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ABSTRACT Faster-growing cells must synthesize proteins more quickly. Increased ribo-
some abundance only partly accounts for increases in total protein synthesis rates. The
productivity of individual ribosomes must increase too, almost doubling by an unknown
mechanism. Prior models point to diffusive transport as a limiting factor but raise a para-
dox: faster-growing cells are more crowded, yet crowding slows diffusion. We suspected
that physical crowding, transport, and stoichiometry, considered together, might reveal a
more nuanced explanation. To investigate, we built a first-principles physics-based model
of Escherichia coli cytoplasm in which Brownian motion and diffusion arise directly from
physical interactions between individual molecules of finite size, density, and physiological
abundance. Using our microscopically detailed model, we predicted that physical trans-
port of individual ternary complexes accounts for ;80% of translation elongation latency.
We also found that volumetric crowding increases during faster growth even as cytoplas-
mic mass density remains relatively constant. Despite slowed diffusion, we predicted that
improved proximity between ternary complexes and ribosomes wins out, illustrating a
simple physics-based mechanism for how individual elongating ribosomes become more
productive. We speculate that crowding imposes a physical limit on growth rate and
undergirds cellular behavior more broadly. Unfitted colloidal-scale modeling offers sys-
tems biology a complementary “physics engine” for exploring how cellular-scale behaviors
arise from physical transport and reactions among individual molecules.

IMPORTANCE Ribosomes are the factories in cells that synthesize proteins. When cells
grow faster, there are not enough ribosomes to keep up with the demand for faster pro-
tein synthesis without individual ribosomes becoming more productive. Yet, faster-grow-
ing cells are more crowded, seemingly making it harder for each ribosome to do its work.
Our computational model of the physics of translation elongation reveals the underlying
mechanism for how individual ribosomes become more productive: proximity and stoichi-
ometry of translation molecules overcome crowding. Our model also suggests a universal
physical limitation of cell growth rates.

KEYWORDS systems biology, colloidal physics, physics of life, molecular crowding,
protein synthesis, translation elongation, cytoplasm structure, Brownian motion,
computational modeling, translation

Protein synthesis is essential for cell maintenance and reproduction. For example,
Escherichia coli cells synthesize the majority of their dry mass as protein every cell

doubling. Accordingly, cells that grow more quickly must produce proteins more
quickly. In quantitative detail, as E. coli growth speeds up 5-fold, protein synthesis
across the entire cell increases 15-fold (1). Meanwhile, for the same growth rate
increase, the quantity of ribosomes increases only 9-fold, suggesting that the absolute
productivity of individual ribosomes must also somehow increase, almost doubling as
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growth quickens (Fig. 1 in text, Fig. S1 and Table S1 in the supplemental material at
https://doi.org/10.5281/zenodo.7200121) (1–7). While it is easy to understand why hav-
ing more translation machinery increases total protein synthesis capacity, it is not
obvious how faster-growing cells achieve the translation elongation rates needed to
sustain growth.

Bremer and Dennis hypothesized that individual ribosome activity speeds up at faster
growth rates owing to increased tRNA charging and also due to shifts in codon distribution
among mRNA (6). However, subsequent work has shown that overall tRNA charging
remains relatively constant across growth rate, indicating that other mechanisms are likely
at play (8). Another possibility is that the intrinsic chemical kinetics of peptide bond forma-
tion by the ribosome accelerate with increasing growth rates. For example, in exploring
how to adapt chemical kinetic rates obtained from in vitro experiments for use with in vivo
models, Rudorf and coworkers fitted parameter values to data and showed that faster
chemical kinetic rate constants could account for increased rates of peptide bond formation
(9). However, the specific molecular mechanisms that might account for such parameter
changes are unknown. As a third possibility, Klumpp and coworkers hypothesized that phys-
ical processes could play a limiting role in determining the elongation rate of individual ribo-
somes (2). More specifically, by accounting for Brownian diffusion of ternary complexes via
a growth rate-independent diffusion constant within a Michaelis-Menten kinetics-based
model of translation elongation, Klumpp and coworkers inferred that physical changes in
cytoplasm could lead to changes in growth rate. Taken together, such studies suggest that
both chemistry and physics likely play a role in the speedup of translation elongation.

However, understanding any potential speedup mechanism is challenging
exactly because the chemistry and physics of translation elongation are complex
and coupled. For example, the biochemical processes required are combinatorial:
matching must take place between 42 unique ternary complexes and 64 possible tri-
plet codons. Accordingly, any particular elongating ribosome may encounter numer-
ous mismatching ternary complexes prior to a successful matching reaction. As a
second example, the length and time scales of underlying processes span 3 and 9
orders of magnitude, respectively; specifically, ternary complexes and ribosomes
interact with surrounding biomolecules and each other over nanometers and nano-
seconds but execute processes over micrometers and seconds. As a third example,
while higher concentrations of ternary complexes might be expected to increase
the frequency of encounters with ribosomes, the resulting increase in crowding
might slow the physical search process. Such complexities are compounded by the
fact that everything is happening in parallel among hundreds of thousands of self-
mixing molecules in a growth rate-dependent and crowded cytoplasm.

We addressed these challenges by modeling both the physics and chemistry of
translation elongation in a combined framework. To do so, we adapted an open-source
simulation tool (10) to more accurately represent transport and interactions among

FIG 1 Individual ribosomes make proteins more quickly as growth quickens. Total latency per
peptide bond (left y axis) and elongation rate (right y axis) versus growth rate (x axis). Experimental
data are from references 1–7. Solid line is a second-order polynomial fit of experimental elongation
rates.
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molecules constituting self-mixing systems. In our framework, we explicitly represent
the transport dynamics of individual biomolecules as they physically interact and
chemically react, with nanometer and nanosecond resolution, to simulate processes
spanning minutes in time. A key aspect of our approach is the robust modeling of
Brownian motion and colloidal-scale particle interactions such that these molecules
undergo the inertialess physical encounters appropriate to the colloidal regime (11–
13). In particular, motion and diffusion rates arise directly in our simulations based on
mass, size, and crowding such that resulting emergent behaviors (such as transport
and search time) are not merely ex post facto fits to expected results. When combined
with a well-known multistep kinetic model for the reactions leading to peptide bond
formation (14), our framework enables analysis of the combined physical and chemical
dynamics underlying translation elongation.

We employed our framework to explore how protein synthesis rates in E. coli should
be expected to change with growth rate, directly representing the growth rate-de-
pendent cytoplasm via first-principles modeling of physical and chemical dynamics
without parameter fitting. Starting from well-established measurements of macromo-
lecular composition and physical properties of E. coli cytoplasm at various growth
rates, we demonstrated how well-known changes in the composition of cytoplasm are
entirely sufficient to account for the speedup of translation elongation by individual
ribosomes. We also identified the detailed contributions of transport and reaction to
total elongation latency by monitoring the trajectories of and reactions between ter-
nary complexes and ribosomes in simulation, finding that transport is the dominant
component defining elongation latency. We found that physiological cytoplasmic
crowding speeds up the transport mechanism and thus elongation rates overall.
We confirmed that the expected speedup due to crowding is insensitive to changes in
chemical kinetics needed to exactly match observed elongation rates. Finally, we
explored how still-greater crowding, beyond naturally observed limits, should lead to a
collapse of the colloidal-scale transport speedup mechanism that ultimately limits the
performance of self-mixing living systems.

RESULTS
Embedding chemical kinetics within physical transport. We constructed a spa-

tially resolved chemical and physical framework to model the combined roles of reac-
tion chemistry and transport physics in translation elongation (Fig. 2A and B), tracking
the time spent by ternary complexes unbound and in motion (transport latency
[t transport]) as well as reacting with mismatching or matching ribosomes (reaction la-
tency [t rxn]) until a matching reaction is successfully completed. Together, transport la-
tency and reaction latency make up elongation latency (t elong).

To estimate reaction latencies, we represented the molecular reactions between ribo-
somes and ternary complexes following the individual chemical steps of protein synthesis,
accounting for differences due to reactions involving cognate, near-cognate, and noncog-
nate ternary complexes (Fig. 2C). We used well-established in vitro kinetic measurements
to parameterize our model (Table S5 at https://doi.org/10.5281/zenodo.7200121) and
developed physiologically accurate distributions of expected reaction latencies via a
Markov process (Appendix SA, Figure S2 at https://doi.org/10.5281/zenodo.7200121). We
analyzed the resulting reaction latency distributions, finding that matching reactions
between cognate ternary complexes and ribosomes take 42 ms on average when success-
ful (68% probability). We also found that cognate ternary complexes can be rejected (32%
probability), in which case reactions take 1.4 ms on average. Mismatching reactions involv-
ing near-cognate or noncognate ternary complexes take on average 4.6 ms and 1.4 ms,
respectively. We did not consider misincorporation events due to their low overall likeli-
hood (,1% probability).

Next, recognizing that translation elongation takes place within a crowded cyto-
plasmic milieu, we developed a molecular-mechanistic model for how protein synthe-
sis occurs as a physical process. To start, we estimated the smallest volume of
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cytoplasm sufficient to enable protein synthesis. We assumed that the molecules
required for protein synthesis are homogeneously distributed within the nucleoid-
excluded cytoplasm. This volume is ultimately determined by the concentration of
ternary complexes as the most limiting species. So defined, each “translation voxel”
contains exactly one each of 42 unique ternary complexes, one or more ribosomes,
and many native proteins (represented as average-sized molecules that represent all
other surrounding proteins) (Fig. 2D).

FIG 2 The physical context for translation elongation can be formalized. (A) Schematic of physical and chemical processes that
contribute to translation elongation latency. Multiple transport and reaction steps (dashed line) may occur before a ternary
complex (green/red) encounters and reacts with an unoccupied, matching ribosome (purple). The time ternary complexes spend
unbound while searching for ribosomes is defined as transport latency (t transport), and the time ternary complexes spend bound in
either mismatching (red shaded circle) or matching reactions (green shaded circle) is defined as reaction latency (t rxn). The time
the entire process takes is defined as elongation latency (t elong). (B) Mathematical definitions of translation elongation latencies.
Elongation latency (t elong) is the sum of transport latency (t transport) and reaction latency (t rxn), the latter of which is the sum of
both mismatching ðtmismatch

rxn Þ and matching ðtmatch
rxn Þ reaction latencies. (C) Schematic of the kinetic mechanism of translation

elongation within ribosomes (purple). Ternary complexes are either cognate (green), near-cognate (yellow), or noncognate (red) to
any particular ribosome, which determines kinetic rates. Mismatching reaction latency results from reversible reactions with
noncognate and near-cognate ternary complexes (red and yellow lines), while matching reaction latency results from cognate
ternary complexes proceeding through the full kinetic process (green line). (D) Translation elongation is evaluated by constructing
ensembles of statistically representative “translation voxels” that, in their minimal form, contain exactly 42 ternary complexes
(cognate, green; noncognate, red), at least one ribosome (purple), and numerous average-sized proteins representing all other
surrounding proteins (blue). The depiction of E. coli is adapted with permission from reference 44; molecular abundances are
adapted from the literature (see Results and Materials and Methods).
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Brownian diffusion allows each molecule to sample the voxel volume and encoun-
ter the others. We modeled diffusion explicitly as a random walk of each of the mole-
cules throughout the voxel, where, due to their finite size, they exclude one another
entropically or, in the case of a ternary complex and unbound ribosome pair, initiate a
reaction (see Materials and Methods). The benefit of explicit modeling (rather than
using prior approaches that insert a diffusion coefficient gleaned from experiments) is
that we can follow the detailed motion of each translation molecule in its native mo-
lecular context where diffusivity increases or decreases automatically and naturally
with changes in abundance and crowding (see Appendix SA in the supplemental mate-
rial at https://doi.org/10.5281/zenodo.7200121).

Due to nonuniform codon usage and nonuniform relative abundance of each type
of ternary complex (Table S6 at https://doi.org/10.5281/zenodo.7200121) as well as sto-
chastic variation in the physical distribution of translation molecules in cytoplasm, for
any given cell-wide condition, individual translation voxels should be expected to vary
in the exact combinations of unique ternary complexes and elongating ribosomes. For
example, a translation voxel might contain more than one of a highly abundant tRNA.
Accordingly, starting from our basic translation voxel platform we constructed ensem-
bles of thousands of translation voxels to capture the natural distribution of chemical
identities and spatial configurations that, together, better represent the natural varia-
tion expected within cytoplasm. We used these more accurate voxel ensembles to
examine the physical and chemical mechanistic relationship between growth rate and
elongation rate by simulation (see below).

Stoichiometric crowding accompanies faster protein synthesis.We gathered and
analyzed well-established experimental data for cell mass, cell volume, and the sizes and
abundances of ternary complexes, ribosomes, and proteins in cells across growth rates (1,
15–19) (see Materials and Methods; also, see Fig. S1 and Tables S1 to S4 at https://doi.org/
10.5281/zenodo.7200121). We deduced that, as growth rate (m) increases (from 0.6 to 3.0
doublings [dbl]/h) and translation elongation speeds up (from 12 to 21 amino acids [aa]/s),
ternary complexes and ribosomes monotonically increase in number by nearly an order of
magnitude, while proteins monotonically increase by 3-fold (Fig. 3A). We described the
coupled abundances and volume fraction of each constituent biomolecule as the “colloidal
stoichiometry” of the translation voxel; mathematically, the abundances and volume frac-
tion of each constituent biomolecule i are described as Ni and f i, respectively; f i is calcu-
lated as Vi/Vvox, where Vi is the total volume occupied by a particular biomolecule species
and Vvox is the total volume of the voxel. The colloidal stoichiometry of translation voxels,
which captures both chemical and physical features of cytoplasm, changes with growth
rate. Thus, we hypothesized that growth rate-dependent changes in colloidal stoichiometry
might contribute to the speedup of translation elongation.

More specifically, our modeling revealed changes in the colloidal stoichiometry of
translation voxels as growth quickens (from 0.6 to 3.0 dbl/h): voxels shrink 3-fold (i.e.,
Vvox decreases from 10E5 nm3 to 3E5 nm3) and become 3-fold more crowded
(f vox increases from 0.13 to 0.42). However, the growth in volume fraction is not uni-
form across species: as voxels shrink, the number of ribosomes doubles while the num-
ber of proteins halves (Fig. 3B and D). That is, increased total crowding is dominated
by ribosomes: the volume fraction of ribosomes increases by 7-fold, more than double
that of ternary complexes (f rib = 0.03 to 0.22; f tern = 0.04 to 0.12). Proteins dominate
total volume fraction at low growth rates but then plateau (f prot = 0.06 to 0.10 for m
values of 0.6 to 2.0 dbl/h; f prot = 0.10 to 0.09 for m values of 2.0 to 3.0 dbl/h), thus con-
tributing minimally to the overall increase in crowding (Fig. 3C).

We refer to this growth rate-dependent change in colloidal stoichiometry as “stoichio-
metric crowding,” which we expected would impact both the interactions and motion of
translation molecules at different growth rates. For example, in the growth rate trends
noted above, as growth quickens, ternary complexes and ribosomes should encounter
each other more frequently than they do proteins. As a second example, the distribution
of molecule sizes matters: for a fixed total volume fraction, the diffusion of individual
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particles is faster in a suspension of large than small particles, and as the most dominant
particle size shifts from smaller to larger, diffusion of all particles speeds up (21–23); since
ribosomes increase in their relative volume fraction with growth rate, voxels should mix
more quickly for any given total volume fraction as growth quickens. We remark that the
stoichiometric crowding demonstrated here may arise even in the setting of constant over-
all mass density: in particular, while there have been conflicting reports of overall mass
density changing or remaining constant over different ranges of growth rate in E. coli
(1, 20), molecular abundances and volume fractions change regardless and can impact mo-
lecular behavior (see Fig. S18 and Note S5 at https://doi.org/10.5281/zenodo.7200121).

Physical transport of ternary complexes accounts for most of elongation latency.
We next sought to better understand and quantify any such impacts of crowding and compo-
sition on transport rates, reaction rates, and elongation rates overall. To do so, we established
a baseline quantification of the relative importance of physical transport to chemical reactions
in setting elongation latency. We constructed translation voxels, from very simple to biologi-
cally faithful forms, and analyzed expected transport, reaction, and elongation latencies by
simulation. From this, we inferred the mechanisms by which colloidal stoichiometry regulates
overall elongation latency as a function of growth rate. We used a low growth rate (0.6 dbl/h)
as a benchmark, where bulk elongation takes about 87 ms on average (Fig. 1).

More specifically, we first studied transport and reaction dynamics in detail using an
idealized case in which only a single cognate ternary complex interacts with one matching
ribosome (Fig. 4A). Here, there is no competition with mismatching ternary complexes and
no other molecules blocking the way, and the sought-after ribosome is unbound; rather a
lone ternary complex searches pure cytosolic fluid for a waiting matching ribosome, an
idealized scenario often depicted in “textbook” representations of translation elongation

FIG 3 The relative abundances, concentrations, and volume fractions of translation molecules change as growth quickens. (A) Experimental observations of active
ribosomes, ternary complexes, and protein abundances in E. coli, as well as E. coli cell volume, reveal varying levels of increase with increasing growth rate (gray
bars highlight values at particular growth rates). (B) An abstracted representation of translation voxels as a function of growth rate reveals that differential
changes in molecular abundances are accompanied by an overall increase in crowding (i.e., stoichiometric crowding). The volume of translation voxels (Vvox;
hatched gray circles) decreases while the total volume of constituent biomolecules (concentric pie charts) remains relatively constant. The total number of each
particular type of biomolecule species (Ntern, Nrib, and Nprot), shown within corresponding colors of the pie chart (red, ternary complexes; purple, ribosomes; blue,
proteins) in a given translation voxel as well as the total volume each biomolecule species occupies (Vi; the area of corresponding colors within the pie chart)
change at different growth rates. (C) The volume fractions (f i = Vi/Vvox) of ribosomes (f rib), ternary complexes (f tern), and proteins (f prot) change differently with
increasing growth rate, leading to an overall increase in the total occupied volume fraction of translation voxels (f vox). (D) Representative snapshots of translation
voxel simulations at increasing growth rates, along with their respective volumes (Vvox) and volume fractions (f vox).
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(24). As expected, we found that transport latency—the time a ternary complex spends
not bound to a ribosome, diffusively searching for a match—is nearly instantaneous
(t transport = 0.08 ms) and that nearly all of the elongation process is taken up by reaction la-
tency—the time a ternary complex spends bound to ribosomes (t rxn = 42 ms) (Fig. 4A).
While such a result seems to support the conclusion that chemistry alone determines trans-
lation elongation rate (Fig. 2C), the notion of a two-molecule translation voxel operating at
3% volume fraction, far below physiological conditions, is unrealistic (Fig. 3C).

We next added a physiologically correct number of ternary complexes to the voxel
(i.e., one cognate and 41 noncognate) such that each ternary complex competes to
reach and bind to the ribosome (Fig. 4B). We found that the total reaction time remains
the same (t rxn = 42 ms). However, the transport latency of the cognate ternary com-
plex increases markedly (t transport = 251 ms) and is greater than reaction latency, sup-
porting arguments that translation elongation requires substantial reactant transport
time. The increased transport time is also coupled to reactions: a cognate ternary com-
plex must “wait” to bind with the ribosome while that ribosome is already bound to
noncognate ternary complexes; thus, there is an interplay between reactions and
transport.

We then added a physiologically correct number of ribosomes to the translation
voxel, holding the ternary complex population fixed at one cognate and 41 noncog-
nates (Fig. 4C). Only one ribosome was available for a matching reaction with the

FIG 4 Most of the latency in translation elongation arises from physical transport of ternary complexes. (A to E) Simulation snapshots, model schematics,
and simulation results (top to bottom) for increasingly realistic (left to right) translation voxels at a growth rate of 0.6 dbl/h. In each plot, the average
latency is marked by a blue vertical line and displayed on the top right in milliseconds. (A) A highly simplified translation voxel containing only a single
ribosome and cognate ternary complex. (B) A translation voxel containing a single ribosome and 42 ternary complexes. (C) A translation voxel with 42
ternary complexes and four ribosomes. (D) A translation voxel with 42 ternary complexes, four ribosomes, and 1,970 proteins. (E) An ensemble of
translation voxels that capture the expected natural variation in cognate, near-cognate, and noncognate ternary complexes due to nonuniform ternary
complex and codon abundances coupled with spatial stochasticity. The standard errors in the estimate of the mean relative to the mean for transport
latency and elongation latency are 3% for panels A to C, 9% for panel D, and 6% for panel E, while those for reaction latency are all below 1%.
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cognate ternary complex; the other ribosomes were mismatches for all ternary com-
plexes. Having just one matching ribosome means that we need track only the elonga-
tion events of a single ribosome, while simultaneously tracking mismatching events at
other ribosomes; this approximation provides a lower-bound estimate for bulk elonga-
tion rates while allowing a more accurate accounting of transport and reaction effects
(see below). We found by simulation that transport latency remains similar to voxels
containing a single ribosome (t transport = 248 ms) because the single matching ribo-
some remains bound for almost the same amount of time, indicating that the cognate
ternary complex still needs to wait nearly as long (i.e., the indirect impact of mismatch-
ing reactions). A slight decrease in transport latency can be attributed to some non-
cognate ternary complexes being bound by mismatching ribosomes, meaning that
fewer noncognate ternary complexes are available to occupy the matching ribosome.
However, the reaction latency of the cognate ternary complex increases (t rxn = 63 ms)
due to the direct impact of mismatching reactions: cognate ternary complexes spend
more time in futile interactions with the more abundant mismatching ribosomes.

Next, we added a physiologically correct abundance of proteins to the translation
voxel, resulting in further increases in both transport and reaction latencies (t transport =
396 ms; t rxn = 73 ms) (Fig. 4D). These predicted increases arose because proteins increase
the number of mismatching reactions by trapping noncognate ternary complexes near
ribosomes, which in turn both promotes repeated mismatch reactions and reduces cog-
nate ribosome availability (Fig. S6 at https://doi.org/10.5281/zenodo.7200121).

Finally, we represented the expected statistical variation in cytoplasm by construct-
ing thousands of different voxels that, together, capture the physiological distribution
of relative abundances of translation molecules as reported in the literature (see
Materials and Methods). Specifically, in E. coli, there are 42 unique ternary complexes,
each with its own abundance, and 64 codons, each with its own usage rate, and these
are present in many permissible combinatoric configurations in translation voxels
throughout the cytoplasm (Fig. 2D). We randomly sampled all permissible configura-
tions using reported E. coli codon usage and whole-cell tRNA abundances (see
Materials and Methods; also, see Table S6 and Fig. S4 at https://doi.org/10.5281/zenodo
.7200121). Recognizing that bulk elongation measurements correspond to the time
needed to complete as many successful reactions as there are ribosomes in a voxel, we
computed the transport, reaction, and elongation latencies of each translation voxel
from the time taken for a single matching reaction within the voxel. A weighted average
of the per-ribosome latency for all permissible translation voxels corresponds to the
typical time for just one matching reaction to occur in a voxel and thus provides a
lower-bound estimate of bulk experimental elongation time as obtained from cellular
measurements (see Materials and Methods). While our prior simulations (Fig. 4A to D)
included only noncognate and cognate ternary complexes, our calculations of the en-
semble latencies (Fig. 4E) also included the more detailed classification of some ternary
complexes as near-cognate, which affects system dynamics further because near-
cognates are well known to have a longer rejection time than noncognates (Table S5;
Fig. S2 at https://doi.org/10.5281/zenodo.7200121). We monitored transport, reaction,
and elongation latency during simulation in each of these thousands of voxels and com-
puted a weighted-average value for transport, reaction, and elongation latency. We
found that the weighted-average transport, reaction, and elongation latencies decrease
in the ensemble representation (�t transport = 242 ms; �t rxn = 56 ms; �t elong = 298) (Fig. 4E),
compared to the single-voxel simulation (Fig. 4D). This across-the-board decrease in
latencies emerges naturally from the majority of voxels in which there is more than one
cognate ternary complex, partly a result of the biological phenomenon of more fre-
quently used codons being associated with more abundant cognate tRNAs (Fig. S8 at
https://doi.org/10.5281/zenodo.7200121).

Quantitatively, the Damköhler number (Da)—the ratio of the latency of transport to
reaction (t transport/t rxn)—highlights the dependency of translation elongation latency
on physical transport relative to chemical reaction. In our simplest model, Da is ;0,
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suggesting that reaction latency dominates elongation latency. However, our increas-
ingly accurate models estimate Da values of 6, 4, 5, and 4, respectively (Fig. 4B to E).
We thus concluded that processes that modulate transport latency play a dominant
mechanistic role in regulating the overall speed of translation elongation.

Stoichiometric crowding speeds up translation elongation. We returned to the
puzzle of what mechanism(s) might cause the productivity of individual ribosomes to
increase with increasing growth rates. We first evaluated the impact of stoichiometric
crowding on transport latency by considering both molecule proximity (i.e., how close
molecules are to one another) and molecular mobility (i.e., how fast molecules move).
We also evaluated the impact of stoichiometric crowding on reaction latency by con-
sidering both local availability (i.e., the extent to which ternary complexes are free
from repeated mismatching reactions) and global availability (i.e., the extent to which
ternary complexes are free from mismatching reactions generally). Taking these data
together, we determined if and how each of these coupled physicochemical mecha-
nisms might regulate elongation latency as a function of growth rate.

We hypothesized that crowding should tend to reduce transport latency because ter-
nary complexes need to search smaller volumes to find a matching ribosome. To explore
this idea, we computed the average surface-to-surface distance between ternary com-
plexes and their closest ribosomes (i.e., the shortest distance a ternary complex needs to
travel to find a ribosome) across hundreds of translation voxels at multiple growth rates
(see Materials and Methods). We found that stochiometric crowding brings ternary com-
plexes and ribosomes 5-fold closer on average (16 nm to 3 nm), which supports our
hypothesis (Fig. 5A, left axis). However, stoichiometric crowding could also increase trans-
port latency as ternary complexes become hindered in their motion and thus take longer
to search. To explore this second idea, we examined the influence of stoichiometric
crowding on molecule mobility by estimating the viscosity of cytoplasm as well as the
hindered diffusivity of ternary complexes, ribosomes, and proteins via simulation of hun-
dreds of translation voxels at multiple growth rates (Fig. 5A, right axis; also, see Fig. S3 at
https://doi.org/10.5281/zenodo.7200121 and Materials and Methods). We found that sto-
chiometric crowding increases viscosity monotonically (1.0 to 2.4, normalized to viscosity
at a m of 0.6 dbl/h) while reducing diffusivity monotonically for all biomolecules (e.g., the
diffusivity of ternary complexes, Dtern, slows from 35 mm2/s to 16 mm2/s), which would
support the opposite conclusion: that crowding should hinder transport. Recognizing this
competition between an increased proximity reducing transport latency and an increased
viscosity increasing transport latency, we more systematically considered the contribution
of each mechanism to transport as stoichiometric crowding increased due to increased
cell growth rate.

For example, we simulated ensembles of translation voxels representing the full sta-
tistical distribution of ternary complexes and codon abundances from low to high
growth rates (see Materials and Methods). We found that transport latency monotoni-
cally decreases with stoichiometric crowding (t transport = 242 ms to 83 ms) (Fig. 5B).
We deduced that, mechanistically, crowding drives faster transport because reducing
the search distance between ternary complexes and ribosomes is more important than
increased viscosity. However, while this net decrease in transport latency will decrease
elongation latency overall, it could be that coupled changes in reaction latency either
reverse or reinforce this trend.

Thus, we examined two mechanisms that could modulate reaction latency. First, we
recalled that proteins can induce repeat reactions by trapping ternary complexes and
ribosomes together (see “Physical transport of ternary complexes accounts for most of
elongation latency”). These repeat reactions should reduce the local availability of ter-
nary complexes, making it more difficult for ternary complexes to find matching ribo-
somes, driving up reaction latency. To examine whether increased stoichiometric
crowding amplifies this effect, we tracked the number of times ternary complexes con-
secutively rereact with the same ribosome following a mismatching reaction across
hundreds of translation voxels at various growth rates. We were surprised to find that
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FIG 5 Stoichiometric crowding reduces both intermolecular distances and transport latency, resulting in
increasingly productive ribosomes as growth rate increases. (A) As crowding and growth rate increase (x axes),
ternary complexes become closer to their nearest ribosome (left y axis) and translation voxel viscosity increases
(right y axis). Distance is reported as a surface-to-surface estimate. Viscosity is reported normalized to viscosity at a
growth rate of 0.6 dbl/h. (B) Simulation results showing that transport latency (y axis) decreases with increased
crowding and growth rate (x axes). (C) As crowding and growth rate increase (x axes), the average number of
repeat reactions between ternary complexes and ribosomes decreases (left y axis), while the absolute number of
mismatching ribosomes in a translation voxel first increases then decreases (right y axis). (D) Simulation results
showing that reaction latency (y axis) first increases then decreases with increased crowding and growth rate (x
axes). (E) Simulation results showing that the predicted absolute elongation latency decreases with increased
crowding and growth rate (x axes). Experimentally measured per-ribosome elongation latency (solid line upon
green area; replotting of Fig. 1) also speeds up with growth rate but is faster than predicted across all growth
rates. The standard errors in the estimate of the mean for all model results (A to E) are shown (error bars).
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repeated reactions decrease 5-fold (from ;10 to ;2 repeat reactions per ribosome on
average) as growth rate quickens and total crowding increases (Fig. 5C, left axis). We
resolved this apparent paradox by recognizing that the increased crowding arises pri-
marily due to tighter packing of ribosomes, while the volume fraction of proteins
hardly changes. We deduced that this provides more local ribosome alternatives (i.e.,
higher local availability) for ternary complexes but with no increase in trapping by pro-
teins (Fig. S6 at https://doi.org/10.5281/zenodo.7200121). However, having more
ribosomes, regardless of how well packed they are, provides more opportunities to
preoccupy ternary complexes in mismatch reactions, reducing ternary complex global
availability, which should drive up reaction latency. We found that the number of mis-
matching ribosomes in a voxel first increases and then decreases with growth rate,
which should contribute an initial increase and then decrease in reaction latency as
growth rate increases (Fig. 5C, right axis). Taken together, the observations indicate
that the total impact on reaction latency depends on the relative strengths of each of
these effects.

We next computed reaction latencies across our ensembles of translation voxels,
capturing how physiological variation influences the competition between local and
global availability. We found that total reaction latency increases (�t rxn = 56 ms to 70
ms) at low but increasing growth rates and then decreases monotonically thereafter
(�t rxn = 70 ms to 56 ms) (Fig. 5D). Low global availability of ternary complexes domi-
nates at low growth rates, slowing reaction latency as growth rate increases. However,
at higher growth rates, the increases in both global and local availability combine to
drive down reaction latency. Overall, the growth rate trend in reaction latency (Fig. 5D)
follows ternary complex global availability (Fig. 5C, right axis). Practically, even with a
25% increase that subsequently reverses, reaction latency changes only 7% over low to
high growth rates, suggesting that transport plays the more substantial role in speed-
ing elongation.

Indeed, the quantitative speedup of reaction latency with growth rate (Fig. 5D) is
minor compared to the corresponding speedup of transport latency (Fig. 5B), indicat-
ing that transport mechanisms should be expected to dominate over reaction mecha-
nisms in regulating the growth rate-dependent productivity of individual ribosomes.
Our ensemble simulations show that the dominance of transport manifests in the total
elongation latency as a monotonic speedup of elongation with growth rate (�t elong =
298 ms to 135 ms), recovering the experimental trend of faster elongation at higher
growth rates (tbulkelong = 83 ms to 48 ms) (Fig. 5E).

Finally, although our model correctly predicts and recovers the qualitative behavior
and overall trend (i.e., an increase in ribosome productivity with increasing growth
rate), we noted that our unfitted bottom-up modeling and simulations result in abso-
lute predictions of translation elongation latencies that are ;3-fold too slow compared
to experimental observations (Fig. 5E). Thus, we conducted sensitivity analyses in
which chemical kinetic rates were fitted to match observed overall translation elonga-
tion latency (see Note S1 at https://doi.org/10.5281/zenodo.7200121). We found that
the speedup in translation elongation is insensitive to changes in the chemical kinetics
of translation elongation (Fig. S13 at https://doi.org/10.5281/zenodo.7200121).

DISCUSSION

The observed increase in individual ribosome activity as growth quickens has not
been explained mechanistically (Fig. 1). While many have focused attention on how
translation initiation contributes to protein synthesis latency, we were intrigued by
how the individually fast steps of translation elongation add up during translation
elongation and should dominate overall process latency (Note S2 at https://doi.org/10
.5281/zenodo.7200121). In the context of translation elongation, while prior studies of
protein synthesis rates focused on chemical kinetic measurements or kinetics-based
modeling, there have been persistent signals that Brownian diffusion of translation
molecules plays a role in setting elongation rates.
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With this in mind, we explored the idea that either chemistry or physics, or both,
contributes to the speedup of translation elongation utilizing dynamic simulations. We
proposed that reactions between ternary complexes and ribosomes are nontrivially
coupled to their physical transport and that understanding this coupling is essential to
explaining increased ribosome productivity at higher growth rates. To systematically
interrogate the role of coupled physicochemical processes in translation elongation,
we adapted an open-source simulation tool to accurately represent transport of and
interactions between translation molecules in cytoplasm. A key aspect of our approach
is the robust modeling of Brownian motion and colloidal-scale particle interactions
such that these molecules undergo the inertialess physical encounters appropriate to
the colloidal regime. We defined translation voxels as naturally emergent from the con-
stituent biomolecules required for translation and captured the natural distribution of
chemical identities and spatial configurations of translation molecules in cytoplasm by
constructing ensembles of thousands of voxels. We monitored in simulations the reac-
tions and transport of molecules in these voxel ensembles to study the physical and
chemical mechanistic relationships between growth rate and elongation rate (Fig. 2).

We found that transport latency—the time ternary complexes spend searching for
cognate ribosomes—is an essential component of elongation latency. Furthermore,
we predicted that transport latency dominates over reaction latency—the time ternary
complexes spend reacting with ribosomes (Fig. 4). Indeed, physical transport of individ-
ual ternary complexes accounts for ;80% of elongation latency. By examining the
elongation process as growth rate increases, we identified two competing mechanisms
that underlie transport latency: proximity between ternary complexes and ribosomes,
which sets search distance, and cytoplasmic crowding, which sets diffusive speed.
Additionally, we observed that translation molecules become 3-fold more crowded
with increasing growth rate, suggesting that, beyond any absolute increase in the
abundance of translation machinery, the machinery itself becomes packed closer to-
gether. The abundance and packing are physical as well as chemical (i.e., colloidal stoi-
chiometry), and their changing due to changes in growth rate is a phenomenon we
call stoichiometric crowding (Fig. 3). Overall, we found that increased packing at higher
growth rates improves proximity, which, along with changes in stoichiometry,
increases the frequency of cognate reactions; this in turn increases individual ribosome
productivity (Fig. 5), revealing a mechanistic explanation for why individual ribosomes
can produce proteins more quickly in faster-growing cells.

Our colloidal-scale, mechanistic conclusions complement existing phenomenologi-
cal modeling work that describes how protein synthesis and growth can be predicted
by resource allocation kinetics and optimization (2, 25, 26). We also help resolve a para-
dox arising from the observations by Klumpp et al., which suggested that slower diffu-
sion of ternary complexes leads to slower growth but then cannot explain faster
growth occurring under more crowded conditions (2). Here, we explain how slower dif-
fusion accompanies faster growth, which is to be expected given increased crowding
in faster-growing E. coli (Fig. 5; also, see Note S4 at https://doi.org/10.5281/zenodo
.7200121). Translation speeds up as diffusion goes down: closer proximity (i.e., mole-
cules closer together at higher crowding) outpaces reduced diffusivity, resulting in
faster translation elongation and thus faster growth overall. Crowding favors ribo-
somes and translation molecules at higher growth rates: the more crowded cytoplasm
has a higher relative abundance of translation molecules than other proteins (Fig. 3).
The resulting improved proximity and changed stoichiometry speed up translation.

We stress-tested our model and confirmed that the speedup of elongation requires
physical transport and that our prediction of speedup is robust to changes in the val-
ues of the input chemical parameters. We also found that increasing 3-fold the values
for all nine in vitro literature values for chemical kinetics parameters closes the quanti-
tative gap between predicted and observed elongation rates (Fig. S13 at https://doi
.org/10.5281/zenodo.7200121). This suggests the rather straightforward chemistry-only
explanation for the gap: in vitro measurements being “off” by ;300%, uniformly across
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all nine parameters. But, interestingly, we also found that a 30-fold increase in only the
ternary complex unbinding rate (k1r)—the only reaction that takes place exclusively
outside the ribosome—could also close the quantitative gap (Fig. S9 at https://doi.org/
10.5281/zenodo.7200121), suggesting that there may be a mechanism involved in vivo
that quickens ternary complex exchange or one that obviates fast rejection (i.e., a
mechanism for favoring matching reactions near to the ribosome).

Overall, our model reveals new opportunities for discovery. For example, better rep-
resentation of electrostatic and hydrodynamic interactions or detailed molecular shape
and orientation for site specificity may be useful. More specifically, attractive interac-
tions between the ribosomal L7/L12 domain and ternary complexes (27) or between
cognate ternary complexes and mRNA (28) could have the effect of preloading or pre-
sorting ternary complexes. As a second example, hydrodynamic models of small and
large particles confined in a cavity show that both types of particles tend to concen-
trate near the cavity surface with minor impact on the mobility of small particles (23),
indicating that ternary complexes and ribosomes may concentrate by the cell mem-
brane (not currently represented in our model) and effectively improve in proximity to
each other.

More generally, our work supports exploration of the role of coupled, colloidal-scale
physicochemical interactions in cytoplasm. For example, we predicted that ternary com-
plexes and ribosomes would be up to 5-fold closer together in faster-growing cells
(Fig. 5A), a major shift in the colloidal-scale structure of cytoplasm that can be expected
to modulate molecular interactions broadly across the cytoplasm. Such colloidal-scale
structure is being increasingly measured experimentally (e.g., ribosome spatial position-
ing via cryo-electron tomography of entire cells) and merits increased attention for its
role in cytoplasm behavior (29, 30). As a second example, the phenomenon of repeat
reactions that we found to be critical to the speedup of protein synthesis has also been
identified as critical to efficient activation of mitogen-activated protein (MAP) kinases
(31), suggesting a wider role for repeat reactions in cell functions. One can also infer the
possibility that stoichiometric crowding with changing growth rate may impact cell sig-
naling in general. As a third example, using our model we predicted that the viscosity of
the nucleoid-excluded cytoplasm increases up to 2.5-fold with growth rate, which indi-
cates a decrease in the mobility of all constituent molecules. Such a broad growth rate-
dependent shift in colloidal-scale dynamics may suggest currently unappreciated forms
of physical regulation in cells and motivates a renewed analysis of diffusive processes in
cells with consideration of volume fraction and growth rate.

Broadly, a more complete understanding and representation of the colloidal-scale
dynamics that underlie cellular processes can offer a practical first-principles founda-
tion for systems biology and whole-cell modeling (32–34). Advances in both computa-
tional modeling and experimental technique are needed to improve the accuracy of
our predictions and promote broader exploration of how coupled colloidal-scale
physics and chemistry in cytoplasm might regulate cellular behaviors. For example,
dynamic simulation of the motion of solvent-suspended particles requires discretiza-
tion of the time domain, where equations of motion are integrated forward in time.
The selection of time step size impacts not only computational expense but also the fi-
delity of particle encounters where, for example, too-large time steps can produce
pathological displacements in response to steeply attractive or repulsive forces (e.g.,
the hard-sphere repulsion that represents entropic exclusion is singular at particle con-
tact), a phenomenon that becomes more severe as crowding increases. Here, we per-
formed a careful study to prioritize physical accuracy first and then optimize efficiency
by, for example, developing a kinetic scaling method that leveraged the natural dispar-
ity between diffusive and reactive time steps (Materials and Methods; Fig. S3, S5, S10,
and S14 at https://doi.org/10.5281/zenodo.7200121). Even so, further capturing the
complexity of cytoplasm (e.g., protein polydispersity, general protein-protein interac-
tions, polysome dynamics, or cell cycle dependency) will ultimately require modeling
other microscopic forces at play in cytoplasm, including electrostatic or hydrodynamic
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interactions or membrane confinement, all of which lead to many-body interactions
that increase computational expense. Modeling such forces, in addition to other mo-
lecular details like shape, softness, flexibility, and site specificity, is becoming possible
with other algorithms, such as Stokesian dynamics for large or confined systems (23,
35–38), but will require substantial integration and iteration with experiments as well
as improvements in computational efficiency to achieve accurate simulations over the
timescales of cellular behavior (39). Capturing detailed molecular dynamics, such as
those involved with ternary complex-ribosome binding and reactions, will also necessi-
tate multiscale modeling and experimentation from atomic to cellular scales.

To conclude, we note that protein synthesis is inextricably tied to growth rate
and fitness; cells cannot grow more quickly than they can reproduce their proteome,
including the proteins that remake the proteome. Since stoichiometric crowding
facilitates faster protein synthesis, could further crowding enable still-faster growth
or, conversely, limit how fast cells can grow? To speculate, as a simple extension of
our modeling, we projected what cytoplasm of faster-than-observed growing E. coli
would look like (Fig. S11 at https://doi.org/10.5281/zenodo.7200121; also, see Materials
and Methods). We found that E. coli would eventually reach maximum packing (i.e., with
little to no space for molecular mixing) as growth rate continues to increase (Fig. 6A).
That such hypothetical growth rates are not observed suggests, among other possibil-
ities, that as growth rate increases beyond the maximum observed, the beneficial effects
of increased crowding (e.g., increased proximity) become outpaced by the deleterious
effects of less available free volume (e.g., further increased viscosity) (Fig. 6B). Our theo-
retical observation expands upon a past proposal that growing cells optimize total pro-
tein volume fraction for both reaction and transport (40) and hints that stoichiometric
crowding may be linked to fitness and evolutionary fine tuning (Note S3 at https://doi
.org/10.5281/zenodo.7200121). If so, then we would expect that genes encoding cur-
rently unknown functions may serve to establish a physical, as well as chemical, basis for
fitness (e.g., proteome polydispersity) undergirding cellular behavior broadly.

MATERIALS ANDMETHODS
Construction of a representative translation voxel. We developed computational representations

of translation voxels by analyzing the abundances and sizes of molecules contained in E. coli cytoplasm

FIG 6 Stoichiometric crowding has diminishing returns that may impose a physical limit on growth rate. (A) Volume
fraction of translation voxels at observed growth rates and projected growth rates compared to theoretical maximum
random close packing (maximum packing changes with size polydispersity [43] and size polydispersity changes with
growth rate). Bounds for volume fraction at projected growth rates are shown (gray dashed line and shading). Maximum
packing increases across observed growth rates (green shading). The volume fraction for the most-crowded observed voxel
(f vox = 0.42; m = 3.0 dbl/h) is shown (right axis, bottom schematic). For reference, the volume fractions at which long-term
molecular motion in monodisperse suspensions is hindered or halted due to random close packing (f = 0.64) or
crystallization (f = 0.74), respectively, are also shown (right axis, middle and top schematic). (B) The product of voxel
volume fraction (f vox) and remaining available volume fraction (f max 2 f vox) increases across observed growth rates
(green shading) before decreasing across higher-than-observed growth rates.
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in relation to overall cell volume and mass. Where needed, we inferred abundances across growth rates
by fitting polynomials to reported measurements (see below).

(i) Calculation of biomolecular abundances in cells. We computed the average abundances of
ribosomes (Nrib) and ternary complexes (Ntern) in single cells across physiological growth rates using
existing data from literature (Table S1 at https://doi.org/10.5281/zenodo.7200121). To compute the abun-
dance of proteins surrounding ribosomes and ternary complexes, we first calculated the total dry mass of
proteins in cytoplasm, Mcytoplasm,prot (equation 1). Protein mass encompasses the mass of all biomolecules
in cytoplasm other than ribosomes, ternary complexes, mRNA, and DNA:

Mcytoplasm;prot ¼ Mcytoplasm 2 Mtern � Ntern 2 Mrib � Nrib 2 Mcytoplasm;mRNA 2 Mcytoplasm;DNA

(1)

The masses of ternary complexes (Mtern) and ribosomes (Mrib) were specified using known molecular
structures and the total mass of mRNA, DNA, and cytoplasm (Mcytoplasm,mRNA, Mcytoplasm,DNA, and Mcytoplasm,
respectively) were taken from literature (Tables S1 and S4). We then calculated the average effective
spherical radius of proteins (�Rprot), as well as the mass of resulting average-sized proteins ( �Mprot), using
single-cell E. colimass spectrometry data and average protein density (rprot) (ProteinComputation.ipynb):

Vprot;i ¼ Mprot;i

rprot
(2)

�Rprot ¼
X

i

Nprot2poly;i

Nprot2poly

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Vprot;i

4p
3

r
(3)

�Mprot ¼ 4
3
pð�R3

protÞ
�
rprot

�
(4)

We obtained the mass and abundances of each protein in the E. coli cytoplasm (Mprot,i and Nprot-poly,i,
respectively), as well as the total number of proteins (Nprot-poly), from the mass spectrometry measure-
ments of Schmidt and colleagues (18). We also computed the volume of each protein in the E. coli cyto-
plasm (Vprot,i) using these measurements. We then determined the abundance of proteins in a cell as the
ratio of total mass occupied by proteins in cytoplasm (equation 1) and the mass of average-sized pro-
teins (Fig. S1B at https://doi.org/10.5281/zenodo.7200121),

Nprot ¼
Mcytoplasm;prot

�Mprot
(5)

We note that the size polydispersity of proteins is weak, meaning that they do not deviate much
from the average size (Fig. S16 at https://doi.org/10.5281/zenodo.7200121). Although we show that the
presence of proteins deeply influences translation dynamics (Fig. 4; Fig. S3, S6 at https://doi.org/10.5281/
zenodo.7200121), the fact that proteins are typically much smaller than ribosomes and ternary complexes
means that protein size variation is a vanishingly small influence in comparison. As a result, we expect neg-
ligible change to ternary complex dynamics and overall translation rates, justifying our representation of
protein crowding with an average size.

(ii) Calculation of translation voxel size and biomolecular abundances in translation voxels.
On a relative basis, amino acid-specific ternary complexes are the least concentrated molecules involved
in translation elongation, and thus, their concentration determines the minimum volume of cytoplasm
capable of supporting protein synthesis. Therefore, we determined the size of translation voxels from
our estimates of ternary complex abundances (Ntern) and E. coli volume (Vcell) across growth rates
(Fig. S1; Tables S1 and S2 at https://doi.org/10.5281/zenodo.7200121). More specifically, we defined a
translation voxel to be the volume of cytoplasm that contains 42 ternary complexes (Ntern,vox = 42),
assuming a spatially homogeneous distribution of ternary complexes within cytoplasm:

Vvox ¼ Ntern;vox � Vcell

Ntern
(6)

We then calculated the average number of proteins (Nprot,vox) and ribosomes (Nrib,vox) within the
translation voxel volume (Vvox) assuming a homogeneous distribution of both species, but with ribo-
somes excluded by the nucleoid (Fig. S1C at https://doi.org/10.5281/zenodo.7200121):

Nprot; vox ¼ Nprot � Vvox

Vcell
(7)

Nrib; vox ¼ Nrib � Vvox

Vcellð12f nucleoidÞ (8)

We estimated the volume fraction of the nucleoid (f nucleoid) as the volume of the nucleoid relative
to cell volume based on published values (Table S3 at https://doi.org/10.5281/zenodo.7200121).

(iii) Polynomial regression fitting. We computed polynomial fits for ribosome abundances, ternary
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complex abundances, cell mass, cell volume, and nucleoid volume fraction using a bootstrapping
method that minimized the mean absolute error (Fig. S1A at https://doi.org/10.5281/zenodo.7200121;
TranslationVoxelParameterization.ipynb); we used mean absolute error instead of mean squared error to
penalize all variation equally.

Calculation of translation voxel volume fractions and polydispersity.We calculated the volume
fraction of ribosomes, ternary complexes, and proteins (Fig. 3C) using ribosome, ternary complex,
and protein abundances in translation voxels; ribosome, ternary complex, and average-sized pro-
tein single-molecule volumes; and translation voxel volume:

f rib ¼
Nrib;vox � Vrib

Vvox
(9)

f tern ¼ Ntern;vox � Vtern

Vvox
(10)

f prot ¼
Nprot;vox � V prot

Vvox
(11)

The abundances of ribosomes, ternary complexes, and proteins (Nrib,vox, Ntern,vox, and Nprot,vox) in trans-
lation voxels as well as the translation voxel volume (Vvox) are as described in equations 6, 7, and 8. The
volume of a single average-sized protein (V prot) is defined as its mass divided by average protein density
(equation 4). We computed the volume of single ribosomes (Vrib) and ternary complexes (Vtern) based on
their longest length (i.e., estimating the molecules as spheres with diameters equal to the longest length
of the molecules), which we measured from their detailed atomic resolution structures (PDB 4V4Q and
PDB 1B23, respectively) (Table S4 at https://doi.org/10.5281/zenodo.7200121).

We calculated the size polydispersity, s, of translation voxels as in reference 41:

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
Ni;vox �

X
Ni;voxR2

iX
Ni;voxRi

� �2 21

vuuuuut (12)

Here, Ni,vox and Ri correspond to the translation voxel abundances and effective spherical radius,
respectively, of each biomolecule type, denoted by the subscript i (Fig. S1, Table S4 at https://doi.org/10
.5281/zenodo.7200121).

Simulation of translation voxels. We simulated transport and reaction of biomolecules within
translation voxels using Brownian dynamics and single-molecule reaction kinetics, respectively. We
implemented our simulations using “Colloidal Smoldyn,” our adaptation of the open-source simulation
software Smoldyn (10). Colloidal Smoldyn accurately represents single-molecule resolution colloidal
transport dynamics and reaction dynamics as described in detail in Appendix SA at https://doi.org/10
.5281/zenodo.7200121. The time step we used in our simulations is Dt = 62 ps.

Simulation of translation voxels with varying composition. To measure the relative contributions
of transport and reactions to protein synthesis rate, we simulated translation voxels with increasingly
accurate composition (m = 0.6 dbl/h) (see “Physical transport of ternary complexes accounts for most of
elongation latency” in Results; ColloidalStoichiometryEffects.ipynb). Specifically, we simulated five pro-
gressively accurate scenarios: (i) a single ribosome and cognate ternary complex matching pair; (ii) a
matching pair surrounded by a physiological number of ternary complexes; (iii) a matching pair sur-
rounded by physiological numbers of ternary complexes and ribosomes; (iv) a matching pair surrounded
by physiological numbers of ternary complexes, ribosomes, and proteins; and (v) a statistically represen-
tative ensemble of translation voxels each with a physiological number of ternary complexes, ribosomes,
and proteins. We performed 900 simulation replicates each for the first three cases and 100 simulation
replicates for case 4; we detail case 5 in the next section. Replicates were assigned random initial condi-
tions, chosen using a Mersenne Twister random number generator with seeds set at multiples of five
(i.e., 0, 5, 10, . . .). Since reaction kinetics inside the ribosome (following codon recognition) are well
known and unidirectional (Fig. 2C; Fig. S1, Table S4 at https://doi.org/10.5281/zenodo.7200121), we did
not explicitly model intraribosomal kinetics within voxel simulations. Instead, we modeled reaction
kinetics following codon recognition separately by producing and sampling from a distribution of
30,000 post-codon recognition reaction times with the kinetic rates summarized in Table S5 at https://
doi.org/10.5281/zenodo.7200121.

Construction of statistically representative translation voxel ensembles. To construct statistically
representative ensembles of translation voxels (see Results), we incorporated reported relative abundances
of different types of ternary complexes and frequencies of codons among mRNA in E. coli at different
growth rates (Table S6 at https://doi.org/10.5281/zenodo.7200121). We computationally constructed
100,000 translation voxels for cells in each of six different growth conditions (0.6, 1.0, 1.5, 2.0, 2.5, and 3.0
dbl/h), sufficient to represent the statistical distribution of translation voxels across each condition.
Individual translation voxels comprise different types of ternary complexes and codon-specific elongating
ribosomes, randomly chosen using a Mersenne Twister random number generator with a seed of zero.

For each translation voxel, we randomly picked a single ribosome to track. We then classified ternary com-
plexes in each translation voxel as either noncognate or cognate to the chosen ribosome, leading to a growth
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rate-dependent distribution in the abundance of cognate ternary complexes (between 0 and 42) across transla-
tion voxels (Fig. S4 at https://doi.org/10.5281/zenodo.7200121, CognatetRNADistributionCalculation.ipynb).
For each of our six modeled growth conditions, we used the distribution of cognate ternary complexes cal-
culated at the closest growth rate (measured at 0.4, 0.7, 1.07, 1.6, and 2.5 dbl/h). The speed with which the
single chosen ribosome in a translation voxel successfully finds and reacts with a cognate ternary complex
provides a good lower bound for the bulk translation elongation rate; the bulk elongation rate corre-
sponds to the speed with which as many peptide bonds are formed as there are ribosomes, and the speed
with which a single ribosome finds and successfully reacts with a cognate ternary complex will typically be
higher than the speed of as many successful reactions as ribosomes in the voxel.

Simulation of statistically representative translation voxels ensembles. To compute the trans-
port, reaction, and elongation latencies of statistically representative ensembles of translation voxels (see
Results), we simulated translation voxels across the six different growth conditions (0.6, 1.0, 1.5, 2.0, 2.5,
and 3.0 dbl/h). Statistically representative ensembles of translation voxels correspond to the full set of pos-
sible translation voxels, meaning that translation voxels can contain 0 to 42 cognate ternary complexes for
a single chosen ribosome (distributed as in Fig. S4 at https://doi.org/10.5281/zenodo.7200121). For transla-
tion voxels containing 1 to 42 cognate ternary complexes belonging to cells growing at each of the six
growth rates, we simulated 100 replicates starting from different random initial conditions (42 � 6 �
100 = 25,200 total simulations). We set conditions for each replicate using the Mersenne Twister random
number generator with seeds set as multiples of five (i.e., 0, 5, 10, . . ., 495). Simulations were terminated
when the ribosome being tracked successfully reacted with a cognate ternary complex.

Post-simulation analysis of statistically representative translation voxel ensembles. For each
translation voxel simulation (i), we computed the elongation latency (t elong,i), transport latency (t transport,i), and
reaction latency (t rxn,i) of the cognate ternary complex that successfully reacted with the ribosome being
tracked (StatisticallyRepresentativeTranslationVoxelAnalysis.ipynb). We incorporated the impact of near-cog-
nate ternary complexes by scaling the time taken by a statistically accurate portion of noncognate reactions
at the tracked ribosome. Specifically, we leveraged our calculations that translation voxels have eight near-
cognate ternary complexes and 32 noncognate ternary complexes, on average (Fig. S4 at https://doi.org/10
.5281/zenodo.7200121) and that near-cognates have an average latency of 4.6 ms while noncognates have
an average latency of 1.4 ms (Fig. S2 at https://doi.org/10.5281/zenodo.7200121), to randomly scale noncog-
nate reaction times 3.3-fold with 20% probability. We note that this representation of near-cognates does
not capture the impact of near-cognate ternary complexes on other ribosomes in the voxel; near-cognates
could slightly reduce overall latencies by occupying mismatching ribosomes for longer than noncognate ter-
nary complexes, allowing cognate ternary complexes to find their match more quickly.

We subsequently computed an overall transport latency (�t transport), reaction latency (�t rxn), and elon-
gation latency (�t elong) for each growth rate. We did so by calculating weighted averages of each of trans-
port latency, reaction latency, and elongation latency acquired from translation voxel simulations for
each particular growth rate (m), averaging over replicates (j):

�t elong mð Þ ¼ 1
100

X42

i

X100
j

pi t elong;i (13)

�t transport mð Þ ¼ 1
100

X42

i

X100
j

pi t transport;i (14)

�t rxn mð Þ ¼ 1
100

X42

i

X100
j

pi t rxn;i (15)

The probability of each translation voxel configuration (pi) is conditional on both the number of cog-
nate ternary complexes in the particular translation voxel and growth rate (Fig. S4 at https://doi.org/10
.5281/zenodo.7200121). We did not consider the latency of translation voxels that contained zero cog-
nate ternary complexes (;22% of translation voxel instances), since such voxels would have infinite la-
tency and are an artifact of constraining translation voxels to 42 total ternary complexes. In particular, if
larger voxels with more than 42 ternary complexes are considered, the resulting proportion of cognate
ternary complexes is similar but with fewer instances of zero cognates (e.g., we found that voxels with
42, 84, or 168 ternary complexes have the same number of average cognates when normalized by num-
ber of total ternary complexes but have 22%, 10%, and 3% instances with zero cognates, respectively).
Not considering the zero cognate ternary complex voxels thus provides a lower bound estimate of elon-
gation, transport, and reaction latency.

Event-based stochastic simulations of statistically representative translation voxel ensembles.
To measure the effect of removing transport physics from our simulations (Note S1, Fig. S13, S6, S7 at
https://doi.org/10.5281/zenodo.7200121), we developed an event-based stochastic simulation algorithm of
statistically representative translation voxel ensembles (EventBasedStochasticSimulation.ipynb). As in our
other simulations, the ensemble of voxels captures the relative abundances of ternary complexes and fre-
quencies of codons among mRNA, but unlike in our other simulations, physical space is not represented.

In our stochastic simulation algorithm, all ribosomes in translation voxels are initialized as bound to
randomly chosen ternary complexes. Each reacting ternary complex-ribosome pair is then assigned a time
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until either disassociation or successful amino acid incorporation, drawn from the distribution of noncog-
nate, near-cognate, and cognate reaction latencies we computed (Fig. S2 at https://doi.org/10.5281/
zenodo.7200121). The simulation proceeds in an event-based fashion, iteratively transitioning to the next
event that occurs in the translation voxel (i.e., the time step of simulation is not fixed). Following a disasso-
ciation event, the disassociated ternary complex joins the available (unbound) ternary complex population,
and the newly available ribosome instantly binds to a randomly chosen ternary complex. The simulation
ends when a cognate ternary complex successfully reacts with a matching ribosome.

We computed the elongation latency at particular growth rates by simulating the statistical distribu-
tion of possible translation voxels (i.e., with the full permissible range of cognate ternary complexes, dis-
tributed as in Fig. S4 at https://doi.org/10.5281/zenodo.7200121) and then averaging their resulting
elongation latencies. For each growth rate and permissible number of cognate ternary complexes, we
simulated 5,000 replicate translation voxels with different random initial conditions. Conditions were set
for each replicate using the Mersenne Twister random number generator with seeds set as multiples of
five (i.e., 0, 5, 10, . . ., 24,995).

Computational tools and costs. All fixed time-step simulations of translation voxels were per-
formed using Colloidal Smoldyn (based on Smoldyn v2.61) deployed on Amazon Web Services.
Simulations required ;300,000 CPU-hours in total. Our longest simulations, for translation voxels at a
growth rate of 0.6 dbl/h, took up to ;3 weeks for some replicates, while our shortest simulations took
seconds. The cost of all our simulations was approximately US $10,000. Output file sizes for most simu-
lation runs were small (,1 MB). All measurements and validation with the LAMMPS Molecular
Dynamics Simulator were performed using the National Science Foundation's XSEDE high-perform-
ance computational resources and Stampede2 cluster at the Texas Advanced Computing Center
(TACC). Modeling, analysis, and event-based simulations were performed using Python 3.7.

Acceleration of translation voxel simulations to reduce run time and cost. Simulations of trans-
lation voxels were originally forecast to cost US $6 million with the longest simulations taking
;36 years, making them intractable. To achieve feasible costs and run times, we implemented a pro-
cedure for accelerating our fixed-time-step simulations ;600-fold, reducing costs and run times as
detailed above. In our acceleration procedure, kinetic rates of unbinding and codon recognition (i.e.,
the possible exits to the initially bound state) are increased 600-fold during simulations (k1 = 717 s21

to 430,200 s21 and k2f = 1,474 s21 to 884,400 s21). Simulations are run until completion following a
successful match between a cognate ternary complex and matching ribosome. Subsequently, during
post-simulation analysis, the time spent by ternary complexes in the initially bound state is rescaled to
be 600-fold longer, and rescaled times are used to compute reaction, transport, and elongation laten-
cies. Reaction latency is calculated as the time the cognate ternary complex spends bound in reac-
tions, elongation latency is calculated as the total time the matching ribosome spends unbound or
bound in reactions, and transport latency is calculated as the difference between elongation latency
and reaction latency.

Our estimates of overall reaction, transport, and elongation latencies are not sensitive to this scaling
procedure at the;600-fold acceleration used (Fig. S5A to C at https://doi.org/10.5281/zenodo.7200121).
This insensitivity is a result of unbinding kinetics remaining slow enough that, for a certain range of ki-
netic scaling, ternary complexes mix within the translation voxel between unbinding events to a suffi-
ciently similar extent (Fig. S5D at https://doi.org/10.5281/zenodo.7200121).

Calculation of long-time self-diffusivity. We tracked the motion of individual biomolecules as they
wandered far from their original positions, executing a random walk through the cytoplasm. This sampling
of many configurations in a voxel is termed the long-time self-diffusion (Ds

1) (referred to as diffusivity in
Results) and is a monotonically decreasing function of volume fraction at fixed molecule size polydispersity.
We computed the long-time self-diffusion of particular biomolecule species (denoted by a subscript i) at dif-
ferent growth rates by tracking the absolute position of biomolecules and computing their mean squared
displacement over time (see “Stoichiometric crowding speeds up translation elongation” in Results):

Ds
1;i ¼

1
6
lim
t!1

d
dt

hDxiðtÞ � DxiðtÞi (16)

Here, the angle brackets signify an ensemble average over the motion of every biomolecule of a
given species in a translation voxel and Dxi is the total displacement of a particle from its initial position
over time t.

Calculation of viscosity.We calculated the viscosity of translation voxels at different growth rates
(see “Stoichiometric crowding speeds up translation elongation” in Results) by performing shear rheol-
ogy simulations in LAMMPS. For each growth rate, we initialized suspensions representative of multi-
ple contiguous translation voxels. We imposed a simple shear flow on the suspensions at a constant
shear rate in the x direction _gxð Þ and measured the resulting interparticle stress ( �s p

xy). The shear rate
imposed was chosen to be small enough to remain in the linear-response regime (i.e., with insignifi-
cant deformation), allowing measurement of the intrinsic or so-called zero-shear viscosity (h 0) normal-
ized here by the solvent viscosity h (ViscosityCalculation.ipynb) (42):

h 0

h
¼ 1 1

5
2
f 1

�s
p
xy

h _gx

(17)

Here, the first two terms on the right-hand side of the equation are the Einstein viscosity, and they
approximate the hydrodynamic contribution of particles to viscosity at equilibrium. The third term
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describes the interparticle contribution to viscosity and is equivalent to the Green-Kubo equilibrium
interparticle contribution at the small shear rates used here. �s p

xy is computed as the xy component of
the interparticle stress (hxFpi), where x corresponds to the position vectors of the particles, Fp is the
(negative of) the gradient of a nearly hard-sphere, spherically symmetric repulsive potential, and the
angle brackets signify an ensemble average over all interactions in a translation voxel.

Calculation of molecular proximity. We computed the proximity between ternary complexes and
ribosomes at different growth rates (see “Stoichiometric crowding speeds up translation elongation” in
Results). For each growth rate, we initialized 100 translation voxels with random initial spatial configura-
tions, chosen using a Mersenne Twister random number generator with seeds set at multiples of five (i.e.,
0, 5, 10, . . ., 495). Following a brief equilibration period, we measured the distance from each ternary com-
plex to its closest ribosome. Our reported values of proximity for any particular growth rate are averages
of the minimal distance for all ternary complexes across all corresponding translation voxel replicates.

Calculation of repeat reactions. We computed the average number of repeat reactions between
ternary complexes and ribosomes at different growth rates (see “Stoichiometric crowding speeds up
translation elongation” in Results). For each growth rate, we initialized 100 translation voxels with ran-
dom initial spatial configurations, chosen using a Mersenne Twister random number generator with
seeds set at multiples of five (i.e., 0, 5, 10, . . ., 495). We subsequently tracked the number of times a ter-
nary complex consecutively rereacted with the same ribosome following a mismatching reaction within
each translation voxel. Our reported values for repeat reactions for any particular growth rate are aver-
ages across all corresponding translation voxel replicates.

Chemical kinetics sensitivity analysis. To measure the sensitivity of our predicted elongation laten-
cies to changes in chemical kinetics, we simulated the impact of decreasing or increasing intraribosomal
kinetic rates on elongation latency. To do so, we simulated ensembles of translation voxels as described
above while varying kinetic rates individually or together and measuring the resulting elongation la-
tency (Fig. S9 at https://doi.org/10.5281/zenodo.7200121). Since the ternary complex unbinding rate
(k1r) impacts the mixing time of voxels (Fig. S5 at https://doi.org/10.5281/zenodo.7200121), we varied
the level of kinetic acceleration in our simulations for different values of k1r, ensuring that our translation
voxels were simulated in regimes in which elongation latency is insensitive to changes in kinetic acceler-
ation (our kinetic acceleration scheme is described above).

Calculation of maximum packing and projected growth rate voxel parameters. We computed
the theoretical maximum packing for translation voxels between observed growth rates, 0.6 dbl/h to 3.0
dbl/h, as well as higher hypothetical growth rates, 3.0 dbl/h to 8.0 dbl/h, using the theoretical calcula-
tions of maximum packing for tridisperse systems of Farr and Groot (43). Our translation voxels are com-
posed of molecules having a 1:3:6.5 size ratio, which differs from the particle size ratio used by Farr and
Groot (1:3:9) (43), giving an overprediction of our computed maximum packing of less than 10%.

To estimate ribosome abundances, ternary complex abundances, cell mass, cell volume, and
nucleoid volume fraction at hypothetical growth rates between 3.0 dbl/h and 8.0 dbl/h, we extrapo-
lated from observed growth rates (Fig. S1 at https://doi.org/10.5281/zenodo.7200121), guided by
observed trends below 3.0 dbl/h and allowing uncertainty while rejecting unphysical projections
(e.g., negative cell mass and nucleoid volume fraction) (Fig. S11 at https://doi.org/10.5281/zenodo
.7200121; Fig. 6). We calculated bounds by perturbing the extrapolated fits while still maintaining all
expected trends (e.g., the lower bound of ribosome abundances never decreases with increasing
growth rate). We computed volume fractions for translation voxels at hypothetical growth rates as
described above, setting upper and lower bounds by considering all permutations of fits for ribo-
some abundances, ternary complex abundances, cell mass, cell volume, and nucleoid volume frac-
tion (ProjectedGrowthRateCalculations.ipynb).

Supplemental material. Supplementary materials including supplemental figures, tables, and notes
are available at https://doi.org/10.5281/zenodo.7200121. All code is available at https://github.com/
EndyLab/TranslationDynamics/. All data is available at https://doi.org/10.5061/dryad.zgmsbcccr.
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