples of all participants. SCFAs are important microbiota-derived metabolites and have
been proved to be associated with glycometabolism. We found that cluster 1 had the
highest concentration of fecal butyric acid, whereas cluster 3 had the lowest (Fig. 2F). The
difference of acetic acid concentration among three clusters was similar with butyric acid
(Fig. 2G). We further examined the genes involved in the production of butyric and acetic
acid, e.g., buk for butyrate and fhs for acetate production. The gene abundances showed a
pattern similar to that of the fecal butyric and acetic acid concentration among three clus-
ters (see Fig. S4).

Taken together, the b-diversity of gut microbiota, the gut microbial network topol-
ogy, and the capacity for producing butyrate and acetate were significantly different
among these three clusters.

Features of gut microbiota in unsupervised-stratification-based clusters. To
identify the cluster-specific microbiome features of three clusters, we compared the abun-
dance of ASVs among the three clusters using Wilcoxon rank sum test (false discovery rate

FIG 1 Legend (Continued)
Variations of HOMA-IR among members within the same blood glucose range. (C) Silhouette coefficient corresponding to the number of clusters from 2 to
20. (D) The number of participants in each cluster, with colors indicating glycemic categories (NGT, normal glucose tolerance; IFG, impaired fasting
glycemia; IGT, impaired glucose tolerance; CGI, combined impaired fasting glycemia and impaired glucose tolerance; T2D, type 2 diabetes). (E to G)
Comparisons of HbA1c (E), HOMA-IR (F), and HOMA-b (G) among clusters. Boxes show the medians and the interquartile ranges (IQRs), the whiskers
denote the lowest and highest values that were within 1.5 times the IQR from the first and third quartiles, and the outliers are shown as individual points.
The Kruskal-Wallis test P value is shown at the bottom of each plot. A Wilcoxon rank sum test was used for comparisons between two clusters (adjusted
by FDR). Clusters with common characters were not significantly different (FDR . 0.05). (H to J) Radar charts show the median values of clinical parameters
related to blood glucose levels (H), blood insulin levels (I), and lipometabolism (J). Each spoke in the chart represents one cluster.
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TABLE 1 Comparisons of clinical parameters among unsupervised-stratification-based clusters in a discovery cohorta

Category

Mean± SEM

PCluster 1 (n = 132) Cluster 2 (n = 96) Cluster 3 (n = 30)
Glycemic category (ADA criteria)
NGT (n) 67 16 0 /
IFG (n) 34 16 0 /
IGT (n) 12 20 0 /
CGI (n) 17 20 0 /
T2D (n) 2 24 30 /

General information
Age (yrs) 57.426 0.57A (131) 57.596 0.62A (95) 60.836 1.01B (30) 9.2E–03
Gender (no. of females/no. of males) 68/64 53/43 11/19 NS

Glycometabolism indicators
HbA1c (%) 5.496 0.03A (132) 5.766 0.05B (96) 7.16 0.19C (30) 4.6E–16
FBG (mmol/L) 5.476 0.05A (132) 5.76 0.08B (96) 8.456 0.28C (30) 4.5E–18
0.5-h PBG (mmol/L) 9.226 0.15A (129) 10.16 0.23B (91) 13.066 0.5C (26) 3.9E–11
1-h PBG (mmol/L) 8.776 0.2A (129) 10.846 0.32B (91) 16.296 0.57C (26) 6.4E–18
2-h PBG (mmol/L) 6.666 0.14A (132) 8.766 0.27B (96) 15.216 0.52C (30) 6.6E–24
3-h PBG (mmol/L) 4.416 0.11A (125) 5.446 0.21B (87) 10.126 0.5C (26) 2.4E–16
Glucose AUC (mmol/L/min) 1253.996 23.93A (132) 1480.76 43.71B (96) 2213.36 131.75C (30) 3.7E–14
HOMA-IR 0.86 0.04A (130) 1.66 0.11B (91) 1.336 0.23B (28) 6.7E–09
HOMA-IS 1.696 0.09A (130) 1.026 0.08B (91) 1.286 0.15B (28) 6.7E–09
HOMA-b 38.096 2.66A (130) 63.186 4.77B (91) 14.716 2.19C (28) 4.1E–14
Fasting insulin (mU/mL) 3.326 0.16A (130) 6.246 0.41B (91) 3.456 0.53A (28) 3.6E–09
0.5-h insulin (mU/mL) 20.886 1.3A (127) 31.86 2.35B (87) 6.626 0.84C (28) 5.6E–15
1-h insulin (mU/mL) 24.516 1.29A (127) 42.336 2.95B (87) 11.186 1.54C (28) 7.6E–13
2-h insulin (mU/mL) 19.646 1.38A (131) 43.446 3.77B (91) 13.156 1.74A (28) 1.6E–12
3-h insulin (mU/mL) 5.076 0.44A (127) 14.446 1.51B (87) 8.676 1.19B (28) 7.3E–12
Insulin AUC (mU/mL/min) 3028.326 156.09A (130) 5745.886 377.77B (91) 1802.826 197.32C (28) 1.2E–15
Fasting C-peptide (nmol/L) 1.196 0.05A (131) 1.966 0.11B (91) 1.326 0.17A (28) 2.6E–09
0.5-h C-peptide (nmol/L) 3.676 0.17A (127) 5.246 0.32B (87) 1.866 0.22C (28) 1.2E–11
1-h C-peptide (nmol/L) 4.916 0.23A (127) 7.286 0.44B (87) 2.676 0.3C (28) 7.6E–12
2-h C-peptide (nmol/L) 4.816 0.24A (131) 8.096 0.42B (91) 4.086 0.54A (28) 3.3E–12
3-h C-peptide (nmol/L) 2.416 0.13A (127) 4.636 0.29B (87) 3.476 0.37C (28) 1.7E–11

Anthropometric markers
BMI (kg/m2) 23.756 0.18A (132) 27.866 0.28B (96) 25.176 0.58A (30) 6.4E–21
Ht (cm) 160.626 0.67 (132) 161.816 0.86 (96) 163.836 1.06 (30) 9.9E–02
Wt (kg) 61.396 0.68A (132) 72.886 0.87B (96) 67.716 1.89C (30) 5.7E–17
Waist circumference (cm) 80.796 0.51A (132) 91.576 0.67B (96) 84.826 1.63A (30) 9.9E–23
Hip circumference (cm) 92.546 0.34A (132) 99.56 0.57B (96) 96.046 1.03C (30) 1.5E–17
Waist-to-hip ratio 0.876 0A (132) 0.926 0B (96) 0.886 0.01A (30) 8.9E–11
SBP (mm Hg) 128.626 1.1A (132) 133.586 1.41B (96) 127.136 2.19A (30) 3.2E–03
DBP (mm Hg) 81.586 0.68 (132) 83.216 0.74 (96) 826 1.55 (30) 9.4E–02

Lipometabolism indicators
Total cholesterol (mmol/L) 1.846 0.1A (127) 2.416 0.16B (91) 1.86 0.25AB (27) 1.1E–02
Triglyceride (mmol/L) 0.666 0.04A (127) 1.36 0.16B (91) 1.056 0.25AB (27) 8.5E–04
HDL (mmol/L) 0.636 0.04 (127) 0.76 0.04 (91) 0.566 0.08 (27) 1.2E–01
LDL (mmol/L) 1.066 0.1 (127) 1.116 0.1 (91) 0.86 0.12 (27) 2.4E–01
Leptin (ng/mL) 0.346 0.03A (95) 0.516 0.04B (78) 0.366 0.05AB (27) 1.1E–02

Inflammatory indicators
LBP (mg/mL) 12.556 0.53A (77) 14.126 0.51B (64) 16.516 0.92C (24) 1.2E–04

aA Kruskal-Wallis test was used to compare the differences among the three clusters. For comparisons between two clusters, we used the Wilcoxon rank sum test
(adjusted by FDR) for continuous variables and the chi-squared test for categorical variables. Data indicated by the same superscript letters were not significantly
different (FDR. 0.05). n, number of samples; FBG, fasting blood glucose; PBG, postprandial blood glucose; HDL, high-density lipoprotein cholesterol; LDL, low-density
lipoprotein cholesterol; SBP, systolic blood pressure; DBP, diastolic blood pressure. LBP, lipopolysaccharide-binding protein. HOMA-IR = [FBG (mmol/L)� fasting insulin
(mU/mL)]/22.5; HOMA-IS = 22.5/(FBG� fasting insulin); HOMA-b = (20� fasting insulin)/(FBG23.5).
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FIG 2 Characterization of the gut microbiota in unsupervised-stratification-based clusters. (A) PCA of PhILR-transformed Euclidean-distance based on the
abundance of ASVs. The circles and error bars indicate the means and standard errors of the mean (SEM). Comparisons of gut microbiota structures among
three clusters were tested by permutational multivariate analysis of variances (PERMANOVA; permutations = 9,999). (B) LDA score plot of the gut
microbiota structure of the three clusters. (C) Between-sample Bray-Curtis distances of the gut microbiota of three clusters. Kruskal-Wallis test (***,
P , 0.001). (D) Visualization of constructed networks based on Pearson correlation coefficient. The first six modules with a large number of nodes are
shown in different colors, and the other modules are shown in gray. (E) Degree centralities of networks from three clusters. Kolmogorov-Smirnov tests
were used to test the differences in cumulative distributions. (F and G) Comparisons of fecal butyric acid (F) and fecal acetic acid (G) concentrations among
clusters. Boxes, whiskers, and outliers denote values as described for Fig. 1E. A Wilcoxon rank sum test was used for comparisons between two clusters
(adjusted by FDR). Clusters with common characters were not significantly different (FDR . 0.05).
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[FDR] , 0.05, jlog2-fold changej . 1). We found that 67 ASVs were significantly different
between at least two clusters (Fig. 3, top panel; see Table S1 in the supplemental mate-
rial). Only 14 of the 67 ASVs showed significantly altered abundance between clusters 1
and 2, and 36 ASVs were significantly altered between clusters 1 and 3, whereas the
abundance of 43 ASVs changed significantly between clusters 2 and 3. b-Diversity analy-
sis based on the Bray-Curtis distance showed significant correlations between the pro-
files of 67 cluster-specific ASVs and all ASVs (Mantel test, R = 0.4, P = 0.001; Fig. S5,
Procrustes analysis, P , 0.001). In addition, the Mantel statistic based on Euclidean dis-
tance of 67 cluster-specific ASVs and Euclidean distance of 16 clinical variables used for
unsupervised clustering, showed that the alteration pattern of microbiome features was
significantly associated with the clinical phenotype (Mantel test, R = 0.14, P = 0.003).

We subsequently assessed the correlation between the cluster-specific ASVs and all
of the host clinical variables based on a modified general linear model (Fig. 3). Among
the 67 cluster-specific ASVs, we found that 50 ASVs were correlated with at least one
clinical variable. Four ASVs (three belonged to Clostridia: Eubacterium xylanophilum
ASV2293, Eubacterium coprostanoligenes ASV5556, and Clostridia UCG-014 ASV4831; one
belonged to Bacteroidia: Alistipes shahii ASV0472), which were significantly higher in clus-
ter 1, were negatively correlated with the parameters related to glucose intolerance.
Most of the ASVs (39 ASVs) enriched in cluster 3 were significantly positively correlated
with parameters related to glucose intolerance, and five of them were positively corre-
lated with parameters related to lipid metabolism. Among them, two ASVs showed sig-
nificant correlation with insulin-related variables. ASV3403, belonging to Blautia, was

FIG 3 Cluster-specific microbiome features identified based on unsupervised-stratification-based clusters. (Top panel) The colors of circles indicate the
scale-transformed mean abundance of the 67 ASVs in each cluster. These ASVs were clustered with a Spearman correlation coefficient and ward linkage
based on their scale-transformed abundance values. (Middle panel) Association between ASVs and clinical variables. The colors denote the correlation
coefficients. P values were adjusted by Benjamini-Hochberg procedure. #, Adjusted P , 0.25 was considered to be statistically significant based on the
instruction of MaAslin2. Age and gender were considered to be covariates. Red text on the right indicates the variables used for classification. (Bottom
panel) Taxonomy of ASVs. Colors represent the phyla.
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negatively correlated with HOMA-b , but ASV4033 enriched in cluster 3, was positively corre-
lated with HOMA-IS. One of the ASVs enriched in cluster 2, Bacteroides stercoris ASV4844,
was positively correlated with insulin and C-peptide levels. Other ASVs (Paeniclostridium
ASV1761, Coprococcus ASV2125, Muribaculaceae ASV2262, and Parabacteroides distasonis
ASV4677) enriched in cluster 2 were positively correlated with parameters related to glucose
intolerance or hip circumference. Taken together, the results indicated a significant correla-
tion between cluster-specific microbiome features and clinical phenotypes.

Stratification in testing cohort based on cluster-specific microbiome features.
We next developed machine-learning classifiers based on a random forest algorithm
by a leave-one-out cross-validation to distinguish individuals in one cluster from those
in other two clusters using the 67 cluster-specific ASVs. Receiver operating characteris-
tic curve analysis suggested that the models had high prediction power with area
under the curve (AUC) ranging from 0.88 to 0.94 (Fig. 4A). We then tested whether
these features of gut microbiota could distinguish the subjects from different glycome-
tabolism clusters in the testing cohort, who were the survey participants at the same
community 2 years ago. We assigned the participants in the testing cohort to the near-
est one of the three clusters based on Euclidean distance of the clinical variables that
had been used for clustering in the discovery cohort except for the 3-h glucose level
and 3-h insulin level (because these two variables were not available for the testing
cohort) (Fig. 4B). The principal-component analysis (PCA) based on clinical variables,
which we used for classification, revealed a separation among the three clusters of
testing cohort (Fig. 4B). HOMA-IR and HOMA-b were significantly higher in cluster 2
than in the other two clusters (Fig. 4C and D), which was similar to the differences iden-
tified among the clusters in the discovery cohort. In addition, cluster 1 showed the

FIG 4 Classification based on cluster-specific microbiome features in the testing cohort. (A) Receiver-operating
characteristic (ROC) curves for classification of individuals in one cluster from the other two clusters in the discovery
cohort. The random forest classifier was constructed based on leave-one-out cross-validation using the 67 cluster-
specific ASVs. (B) The number of participants in each cluster in the testing cohort, with colors indicating glycemic
categories according to ADA criteria, and PCA plot showing the different clinical phenotype of three clusters. (C and
D) Comparisons of HOMA-IR (C) and HOMA-b (D) among clusters. The Kruskal-Wallis test P value is shown at the
bottom of each plot. Boxes, whiskers, and outliers denote values as described for Fig. 1E. A Wilcoxon rank sum test
was used for comparisons between two clusters (adjusted by FDR). Clusters with common characters were not
significantly different (FDR . 0.05). (E) LDA score plot of the three clusters based on the abundance of ASVs. (F) ROC
curves for classification of individuals in one cluster from the other two clusters in the testing cohort using the 67
cluster-specific microbial features identified in the discovery cohort.
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lowest levels of glucose AUC and cluster 3 showed the highest levels (see Table S2),
which suggested that cluster 1 had the best glucose metabolism. The gut microbiota
structure of the three clusters in the testing cohort were clearly separated from each
other (Fig. 4E), and the score plot of the LDA showed that the gut microbiota structure
was different among clusters and not cohorts (see Fig. S6). To explore whether the par-
ticipants in the different clusters in the testing cohort could be distinguished by the
microbial profile, we developed machine-learning classifiers again using the abun-
dance of the 67 cluster-specific ASVs in the testing cohort. Receiver operating charac-
teristic curve analysis suggested that the models had a moderate prediction power
with an AUC ranging from 0.87 to 0.94 (Fig. 4F). The classification for the testing cohort
suggested that the cluster-specific ASVs reflected the microbiota alterations associated
with abnormal glycometabolism.

DISCUSSION

In the current population-based cross-sectional study, we showed that unsupervised
stratification of patients with abnormal glycometabolism based on more inclusive clinical
parameters could help identify microbiome features more robustly associated with gly-
cometabolism. We confirmed the association between identified microbiome features
and glycometabolism in a validation cohort.

The microbiome composition of individuals with T2D has been controversial among
studies (24). Bifidobacterium and Bacteroides were the most reported genera containing
microbes related with T2D. Bifidobacterium has been reported to be potentially protec-
tive against T2D in most studies, whereas only one study has reported conflicting
result (2, 25–28). Bacteroides has been reported to be negatively correlated with T2D in
five cross-sectional studies and positively correlated with T2D in three studies that had
involved some type of treatment (4, 5, 24, 29). One of the reasons for this unreliable
relationship between gut microbiota and T2D is that individuals within the same blood
glucose range are heterogeneous in insulin sensitivity and secretion as well as lipid
metabolism, which are also associated with gut microbiota (21). In our study, based on
16 variables that combined blood glucose levels and parameters related to insulin re-
sistance and dyslipidemia, we classified 258 individuals into three clusters with unique
metabolic characteristics: cluster 1 was characterized by the lowest blood glucose lev-
els, insulin sensitivity, and lowest lipid levels; cluster 2 was characterized by a moderate
level of blood glucose, serious insulin resistance, and high levels of cholesterol and tri-
glyceride; and cluster 3 was characterized by the highest blood glucose levels and in-
sulin deficiency. The Swedish All New Diabetics study reported that clusters identified
based on more inclusive indexes and an unsupervised method showed different risk of
diabetic complications (13). This result suggested that the stratification based on more
inclusive clinical parameters was better than that based only on blood glucose levels,
because it not only could separate people within different glucose levels and insulin
levels but also could predict the risk of diabetic complications. Based on the unsuper-
vised-stratification-based clusters, we identified cluster-specific microbiome features
that not only were related to glycometabolism but also were available for population
classification in another general cohort. This finding implied an association between
these cluster-specific microbiome features and glycometabolism. Thus, our research
findings suggested that the stratification combining the blood glucose levels and indi-
cators related to insulin resistance and dyslipidemia could make it possible to identify
the microbiome features associated with abnormal glycometabolism.

The identified cluster-specific microbiome features may contribute to the progression of
abnormal glycometabolism. For example, we found that two ASVs belonging to Prevotella
copri were enriched in clusters 2 and 3, respectively, and one ASV belonging to Bacteroides
vulgatus was enriched in cluster 3. Both cluster 2 and cluster 3 were characterized by the
most resistance to insulin. One study found that P. copri and B. vulgatus were the strongest
driver species for the positive association between HOMA-IR and microbial branched-chain
amino acids (BCAAs) biosynthesis in Danish individuals without diabetes and further found

Microbiome Features of Stratification-Based Clusters mBio

January/February 2023 Volume 14 Issue 1 10.1128/mbio.03487-22 10

https://journals.asm.org/journal/mbio
https://doi.org/10.1128/mbio.03487-22


that P. copri caused insulin resistance and impaired glucose intolerance by changing the
circulating serum levels of BCAAs in mice (30). Transplantation of B. vulgatus resulted in
insulin resistance in recipient mice (31). Therefore, these two bacteria may have contrib-
uted to a high level of insulin resistance in clusters 2 and 3 in our work. Furthermore, we
also found a high abundance of Ruminococcus gnavus ASV4377 in clusters 2 and 3.
Studies reported that R. gnavus is a mucin-degrading bacterium that may directly break
the integrity of gut barrier and is associated with inflammatory bowel diseases (32–35).
The disruption of gut barrier may lead to the translocation of endotoxins produced by
gut bacteria to the host. In our study, the level of LBP, a load marker of gut-derived anti-
gens, was higher in clusters 2 and 3, which suggested an increased level of plasma endo-
toxin load produced by gut bacteria. The increased circulating endotoxin load would
induce chronic inflammation, which is a driving factor for insulin resistance and dyslipi-
demia (36). Thus, the disordered gut microbiome, such as increased levels of R. gnavus,
may contribute to the insulin resistance and dyslipidemia by disrupting gut barrier, ele-
vating circulated endotoxin load, and inducing chronic inflammation. Moreover, cluster
1 enriched the ASVs belonging to Barnesiella. Some species of Barnesiella have been
reported to produce acetate (37). In addition, high levels of acetate and butyrate concen-
tration, as well as the functional genes involved in the production of these metabolites
were observed in cluster 1. Studies have revealed that acetate suppresses body fat accu-
mulation and inflammation in obese or diabetic rodents through multiple mechanisms
(38–41). Butyrate also has been shown to improve gut integrity by increasing the tight
junction assembly (42), inducing mucin synthesis (43), and decreasing gut bacterial
transport across the epithelium (44). Thus, the individuals in cluster 1 may have bene-
fited from the integrity of the intestinal barrier, which was protected by higher acetate/
butyrate concentration, and may have avoided chronic inflammation that can be
induced by elevated endotoxin load. Taken together, the cluster-specific microbiome
features found in the present study may have contributed to the distinct glycometabo-
lism phenotype of the three clusters. The contribution and mechanism of these bacteria
in the progression of glycometabolism disorder need to be further experimentally
verified.

In this study, we showed that unsupervised stratification based on blood glucose,
insulin, and lipid levels led to the identification of cluster-specific gut microbiome fea-
tures associated with glycometabolism. A well-stratified cohort is a prerequisite for the
identification of bacteria associated with glycometabolism. Upon further validation in
larger cohorts and follow-up with a longer duration, the elucidation of the mechanism
of these identified cluster-specific microbiome features in the progression of abnormal
glycometabolism may lead to the future development of biomarkers for early diagno-
sis and therapeutic treatment.

MATERIALS ANDMETHODS
Ethical approval. The protocols for both studies were approved by the Human Research Ethics

Committee of Shanghai General Hospital (2009KY037, 2013KY083) before the procedure of enrollment.
This clinical trial was registered in the Chinese Clinical Trial Registry under number ChiCTR-IPC-14005346.
All of the participants signed an informed consent form before sample collection.

Overview of the cohorts. Patients at the Sijing Community Health Service Center of Songjiang District
participated in a survey about type 2 diabetes (T2D). We recruited 267 individuals from a diabetes survey
taken in 2014, which was considered to be the discovery cohort in the analysis. To test our findings in the
discovery cohort, we recruited 86 individuals from a diabetes survey taken in 2012 as the testing cohort.

The participants were asked to fast overnight (more than 10 h) to collect the fasting venous blood.
After physical examination and fasting venous blood collection, we performed a 3-h OGTT (75 g glucose)
and collected venous blood samples at 30, 60, 120, and 180 min. The blood samples were set at room tem-
perature for 30 min and then centrifuged to obtain the serum. The serum of fasting venous blood was di-
vided into two parts: one was used to evaluate the fasting blood glucose, blood lipid, and inflammation,
and the other was immediately stored at 280°C for quantification of LBP and leptin. Stool samples were
collected on the day of the physical examination and stored at280°C quickly until fecal DNA extraction.

Biochemical assays. The levels of HbA1c, serum glucose, serum insulin, serum C-peptide, triglyceride,
total cholesterol, HDL cholesterol, and LDL cholesterol were determined at Shanghai General Hospital,
Shanghai Jiao Tong University School of Medicine. Enzyme-linked immunosorbent assays (ELISAs) were
used to quantify the levels of LBP (Hycult Biotech, PA, USA) and leptin (DL Develop, Wuhan, China) in the
lab of Shanghai Jiao Tong University.
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Unsupervised stratification.We used 16 clinical variables (HbA1c, five-time point blood glucose levels
and insulin levels during OGTT, BMI, waist circumference, hip circumference, triglyceride, HDL) to stratify the
discover cohort. We performed unsupervised stratification in an R environment (version 3.6.1). Euclidean dis-
tances were calculated (the vegdist function in the “vegan” package) for the standardized clinical variables
(scaled to a mean of 0 and a standard deviation of 1) to complete the clustering analysis. Individuals with
outlier variables (absolute standardized levels of $5) were excluded from the clustering analysis. We per-
formed the K-Mediods clustering algorithm using the pam function in the “cluster” package to complete the
clustering procedure. The silhouette-width was calculated using the silhouette function in the “cluster” pack-
age. Clusterboot algorithm from the “fpc” package was used to assess the stability of clusters. Finally, other
than 9 participants who had at least one outlier variable, 258 participants were clustered into three clusters.

We used the median values of the 14 selected clinical variables in the discovery cohort, except for
the 3-h glucose and 3-h insulin levels (because these two variables were not available for the testing
cohort), to assign participants to clusters in the testing cohort. We took the nearest neighbors of the
three cluster centers based on Euclidean distances. After we removed three participants with outlier var-
iables, 83 participants were used in the testing cohort.

Statistical analysis of clinical data. Statistical analyses of clinical data were performed in an R environ-
ment (version 3.6.1). The difference in the clinical variables among clusters was tested by Kruskal-Wallis test.
For differences between two clusters, a Wilcoxon rank sum test was used (adjusted by FDR). FDR values
were converted into a character-based display in which common characters represented clusters that were
not significantly different (the multcompLetters function in the “multcompView” package). The Pearson chi-
square test was performed to compare the differences in categorical data. P , 0.05 (for Kruskal-Wallis test)
and FDR, 0.05 (for Wilcoxon rank sum test) were considered to have a significant difference.

Fecal DNA extraction and 16S rRNA gene V3-V4 region sequencing.We extracted fecal microbial
DNA based on the previously published method (45). A total of 353 samples were sequenced in four
batches on Illumina Miseq system (Illumina Inc., USA). The sequencing library of 16S rRNA gene V3-V4
regions was prepared as previously described (46), according to a modified version of the manufac-
turer’s instructions.

We used QIIME2 software (v2018.11) (47) to process and analyze the 16S rRNA gene read pairs. The
raw sequence data were demultiplexed, denoised, and filtered for chimeric reads with the DADA2 plugin
(48) to obtain the frequency table and representative sequence file of amplicon sequence variants
(ASVs). After we removed the ASVs considered to be contaminants (49), the decontamination table com-
posed of 353 sample and 5,448 ASVs was downsized to 10,000,000 to standardize sequence depth. We
used the representative sequence file for taxonomic annotation using the SILVA database (version 138).

Functional gene prediction. The functional genes for producing butyrate (but, butyrate kinase) and
acetate (fhs, formate-tetrahydrofolate ligase) were predicted based on 16S rRNA gene information by
using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt2) (50).

Bioinformatics and statistical analysis of microbiota data. The following analyses of microbiota
were performed by R (version 3.6.1). The a-diversity of each sample was calculated with Shannon index,
Simpson index, Observed ASVs, and Faith’s phylogenetic diversity (PD whole tree) (R-packages “picante,”
“phyloseq,” and “ape”). Structural differences in gut microbiota were assessed by b-diversity based on
PhILR-transformed Euclidean distance using the R-packages “phyloseq” and “philr.” A random forest
model was trained to distinguish the individuals in one cluster from those in other two clusters using
the train function in the R-package “caret.”

Wilcoxon rank sum test (adjusted by FDR) was used to analyze the difference of a-diversity index
and identify the significantly different ASVs between two clusters. ASVs were considered to be signifi-
cantly different between two clusters when the FDR was ,0.05 and the absolute value of the logarith-
mic (base 2) fold change (jlog2-fold changej) in relative abundance was .1. Permutational multivariate
analysis of variance (PERMANOVA; permutations = 9,999) was used to assess the structural difference
between different clusters.

Network construction. In each cluster, prevalent ASVs shared by more than 20% of the samples were
used to construct the microbial association network. Networks of clusters 1, 2, and 3 were generated based on
Pearson correlations of the prevalent ASVs using the R-package “WGCNA.” The correlations with P , 0.05
(adjusted by Benjamini-Hochberg procedure) were retained for further analysis. The layout of nodes and edges
was determined by the Fruchterman-Reingold layout algorithm using the correlation efficient as weight. The
topological characteristics calculation and visualization of the networks were performed using the R-package
“igraph.” Kolmogorov-Smirnov test (the ks.test function in the “stats” package) was used to compare the net-
work’s topological characteristics between clusters. P, 0.05 was considered to have a significant difference.

Next, the ASVs from the three networks were clustered using the “ward.D2” (the hclust function in
the “vegan” package) based on the correlation distance which were converted from correlation values.
Permutational MANOVA (permutations = 9,999, P, 0.01) was used to determine whether the two clades
of the cluster tree were not significantly different and clustered into one CAG.

Association of microbiome features and clinical phenotypes. To calculate the associations between
microbiome features, as well as CAGs and clinical phenotypes, we used a modified general linear model as
implemented by MaAsLin2 (Multivariate microbial Association with Linear Models), which combines an arcsine
square root transformed analysis of relative abundances in a standard multivariable linear model while adjust-
ing for gender and age. The P values were adjusted by using the Benjamini-Hochberg procedure. According to
the instructions of the “Maaslin2” package, adjusted P value lower than 0.25 was considered to be significant.

Quantification of fecal short-chain fatty acids. Fecal SCFAs were quantified by gas chromatogra-
phy/mass spectrometry as previously described (2). A Wilcoxon rank sum test was used to analyze the
difference of SCFAs between clusters.
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Data availability. The raw sequence data reported have been deposited (PRJCA013291) in the
Genome Sequence Archive (GSA) database under accession number CRA008952.
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