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ABSTRACT

Oral leukoplakia is common andmay, in some cases, progress to carcinoma.
Proliferative leukoplakia is a progressive, often multifocal subtype with a
high rate of malignant transformation compared with the more common
localized leukoplakia. We hypothesized that the immune microenviron-
ment and gene expression patterns would be distinct for proliferative
leukoplakia compared with localized leukoplakia. We summarize key
clinicopathologic features among proliferative leukoplakia and localized
leukoplakia and compare cancer-free survival (CFS) between subgroups.
We analyze immunologic gene expression profiling in proliferative leuko-
plakia and localized leukoplakia tissue samples (NanoString PanCancer
Immune Oncology Profiling). We integrate immune cell activation and
spatial distribution patterns in tissue samples using multiplexed im-
munofluorescence and digital image capture to further define proliferative
leukoplakia and localized leukoplakia. Among N = 58 patients (prolifera-
tive leukoplakia, n = 29; localized leukoplakia, n = 29), only the clinical
diagnosis of proliferative leukoplakia was associated with significantly de-
creased CFS (HR, 11.25; P < 0.01; 5-year CFS 46.8% and 83.6% among
patients with proliferative leukoplakia and localized leukoplakia, respec-
tively). CD8+ T cells and T regulatory (Treg) were more abundant among

proliferative leukoplakia samples (P < 0.01) regardless of degree of ep-
ithelial dysplasia, and often colocalized to the dysplasia–stromal interface.
Gene set analysis identified granzymeMas themost differentially expressed
gene favoring the proliferative leukoplakia subgroup (log2 fold change,
1.93; Padj < 0.001). Programmed death ligand 1 (PD-L1) was comparatively
overexpressed among proliferative leukoplakia samples, with higher (>5)
PD-L1 scores predicting worse CFS (Padj < 0.01). Proliferative leukoplakia
predicts a high rate of malignant transformation within 5 years of diag-
nosis. A prominent CD8+ T-cell and Treg signature along with relative
PD-L1 overexpression comparedwith localized leukoplakia provides strong
rationale for PD-1/PD-L1 axis blockade using preventative immunotherapy.

Significance: This is the first in-depth profiling effort to immunolog-
ically characterize high-risk proliferative leukoplakia as compared with
the more common localized leukoplakia. We observed a notable cyto-
toxic T-cell and Treg signature with relative overexpression of PD-L1 in
high-risk proliferative leukoplakia providing a strong preclinical rationale
for investigating PD-1/PD-L1 axis blockade in this disease as preventative
immunotherapy.

Introduction
Oral leukoplakia is defined as a “white plaque of questionable risk having ex-
cluded other (known) diseases or disorders that carry no increased risk for
cancer” (1, 2). The prevalence increases with age and globally ranges from
1% to 5% in the general population (3, 4). While the vast majority of oral
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leukoplakia will remain stable, annual malignant transformation rates in the
United States approach 3% (5). Several factors impact the risk of malignant
change: histologic degree of dysplasia, location in the oral cavity, type of
leukoplakia, size, presence of erythema (erythroleukoplakia), and tobacco use
history (6, 7). Unlike localized leukoplakia lesions, proliferative (verrucous)
leukoplakia (PVL or proliferative leukoplakia) describes a distinct subgroup of
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aggressive leukoplakia with a high rate ofmalignant transformation (approach-
ing 10% per year; ref. 8) – characterized by nonhomogeneous or verrucous
lesions typically involving multiple oral mucosal subsites (9).

Beyond clinically distinct forms of leukoplakia, histologic characterization or
the presence of epithelial dysplasia is associated with step-wise progression to
oral cancer (10). There is also an entity knownas hyperkeratosiswithminimal to
no cytologic atypia [keratosis of unknown significance (KUS) or hyperkerato-
sis, nonreactive (HkNR); ref. 11], which is common among leukoplakia biopsies
and may also harbor malignant potential (12); as prior molecular studies sug-
gest genetic overlap between KUS and dysplasia includes frequent alterations
in TP and KMTC (13). In addition, several preclinical studies have reported
increased expression of programmed cell death receptor 1 (PD-1) ligand (PD-
L1), on leukoplakic lesions with higher degrees of dysplasia (14–16), suggesting
that immune escape may serve as a key mechanism for malignant transforma-
tion to oral carcinoma. To that end, we are currently accruing to a clinical trial
of the PD-1 inhibitor nivolumab as preventative immunotherapy in high-risk
oral leukoplakia, namely PVL or proliferative leukoplakia (NCT03692325).

As a precursor to our actively enrolling preventative immunotherapy trial, we
employed comprehensive immunophenotyping of a cohort of localized leuko-
plakia and proliferative leukoplakia specimens in this study. We sought to
determine tissue resident immune cell activation and spatial distribution, in-
tegrated with immunologic gene expression profiling (GEP), to characterize
the complex oral immune microenvironment of each of these entities and to
further nominate therapeutic targets aimed at oral cancer immunoprevention.

Materials and Methods
Study Participants and Disease Outcomes
Patients were retrospectively identified from an existing fully clinically an-
notated dataset of 149 patients with oral leukoplakia managed jointly at
Dana-Farber Cancer Institute (DFCI, Boston, MA) and the Brigham &
Women’s Hospital (BWH, Boston, MA) Division of Oral Medicine and
Dentistry. Following Institutional Review Board (IRB) approval (DF/HCC
protocol# 19-765), patient demographics, clinical characteristics, and survival
outcomes were recorded. Patient oral leukoplakia tissue samples were retrieved
from archives and their pathologic diagnosis (ranging fromKUS to varying de-
grees of dysplasia: mild, moderate, or severe) and clinical phenotype (localized
leukoplakia vs. proliferative leukoplakia) verified by an expert oral pathologist
(S.-B. Woo); previously having been interpreted by one of two head and neck
pathology facultymembers (any discordance was reviewed inmultidisciplinary
oral pathology conference). Date of first diagnosis of oral leukoplakia, number
of oral biopsies obtained in follow-up over time, and time to a first head and
neck cancer diagnosis (along with pathologic staging) were summarized. In-
clusion in this study required sufficient mRNA isolated from oral leukoplakia
tissue for immunologic GEP analysis. Research was conducted in accordance
with the U.S. Common Rule and informed consent waived by the IRB due to
limited risk to study participants.

NanoString Immune Gene Expression Analysis
RNA from each oral leukoplakia specimen was isolated from cores punched
from areas of epithelial dysplasia (High Pure FFPET RNA Isolation Kit, Roche
Diagnostics)marked on formalin-fixed paraffin-embedded (FFPE) tissue slides
and quantified (NanoDrop Products; Thermo Scientific). Isolated RNA was
run on Bioanalyzer to obtain DV200 values (fragment above 200 bp) using

Agilent RNA 6000 Pico Kit (Agilent Technologies). A minimum of 100 ng of
isolated RNA with greater than DV200 per sample was loaded and run on the
HuV1_CancerImmu_v1_1 NanoString platform for analysis of the NanoString
PanCancer Immune Profiling Panel (PCI), as described previously (17). The
nCounter Analysis System is based on a novel digital color-coded barcode tech-
nology and PCI provides a highly multiplexed GEP designed to quantitate 770
genes that fall into four functional categories (infiltrating immune cell types,
immunologic function, tumor-specific antigens, and housekeeping genes). A
version of the Tumor Inflammation Signature (TIS; ref. 18), an 18-gene sig-
nature that measures a preexisting but suppressed adaptive immune response
within various cancers was utilized. Significantly, differentially expressed genes
and additional signatures were computed using NanoString nSolver Advanced
AnalysisModule after normalization to default housekeeping geneswith at least
100 counts.

Multiplexed Immunofluorescence Staining
with Digital Image Analysis
Multiplexed immunofluorescence (MIF) was performed on 4-μm–thick, FFPE
whole tissue sections from oral leukoplakia specimens using a BOND RX Au-
tomated Stainer (Leica Biosystems) as described previously (19, 20). Briefly,
FFPE tissue slides were baked for 3 hours at 60°C and loaded into the BOND
RX. Slides were deparaffinized with BONDDewax Solution (Leica Biosystems)
and rehydrated through a graded series of ethanol and deionized water washes.
BOND Epitope Retrieval Solution 1, pH 6.0 (Leica Biosystems) was used for
antigen retrieval for 10 minutes at 98°C. Slides were serially incubated with
primary antibodies at room temperature for 30 minutes as detailed in Sup-
plementary Table S1, followed by anti-mouse plus anti-rabbit Opal Polymer
Horseradish Peroxidase (Opal Polymer HRPMs+ Rb, Akoya Biosciences, cat-
alog no. ARH1001EA) as a secondary label for 10 minutes. Opal Fluorophore
Reagents (Akoya) were applied for 10-minute incubations to fluorescently la-
bel the antibody complexes. Finally, slides were incubated with Spectral DAPI
solution (Akoya) for 10 minutes, air dried, and mounted with Prolong Dia-
mond Anti-fade mounting medium (Life Technologies, catalog no. P36965)
and stored in a light-proof box at 4°C prior to imaging. Image acquisition at
20× resolution was performed using the Vectra Polaris multispectral imaging
platform (Vectra Polaris, Akoya Biosciences). Two geographically distinct re-
gions are selected for each dysplastic tissue slide to best represent the overall
tissue microenvironment. Three to six regions of interest (ROI) were then se-
lected for analysis using Phenochart 1.0.12. Areas without dysplasia or residual
normal mucosa were excluded. After ROI annotation, fields of view are spec-
trally unmixed and analyzed by supervisedmachine learning algorithmswithin
inForm 2.4.8 (Akoya Biosciences). Each cell phenotype–specific algorithm is
based upon an iterative training or test process, whereby a small number of
cells (training phase, typically 20–30 cells) are manually selected as being most
representative of each phenotype of interest and the algorithm then predicts
the phenotype for all remaining cells (testing phase; ref. 21). The pathologist
(S.J. Rodig) can over-rule the decisions made by the software to improve ac-
curacy, until phenotyping is optimized. Thresholds for "positive" staining and
the accuracy of phenotypic algorithms were then optimized and confirmed by
the pathologist (S.J. Rodig) for each case. Quantities, spatial attributes, and
graphical abstractions were then generated from inForm images based on an
image analysis pipeline (19, 20). Physical contacts between dysplastic cells and
neighboring immune cells were determined on the basis of membrane maps
produced by inForm; and the percentage of each cell phenotype among cells
was calculated within the vicinity of dysplastic cells. Mean count density was
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determined as the average of cell counts obtained among multiple imaging
frames. Combined positive score (CPS) and dysplastic (replacing the word
“tumor”) epithelium proportion score (TPS) were defined as all PD-L1–positive
cells (CD8+, dysplastic, or other immune cells) or all PD-L1–positive dysplastic
epithelial cells each divided by any dysplastic epithelial cells (stained using cy-
tokeratin), respectively, across processed digital slide images. Four known head
and neck squamous cell carcinoma cases served as internal controls.

Statistical Analysis
Descriptive statistics were used to summarize patient demographics. Fisher
exact test (categorical variables) and a Mann–Whitney test (continuous vari-
ables) was used to characterize similarity between localized leukoplakia and
proliferative leukoplakia subgroups with respect to clinical features. Overall
survival (OS) was determined from the date of first oral leukoplakia diagno-
sis to death from any cause, while cancer-free survival (CFS) was determined
from the date of first oral leukoplakia diagnosis to the diagnosis of first inva-
sive squamous cell carcinoma of the oral cavity or death, whichever occurred
first, or censored at last known follow-up (using Kaplan–Meier estimates and
log-rank testing to compare localized leukoplakia and proliferative leukoplakia
subgroups). Oral leukoplakia tissue utilized on study was that obtained at or
near initial diagnosis, not subsequent oral leukoplakia biopsies, and prior to
any topical mucosal therapy application. Associations between immune cell in-
filtration andGEPswith clinical characteristics wasmade under a general linear
model (nonparametric) with Student t tests (Mann–Whitney test), ANOVA
(Kruskal–Wallis test), and Pearson correlation coefficients, as appropriate.
Clinicopathologic features, immunophenotypes, and gene signatures were cor-
related with survival outcomes and risk of recurrence (Kaplan–Meier method,
Cox proportional hazards modeling, binary logistic regression modeling). Sta-
tistical analyses utilized STATA version 14.2. A nominal P < 0.05 was used to
denote statistical significance. For each GEP, the Benjamini–Yekutieli proce-
dure was used to control the false discovery rate under arbitrary dependence
assumptions.

Data Availability
The data generated in this study are available upon request from the cor-
responding author. Multiplexed GEP profiling data generated from RNA
(NanoString) was deposited in the public repositoryGene ExpressionOmnibus
(GEO; accession number GSE184944).

Results
Clinical Features and Survival Outcomes
From our initial retrospective single institution cohort of 149 patients first di-
agnosed with an oral leukoplakia between 2000 and 2018, 78 had localized
leukoplakia and 71 had proliferative leukoplakia. Among 58 randomly selected
patients with available (nonexhausted) tissue samples the two prespecified
groups of localized leukoplakia (n = 29) and proliferative leukoplakia (n = 29)
were balanced in terms of baseline characteristics such as age, gender, smok-
ing history, oral cavity subsite, and pathologic diagnosis (Table 1). Seven of 29
(24%) patients with proliferative leukoplakia had received a median of 1 (range:
1–3) topical oralmucosal therapies (steroid elixir or rinse, topical immunomod-
ulating agent) for their oral leukoplakia prior to a first cancer diagnosis. There
were more cancer events in the proliferative leukoplakia (17, 59%) versus the
localized leukoplakia group (2, 7%) during study follow-up, and proliferative
leukoplakia cancers were more often advanced stage at diagnosis (8, 28% stage

III–IVA/B).With amedian follow-up of 65months, therewas 8 versus 1 death in
the proliferative leukoplakia versus localized leukoplakia groups, respectively.
Median OS was not reached (NR) in the localized leukoplakia group versus 146
months in the proliferative leukoplakia group [HR, 0.33; 95% confidence inter-
val (CI), 0.09–1.10;P= 0.11]; 5-yearOS estimate: 91.3% vs. 84.6% and 10-yearOS
estimate: 91.3% vs. 61.4%, respectively (Fig. 1). Median CFS was superior in the
localized leukoplakia group (NR vs. 59 months; HR, 0.17; 95% CI, 0.07–0.38; P
< 0.001), with a 2-year CFS of 96.5% versus 82.1% and 5-year CFS of 83.6% ver-
sus 46.8% in the localized leukoplakia versus proliferative leukoplakia group.
CFS did not appear to differ when considering patient age at diagnosis (HR,
0.54; P = 0.18), gender (HR, 1.00; P = 0.68), or smoking history (HR, 0.63;
P = 0.75) in the multivariable model. Similarly, primary site of oral leuko-
plakia (HR, 0.73; P = 0.72) and degree of epithelial dysplasia (HR, 0.98; P =
0.95) did not predict CFS. Only a clinical diagnosis of proliferative leukoplakia
was associated with significantly decreased CFS (HR, 11.25; 95%CI, 2.60–48.72;
P < 0.01; Supplementary Table S2).

Proliferative Leukoplakia Phenotype Associated with a
Cytotoxic T-Cell Signature
We first compared immune cell type RNA expression profiles for all localized
leukoplakia and proliferative leukoplakia samples (Fig. 2). While dysplasia mi-
croenvironment (DME) immune cell composition was largely similar, there
were important differences: proliferative leukoplakia samples demonstrated
greater cell type expression scores profiling CD8+ T cells, cytotoxic T cells, and
T regulatory cells (Treg; all P < 0.01). When comparing immune cell type ex-
pression profiles among all samples based on their histologic characterization
(KUS;mild, moderate, or severe dysplasia) irrespective of their localized leuko-
plakia or proliferative leukoplakia phenotype, DME composition was similar.
In addition, when considering clinical parameters such as younger age at di-
agnosis (<45 years old), gender, and smoking history among the cohort, DME
composition was similar (all P < 0.05). However, only an increased abundance
of Tregs predicted first oral cancer progression (OR, 2.30; P < 0.01; Supple-
mentary Table S3). Next, we sought to interrogate which cytotoxicity genes
accounted for immune cell type profiling differences among the localized leuko-
plakia and proliferative leukoplakia subgroups. Gene set analysis (summarizing
changes in regulation within each defined gene set) aimed at comparing in-
dividual immunologic mRNA expression scores among localized leukoplakia
and proliferative leukoplakia samples clarified that granzyme-M (GZMM) was
the most significantly differentially expressed gene favoring the proliferative
leukoplakia subgroup (log2 fold change, 1.93; Padj < 0.001) (Fig. 3). In addition,
CYLD,CARD, TCF, CCR,KLRB,CD, and ICOSwere other significantly
highly expressed genes among the proliferative leukoplakia subgroup (log2 fold
changes, 0.65–3.51; all Padj = 0.001). Binary logistic regression modeling sug-
gested greater log2 expression among CYLD (OR = 9.01) and TCF7 (OR =
6.29) predicted risk of progression to cancer regardless of localized leuko-
plakia or PL phenotype (both P= 0.01 or less; Supplementary Table S3). Global
significance scores (GSS) were determined to measure the overall differential
expression of selected genes relative to localized leukoplakia or proliferative
leukoplakia phenotype ignoring whether genes were up- or downregulated.
GSS favoring proliferative leukoplakia were highest among cytotoxicity (3.82),
B-cell function (3.56), and NK-cell function (3.34) pathways.When interrogat-
ing the 10 genes that comprised the cytotoxicity pathway, GZMM along with
GZMK, GNLY, PRF1, GZMA, and GZMB were all significantly differentially
expressed among proliferative leukoplakia samples (all Padj < 0.05).
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TABLE 1 Baseline patient characteristics

Characteristics All (%)
a
, N = 58 LL, n = 29 PL, n = 29

Age at diagnosis, years 64 (27–79) 66 (27–79) 63 (35–76)
Gender

Male
Female

26 (45)
32 (55)

14 (48)
15 (52)

12 (41)
17 (59)

Smoking history
Never
Former smoker (>10 pack-years)
Current smoker

26 (45)
28 (48)
4 (7)

11 (38)
15 (52)
3 (10)

15 (52)
13 (45)
1 (3)

Primary site of disease
Buccal mucosa
Oral tongue
Maxillary alveolar gingiva
Mandibular alveolar gingiva
Soft palate
Multifocal

9 (16)
26 (45)
2 (3)
4 (7)
3 (5)
14 (24)

6 (21)
19 (66)
0
2 (7)
2 (7)
0

4 (14)
5 (17)
3 (10)
2 (7)
1 (3)
14 (48)

Pathologic diagnosis on biopsy
b

Atypical epithelial proliferation (AEP)
Keratosis of undetermined significance (KUS)
Mild dysplasia
Moderate dysplasia
Severe dysplasia

4 (7)
32 (55)
12 (21)
8 (14)
2 (3)

1 (3)
17 (59)
6 (21)
3 (10)
2 (7)

3 (10)
15 (52)
6 (21)
5 (17)
0

No. of biopsies obtained in follow-up 2 (1–7) 2 (1–4) 3 (1–7)
No. diagnosed with oral cavity SCC in follow-up 19 (33) 2 (7) 17 (59)
Time to first oral cavity SCC diagnosis 31 (<1–120) 27 (3–51) 31 (<1–120)
Pathologic stage of first head and neck cancer diagnosis

c

pT1-2N0 (stage I, II)
pT1-4N1-2b (stage III, IVA/B)

11 (58)
8 (42)

2 (11)
0

9 (31)
8 (28)

NOTE: LL, localized leukoplakia; PL, proliferative leukoplakia; SCC, squamous cell carcinoma.
aValues are numbers and percentages, except: age at diagnosis, no. of biopsies obtained, and time to first head and neck cancer diagnosis; noted as median and
range in parentheses.
bFirst biopsy obtained as part of study entry.
cAmerican Joint Committee on Cancer (AJCC) 2017 8th edition staging.

PD-1–Expressing CD8+ T Cells and Tregs Colocalize to
the Dysplasia–Stromal Interface in Proliferative
Leukoplakia
To complement our immunologic mRNA expression profiling across localized
leukoplakia and proliferative leukoplakia subgroups, we next sought to under-
stand spatial or geographic localization patterns of immune cells within the
dysplastic or premalignant epithelium (D), the stroma (S), and at the dysplasia–
stromal interface (DSI)measured within 40μmof the actual dysplasia–stromal
border. Fifty-five of 58 samples passed quality control metrics for MIF analysis.
The mean abundance of CD8+ T cells was significantly increased at the DSI
(869 vs. 415 cells/mm2, P = 0.02) when comparing proliferative leukoplakia
and localized leukoplakia subgroups, but overall median density (cells/mm2)
was high among all cohort samples (range: 9–3659). We observed significantly
increased mean density (cells/mm2) of all PD-1+ T cells and PD-1+ CD8+ T
cells (D, 42.3 vs. 8.8; S, 21 vs. 0; DSI, 122.8 vs. 5.4) within the dysplastic epithe-
lium, the stroma, and at the DSI (all P < 0.01) among proliferative leukoplakia
tissues compared with localized leukoplakia. In addition, a significantly greater
abundance (cells/mm2) of FOXP3+ Tregs were observed among proliferative

leukoplakia tissue samples at the dysplastic epithelium, the DSI, and in the
stroma (D, 29.8 vs. 0.8; DSI, 265.7 vs. 24.2; S, 115.8 vs. 4.3; all P< 0.001). Figure 4
visually illustrates examples of CD8+ T-cell localization to the DSI among
proliferative leukoplakia and localized leukoplakia tissues, highlighting the sig-
nificant increase in T-cell abundance among high-risk proliferative leukoplakia
cases when utilizing MIF digital overlay. When considering localization of PD-
1+ T cells and Tregs among tissues in the cohort based on histology patterns,
findings were similar across tissue regions (D, DSI, or S) regardless of degree
of dysplasia; although the mean density (cells/mm2) of CD8+ T cells tended to
be higher among moderate-to-severely dysplastic tissues (1131 vs. 673 for mild
dysplasia, and 414 for KUS; P = 0.143).

Stromal PD-L1 Overexpression within
Proliferative Leukoplakia
Having characterized the geospatial distribution of key immune cells within
proliferative leukoplakia and localized leukoplakia samples at the DSI, we next
aimed to quantitate and characterize PD-L1 expression patterns throughout
these tissues. Broadly, both PD-L1 expression as defined by CPS (dysplastic
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FIGURE 1 Overall survival among the total population (A) and among patients with localized leukoplakia (LL; B) and proliferative leukoplakia (PL).
CFS among the total population (C) and among patients with localized leukoplakia and proliferative leukoplakia (D). Kaplan–Meier method, log-rank
testing. *, P < 0.05.

epithelium and other immune cells) or TPS (epithelial dysplastic cells) was sig-
nificantly increased among proliferative leukoplakia samples compared with
localized leukoplakia (CPS, 2.45 vs. 0; localized leukoplakia: 0.1 vs. 0; both
P < 0.0001), but notably values for both were frequently measured at 1 or less
(78.1%). When accounting for PD-L1 CPS expression across the dysplastic and
stromal tissue area, PD-L1 expression was significantly higher at all subsites (D,
DSI, and S) among proliferative leukoplakia samples (D, 0.41 vs. 0; DSI, 3.99 vs.
0; S, 362 vs. 0; all P < 0.0001). However, when evaluating PD-L1 CPS across all
samples by degree of dysplasia assessed histologically, regardless of leukoplakia
phenotype, expression levels were similar (P = 0.94).

Using previously reported PD-L1 CPS cutoffs of 0–1, 1–5, and greater than 5,
we observed a significantly improved CFS at low PD-L1 expression levels (0–1;
5-year CFS estimates: 79% vs. 62% vs. 37%, respectively; P < 0.01); recogniz-
ing that 26 of 27 (93%) of all localized leukoplakia tissue samples demonstrated
such low PD-L1 CPS expression levels compared with 6 of 28 (21%) of prolifera-
tive leukoplakia tissue samples. Figure 5 visually illustrates examples of PD-L1+

immune cells localized to the stroma and DSI among proliferative leuko-
plakia and localized leukoplakia tissues, highlighting the significant increase
in PD-L1+ immune cell abundance among high-risk proliferative leuko-
plakia cases when compared with localized leukoplakia utilizing MIF digital
overlay.

Discussion
Distinguishing localized leukoplakia (localized leukoplakia) from the high-
risk entity of proliferative leukoplakia (proliferative leukoplakia) has important
implications with regards to surveillance and management. Proliferative

leukoplakia is typically characterized clinically by a verrucous appearance, ei-
ther at more than two noncontiguous oral cavity subsites or extensively at one
or contiguous sites, and histologically demonstrates epithelial hyperkeratosis
or verrucous hyperplasia (9). Proliferative leukoplakia is often difficult to treat
based on its multifocality and typically large size of single-site lesions, while
malignant transformation rates to oral carcinoma approach 70% in some series
(22, 23). This is in comparison to themore indolent localized leukoplakia where
transformation rates rarely exceed 15% (5). As expected, we demonstrate signif-
icantly decreased CFS when comparing proliferative leukoplakia to localized
leukoplakia subgroups with 2-year and 5-year CFS estimates among patients
with proliferative leukoplakia at 82.1% and 46.8%, respectively, with an 8-fold
increase in cancer events (17 vs. 2) among the proliferative leukoplakia group
at median follow-up of over 5 years. Clinicopathologic features such as smok-
ing history and degree of epithelial dysplasia (on representative biopsies) did
not significantly impact CFS; in fact, only the clinical diagnosis of prolifera-
tive leukoplakia portended worse outcomes on multivariable analysis. While
there was no significant difference in OS between proliferative leukoplakia and
localized leukoplakia subgroups, survival was inferior among patients with pro-
liferative leukoplakia with a 5-year OS estimate of 84.6%. One could argue that
close and frequent surveillance (every 3months) by experts in an academic oral
medicine and head and neck oncology program could have detected cancer
events sooner thus yielding earlier treatment and a survival impact for patients
with proliferative leukoplakia. However, 8 of 17 (47%) patients with prolifera-
tive leukoplakia who developed oral carcinoma on study were diagnosed with
pathologic stage III, IVA, or IVB disease.

Our group previously published on the genomic characterization of oral pre-
cancerous lesions showing that early precursor lesions like KUS share somatic
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FIGURE 2 A, Heat map comparing RNA expression of immunoregulatory genes among localized leukoplakia (LL; top) and proliferative leukoplakia
(PL; ; bottom) samples with protein expression grouped by immune cell type of importance (in each column). Cell type raw scoring (dark to light)
indicates increasing absolute degree of protein RNA expression. B, Protein RNA expression of all immunomodulatory genes grouped by immune cell of
interest and compared between localized leukoplakia and proliferative leukoplakia samples (Mann–Whitney test). Median immune cell expression levels
compared between localized leukoplakia and proliferative leukoplakia (higher slope equating to greater difference; C) and compared by degree of
epithelial dysplasia histologically (Kruskal—Wallis test; D). *, P < 0.05; two-sided.

alterations with epithelial dysplastic lesions with frequentmutations inKMTC
and TP (13). While only 6 of 20 (30%) patients in that molecular study were
characterized as having proliferative leukoplakia, other studies aimed at geno-
typing the proliferative leukoplakia subgroup have nominated alterations in
TP and CDKNA as important (24, 25). Beyond somatic alterations in tu-
mor suppressor genes, immunologic dysregulation or imbalance does seem to
contribute to malignant transformation risk among oral precancerous lesions
(26). It is posited that the stepwise progression from epithelial dysplasia to frank
oral squamous cell carcinoma relies on immune escape mechanisms within the
microenvironment.

Several recent studies have aimed to broadly characterize the immunologic
landscape of oral leukoplakia. Among a cohort of 80 oral leukoplakias evaluated
by IHC for immunomodulatory mediators, increased expression of HLA-G/E,
IL10, TGFβ2/3 was noted when compared with oral carcinoma samples (27).
Subsequently, several oral leukoplakia cohorts have demonstrated upregula-
tion of PD-L1 compared with normal mucosal tissues that often correlates with
CD8+ T-cell infiltration (16, 28, 29) suggesting a role for evasion of the host

immune system as part of malignant transformation. To that end, Ries and
colleagues further showed that PD-1/PD-L1 expression in the epithelial and
subepithelial layer of oral leukoplakia was increased in tissues where malignant
transformationwas later observed (14). This study builds on these findings, em-
ploying more comprehensive immune characterization methods with mRNA
expression profiling and MIF aimed at immunologically defining proliferative
leukoplakia. Among proliferative leukoplakia cases, higher PD-L1 CPS pre-
dicted higher median PD-1+ CD8+ T-cell abundance (PD-L1 CPS > 5, 118.3
cells/mm2; CPS 1–5, 43.5 cells/mm2; CPS < 1, 16.8 cells/mm2).

When considering immune cell types in the DME, CD8+ T cells, and cytotoxic
T cells are increased among proliferative leukoplakia samples when compared
with localized leukoplakia, while quantitative and spatial techniques clarify this
occurs across all regions of the stroma and dysplastic tissue with the high-
est mean density of PD-1+ CD8+ T cells and Tregs homing to the DSI. This
fits with the hypothesis that PD-1–overexpressing cytotoxic T cells migrate to
the epithelial tissue border where interactions with dysplastic tissue express-
ing PD-L1 occurs, permitting immune checkpoint interaction and immune

AACRJournals.org Cancer Res Commun; 1(1) October 2021 35



Hanna et al.

T

GZMM

CYLD

TCF7

TRAF3

CARD11

CD28
KLRB1

CCR7

ICOS

IKBKE

with LL

L
o

g
2

−L
og

10
(P

)

Log2 (fold change)

Padj<0.01

Padj<0.01

Padj<0.05

Padj<0.05

Score

Upper CI bound

Lower CI bound

FIGURE 3 A, Volcano plot among all cohort samples showing the log2 fold change in mRNA expression at the individual protein level plotted
against adjusted −log10 P value (degree of significance) among proliferative leukoplakia (PL) samples compared with localized leukoplakia (LL)
samples. The top 10 genes with variable expression at higher significance are identified in blue and identified by name. *, P < 0.05; adjusted using the
Benjamini–Yekutieli procedure (false discovery rate). B, Heat map of global significance scores compared among proliferative leukoplakia and localized
leukoplakia (lighter color means higher positive scores) among genes/mRNA organized by immunologic function or pathway. C, Log2 fold change in
mRNA expression scores among cytotoxicity genes in the immune panel among proliferative leukoplakia relative to localized leukoplakia samples.
Upper and lower CI values are shown. *, P < 0.05 (adjusted) denoted by colored diamonds.

evasion to promote carcinogenesis. Similarly, an abundance of Tregs at the DSI
among proliferative leukoplakia samples may promote tumor progression by
limiting antidysplasia immunity (30). Others have shown that PD-1+ Tregs
have the potential to proliferate and trigger immunosuppressive activity in
the tumor microenvironment if exposed to PD-1 blockade (leading to clinical
hyperprogression of disease; ref. 31).

We did not observe the same increase in mean cell density among cytotoxic or
other immune cells when separating dysplastic tissue samples by degree of dys-
plasia in contrast to prior reports (28, 29). This difference could be explained
by the inclusion of oral leukoplakia with specific phenotypes of interest (local-
ized leukoplakia and proliferative leukoplakia) in this study; also, our methods
involved gene expression profiling and automated digital capture compared
with other studies relying solely on traditional IHC. Our findings suggest that
clinical phenotype rather than degree of epithelial dysplasia may more often
immunologically distinguish proliferative leukoplakia.

The proliferative leukoplakia subgroup had a more prominent cytotoxic T-cell
signature as compared with localized leukoplakia, with differential upregu-
lation of key genes important for regulating cytotoxicity function, namely
granzymes. GZMM is one of many serine proteases housed in granules re-
leased from cytotoxic lymphocytes which later enter tumor cells via perforin to
activate cell death pathways (32). However, IFNγ expression was significantly
lower among the proliferative leukoplakia subgroup (log2 fold change −1.39,
Padj < 0.05). Another gene of interest with overexpression among proliferative

leukoplakia samples was inducible T-cell costimulator (ICOS), which codes for
a T-cell costimulatory receptor that promotes T-cell proliferation, chemokines,
and facilitates B-cell antibody secretion (33). A previously published immune-
related gene signature (IRGS) comprised of 27 genes of prognostic importance
among 770 patients with head and neck squamous cell carcinoma (HNSCC;
The Cancer Genome Atlas, TCGA) also identified ICOS as important (34).
The ICOS agonist feladilimab showed some encouraging activity and durable
benefit in a single-arm, early-phase combination study with the PD-1 in-
hibitor pembrolizumab (INDUCE-1) among 34 patients treated for recurrent,
metastatic HNSCC (35). But recently, the subsequent phase II INDUCE-3 trial
comparing feladilimab or placebo plus pembrolizumab among patients with
PD-L1+ HNSCC was terminated for futility (36). These data suggests an anti–
PD-1/ICOS agonist combination may be of some benefit earlier in oral cancer
disease natural history; perhaps for patients with high-risk proliferative leuko-
plakia to mitigate the risk of malignant transformation to oral carcinoma. Also
notable was the overexpression of TCF7 among proliferative leukoplakia (log2
fold change 1.18; Padj = 0.001). TCF7+ CD8+ T-cell frequency has been linked
with tumor regression or checkpoint inhibitor response in melanoma (37).
TCF7 and CYLD (a tumor suppressor) were both strong predictors of risk of
progression to cancer in this study.

Using CPS to measure tumor and immune cell PD-L1 expression among re-
current or metastatic HNSCC demonstrates that >80% of cases express PD-L1
at a cutoff of 1 or greater by IHC, but recognizing that an estimated 40% of
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FIGURE 4 A, Box plots showing mean density (in mm2) of immune cell populations separated by localized leukoplakia (LL) and proliferative
leukoplakia (PL) subgroups where each column shows individual values and mean is denoted by the solid line. Graphs plot the immune cell content
within the dysplastic tissue, at the DSI, and within the stroma separately. *, P < 0.05, Mann–Whitney; two-sided. B, MIF imaging showing spatial
representation of immune cells along the DSI within two cases (PL, W78, and LL, N61). DAPI, stains live cells; CYTOK, cytokeratin. C, Box plot showing
mean density (in mm2) of immune cell populations separated by degree of dysplasia histologically regardless of localized leukoplakia or proliferative
leukoplakia clinical phenotype. *, P < 0.05, Kruskal–Wallis; two-sided.

tumors have scores ≥20 (38). Studies evaluating epithelial and subepithelial
PD-L1 expression in oral leukoplakias have yielded values of 0–10 by IHC scor-
ing – overall lower than those observed in the recurrent, metastatic setting
although these groups have not been uniformly compared (14). We observed
similar findings of relatively low PD-L1 CPS values across our study sam-
ples (typically ranging from 1–5) except for higher expression among stromal
proliferative leukoplakia tissue which may reflect honing during immune en-
gagement. PD-L1–positive immune cells appear spatially enriched at the stroma
and DSI among proliferative leukoplakia epithelial tissues, which may pro-
mote PD-1/PD-L1 axis interactions to enhance tumorigenesis. While rates of
PD-L1 expression have been reported to correlate with more severe dysplasia
among oral leukoplakias (16), we did not observe the same. PD-L1 expres-
sion seemed to correlate better with proliferative leukoplakia phenotype, rather
than degree of dysplasia in this study. The discrepancy in this observation

may reflect that we knowingly enriched for proliferative leukoplakia cases as
compared with other studies; and it’s worth noting the proliferative leuko-
plakia phenotype often yields histologic findings of KUS or hyperkeratosis
(not frank dysplasia). Despite the correlation between PD-L1 expression and
proliferative leukoplakia observed in this study, PD-L1 expression is predic-
tive of PD-1 inhibitor response in advanced head and neck cancers (39).
Again, we note that our exploratory method for PD-L1 quantitation was
automated and digital, which may explain discordance with IHC or visual
counting noted in prior studies; high resolution PD-L1 quantification should
be validated in future studies. Our data provide a strong preclinical ratio-
nale for the use of PD-1/L1 blockade as oral preventative immunotherapy
among patients with high-risk proliferative leukoplakia, which is currently be-
ing tested at our institution (NCT03692325) and elsewhere (NCT03603223,
NCT04504552).
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FIGURE 5 A, CPS and TPS characterizing PD-L1 expression compared among localized leukoplakia (LL) and proliferative leukoplakia (PL). *, P <

0.05, Mann–Whitney test; two-sided. B, PD-L1 CPS scores and mean values compared between differing regions of the DSI and within dysplastic and
stromal tissues for both localized leukoplakia and proliferative leukoplakia samples. *, P < 0.05, Kruskall–Wallis test; two-sided. C, PD-L1 CPS values
and mean scores compared by degree of histologic dysplasia. *, P < 0.05, Kruskall–Wallis test, two-sided. D, Kaplan–Meier estimate of CFS separated
by PD-L1 CPS scores among pooled localized leukoplakia and proliferative leukoplakia samples. *, P < 0.05, log-rank testing; and bar graph showing
PD-L1 CPS total counts among localized leukoplakia and proliferative leukoplakia samples. E, MIF imaging highlighting PD-L1 staining and spatial
arrangement near the DSI among representative proliferative leukoplakia and localized leukoplakia samples. CYTOK, cytokeratin; DAPI, stains live cells.

We acknowledge some limitations in this study. First, we randomly selected
58 cases (39%) with available tissue samples for immune profiling among a
preexisting dataset of 149 patients; although we aimed to minimize selection
bias and subgroups were well balanced. We acknowledge that pathologic char-
acterization of high-risk precancerous lesions can be variable. In addition,
NanoString reflects gene rather than protein expression levels. Although MIF
assessment of immune subsets were consistent with our GEP data, specific im-
mune cell phenotypes (e.g., activated CD8+ T cells) were not delineated from
the MIF panel due to multiplex limitations. Finally, we immunologically pro-
filed dysplastic epithelial tissues at a single timepoint among each case, and
thus dynamic changes in the DME or sample heterogeneity must be considered
when interpreting our results.

Our findings add to an important and evolving literature that suggest high-risk
oral precancerous dysplasia may progress to malignancy in part due to local
intra-oral immune dysregulation (40). While prior studies have suggested the
immunologic cellular response may relate to the degree of dysplasia among
oral leukoplakias (41, 42), we demonstrate that the proliferative leukoplakia
phenotype is more often associated with a CD8+ cytotoxic T-cell infiltrate with

granzyme overexpression that localizes throughout the DSI. A predominant
portion of PD-L1+ immune cells appear enriched throughout the tissue stroma
and DSI. While PD-L1 CPS scores are low among most oral leukoplakias, pro-
liferative leukoplakia demonstrates higher relative PD-L1 scores which may
predict benefit from PD-1/PD-L1 axis blockade alone or in combination with
other novel immunotherapies. Actively enrolling trials are already investigating
oral preventative immunotherapy among this critical population.
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