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Abstract

Purpose: Quantitative bone single-photon emission computed tomography (QBSPECT) has 

the potential to provide better quantitative assessment of bone metastasis than planar bone 

scintigraphy due to its ability to better quantify activity in overlapping structures. An important 

element of assessing response of bone metastasis is accurate image segmentation. However, 

limited by the properties of QBSPECT images, the segmentation of anatomical regions-of-

interests (ROIs) still relies heavily on the manual delineation by experts. This work proposes a 

fast and robust automated segmentation method for partitioning a QBSPECT image into lesion, 

bone, and background.

Methods: We present a new unsupervised segmentation loss function and its semi- and 

supervised variants for training a convolutional neural network (ConvNet). The loss functions 

were developed based on the objective function of the classical Fuzzy C-means (FCM) algorithm. 

The first proposed loss function can be computed within the input image itself without any ground 

truth labels, and is thus unsupervised; the proposed supervised loss function follows the traditional 

paradigm of the deep learning-based segmentation methods and leverages ground truth labels 

during training. The last loss function is a combination of the first and the second and includes 

a weighting parameter, which enables semi-supervised segmentation using deep learning neural 

network.

Experiments and Results: We conducted a comprehensive study to compare our proposed 

methods with ConvNets trained using supervised, cross-entropy and Dice loss functions, and 

conventional clustering methods. The Dice similarity coefficient (DSC) and several other metrics 

were used as figures of merit as applied to the task of delineating lesion and bone in both 

simulated and clinical SPECT/CT images. We experimentally demonstrated that the proposed 

methods yielded good segmentation results on a clinical dataset even though the training was done 

using realistic simulated images. On simulated SPECT/CT, the proposed unsupervised model’s 

accuracy was greater than the conventional clustering methods while reducing computation time 
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by 200-fold. For the clinical QBSPECT/CT, the proposed semi-supervised ConvNet model, trained 

using simulated images, produced DSCs of 0.75 and 0.74 for lesion and bone segmentation in 

SPECT, and a DSC of 0.79 bone segmentation of CT images. These DSCs were larger than that 

for standard segmentation loss functions by > 0.4 for SPECT segmentation, and > 0.07 for CT 

segmentation with p-values< 0.001 from a paired t-test.

Conclusions: A ConvNet-based image segmentation method that uses novel loss functions 

was developed and evaluated. The method can operate in unsupervised, semi-supervised, or 

fully-supervised modes depending on the availability of annotated training data. The results 

demonstrated that the proposed method provides fast and robust lesion and bone segmentation 

for QBSPECT/CT. The method can potentially be applied to other medical image segmentation 

applications.
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0 Introduction

Prostate cancer is one of the most common cancers for men in the United States. In 

2020, it is estimated that there will be 191,930 new cases of prostate cancer in the 

US [1]. Bone is a common site for metastasis in prostate cancer [1]. Although planar 

bone scintigraphy is often used to assess response and progression of bone lesions, 

quantitative single-photon emission computed tomography (SPECT) has been shown to 

provide improved quantification compared to planar imaging in other applications, and thus 

quantitative bone SPECT (QBSPECT) has the potential to provide more accurate estimates 

of prognostic metrics than planar imaging [2–5]. Image segmentation plays a vital role in 

clinical application of QBSPECT, because quantifying tumor uptake and metabolic tumor 

burden requires accurate segmentation of bone and lesion structures. With the emergence of 

machine learning and deep learning, computer-assisted or computer-automated segmentation 

algorithms are poised to become a routine and essential part of medical image analysis in 

general. However, due to poor spatial resolution, noise, and contrast properties of SPECT 

images, developing automated segmentation methods for QBSPECT is challenging. While 

there has been substantial work on developing automated segmentation algorithms for other 

imaging modalities, manual delineation is still the most common method used clinically 

for SPECT imaging [6, 7]. Manual segmentation is not only tedious and time-consuming, 

but also it can introduce intra- and inter-observer bias and variability. Thus, an automated 

algorithm that provides fast and accurate segmentation of anatomical or regions-of-interest 

(ROIs) for QBSPECT images is desired in both clinical practice and research.

Automated segmentation algorithms can be categorized into two groups. The first group 

is supervised methods, i.e., those requiring a set of annotated input data. These methods 

can be highly effective, but they typically involve a training stage that requires a large 

number of images with ground truth labels. Deep learning is a representative of such 

methods, and it recently has become a major focus of attention in the image segmentation 

field due to its performance [8]. The vast majority of such work has been based on 

convolutional neural networks (ConvNets) [8–11], which usually requires a substantial 
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number of accurately annotated training images. In nuclear medicine, various ConvNets-

based studies have investigated their use for image segmentation. For instance, Liu et al. 

[12] designed a ConvNet for dopamine transporter brain SPECT segmentation that estimates 

the posterior mean of the fractional volume within each voxel. Built upon the idea of 

fusing multimodality information, Guo et al. [13], and Li et al. [14] incorporated computed 

tomography (CT) images in training the ConvNet for improved lesion delineation in Positron 

emission tomography (PET). Despite their promising performance, ConvNets trained using a 

domain-specific dataset that lacks diversity compared to its target application often leads to 

poor generalizability on data from “unseen” domains [15]. Unsupervised methods represent 

another group. In contrast to supervised methods, they can be more robust to unseen 

domains, and are useful in the absence of substantial amounts of training data. Active 

contour models [16], region growing, and clustering algorithms such as Gaussian mixture 

models (GMM) [17] or fuzzy C-means (FCM) [18], are the examples of unsupervised 

methods, where the segmentation is obtained based on characterizing intensity distributions 

of a given image. Much work has been devoted to developing unsupervised segmentation 

algorithms for nuclear medicine imaging [19]. For example, Abdoli et al. [20] presented 

a modified Chan-Vese active contour model [21] to take into account noise properties 

and heterogeneity lesion uptake observed in PET. With similar ideas, Layer et al. [22] 

and Belhassen et al. [23] incorporated spatial constraints into the objective functions of 

GMM and FCM to model the noise properties of PET and thus reduce misclassifications. 

However, these methods generally require computationally intensive optimization for each 

given image, and therefore they can be slow in practice.

In this paper, we introduce a fast, accurate, and robust segmentation technique, and apply 

it to QBSPECT and CT image segmentation, that takes advantage of both deep learning 

and intensity clustering. Specifically, we aim to develop a fully automated method for 

partitioning voxels into background, lesion, and bone in QBSPECT images. To this end, 

we propose a set of loss functions that are based on the classical FCM algorithm. An 

important property of the proposed loss functions is that they incorporate the fundamental 

idea of fuzzy clustering, where the amount (fuzziness) of the overlap between segmentation 

classes is controlled via a user-defined hyperparameter. The proposed model can be trained 

in three scenarios: in the first scenario, referred to as unsupervised or self-supervised, the 

model is trained by minimizing an unsupervised loss function (one that does not require 

labels) within an unlabeled training dataset, where the loss function depends only on the 

image intensity distributions; in the second scenario, which follows the traditional paradigm 

of deep learning, the model is trained by minimizing a supervised loss function that 

compares the output segmentation and the ground truth labels with the training dataset; 

in the final scenario, the model is trained in a semi-supervised manner by leveraging 

both the intensity distributions of the images and the available ground truth labels. The 

proposed models were implemented using a ConvNet that takes an n-D input volume and 

outputs a C-class probability vector for each voxel location. The models were trained purely 

on experimentally acquired images of a physical phantom and realistic, physics-based, 

simulated images of an anthropomorphic phantom. Nevertheless, they produced accurate 

segmentation results on the unseen patient images while offering substantial speed-up 

compared to the conventional clustering algorithms.
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The paper is organized as follows. Section 1 introduces clustering-based (section 1.1) and 

unsupervised/semi-supervised (section 1.2) segmentation methods. The proposed methods 

are described in section 1.3 and the experimental setup in section 1.4. Section 2 presents 

experimental results on both simulated and clinical data. Insights gained from the results are 

discussed in section 3, and section 4 presents the conclusion.

1 Materials and methods

1.1 Clustering-based Image Segmentation

Classical clustering-based segmentation methods, such as K-means [24], FCM [25], and 

GMM [17], aim at characterizing the statistical properties of intensity levels in images by 

‘learning’ the statistics of the intensity information from a given image [26]. These methods 

usually minimize an objective function to group together voxels that share similar intensity 

statistics. A widely used clustering method applied to medical image segmentation is FCM 

method [25, 27, 28], due to its simplicity, robustness, and effectiveness. The objective 

function of the conventional FCM is written as follows:

JFCM = ∑
j ∈ Ω

∑
k = 1

C
ujk

q yj − vk 2, (1)

where ujk represents the membership functions for the jth voxel and kth class, vk is the 

class-centroid, yj is the observation (voxel value) at location j, C indicates the number 

of classes, and Ω is the spatial domain of the image. The minimization of this objective 

function is given by:

min
ujk, vk

JFCM, s.t .
∑k = 1

C ujk = 1, ∀ j ∈ Ω

0 < ∑j ∈ Ωujk < N, k = 1, …, C
. (2)

Here N is the total number of voxels in the image, and the parameter q in (1) is a weighting 

exponent that satisfies q ≥ 1 and controls the amount of fuzzy overlap between clusters. 

Larger q values allow for a greater degree of overlap between the intensity levels in clusters 

(and vice versa). As q → 1, the membership, ujk, becomes crisper, and approaches a 

binary function. Note that when q = 1, the JFCM transforms to the well-known K-means 

problem [18,28]. Since FCM does not take spatial context information into consideration, 

the clustering result may be subject to noise and image artifacts. To overcome this issue, 

many efforts have been devoted to incorporating local spatial information into the FCM 

algorithm to improve the performance of image segmentation [28–34]. Ahmed et al. [29], 

Pham et al. [28], and Chuang et al. [33] introduced spatial constraints to the FCM’s 

objective function to allow the labeling of a pixel to be influenced by the labels of its 

neighbors. Others [30,32,34] have incorporated spatial constraints and, at the same time, 

improving the computational speed. Among those, the Robust FCM (RFCM), proposed 

by Pham et al. [28], is a straightforward but quite effective improvement on the original 

FCM. It incorporates a Markov-random-fields- (MRF) [35] based regularization term for 

penalizing changes in the value of the membership functions in local neighborhoods. The 

objective function of RFCM is described as:
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JRFCM = ∑
j ∈ Ω

∑
k = 1

C
ujk

q yj − vk 2 + Jspatial, (3)

where

Jspatial = β ∑
j ∈ Ω

∑
k = 1

C
ujk

q ∑
l ∈ Nj

∑
m ∈ Mk

ulm
q , (4)

In the above, term Nj represents the neighboring voxels of voxel j, Mk is a set containing 

{1, …, C} \ {k} (i.e., class numbers other than k), and β controls the weight of spatial 

smoothness term. Using the Lagrange multiplier to enforce the constraint, and taking partial 

derivatives with respect to vk and ujk, an iterative algorithm can be obtained:

ujk
n + 1 =

yj − vk
n 2 + 2β∑l ∈ Nj ∑m ∈ Mk ulm

n q
−1

q − 1

∑i = 1
C yj − vin

2 + 2β∑l ∈ Nj ∑m ∈ Mi ulm
n q

−1
q − 1

, (5)

and

vk
n + 1 =

∑j ∈ Ω ujk
n + 1 qyj

∑j ∈ Ω ujk
n + 1 q . (6)

Since the objective function of RFCM operates on nothing but voxel-level information of the 

input image, this algorithm is thus unsupervised. However, the trade-off is the increment of 

computational complexity, as the objective function has to be iteratively minimized for each 

and every input image.

In order to improve computational efficiency and segmentation accuracy, some recent 

papers have presented self-supervised ConvNet-based approaches using modified objective 

functions of the classical algorithms as loss functions [36, 37]. The following subsection 

introduces one such method that is closely related to the method proposed in this paper.

1.2 Unsupervised/semi-supervised ConvNet-based Image Segmentation

Recently, there have been a large number of supervised segmentation methods proposed 

that are based on the deep neural networks. Among the different network architectures are 

fully convolutional neural networks (FCNs) [38]; U-shape FCNs [10] such as [39, 40] have 

achieved great success in biomedical image segmentation. These networks typically must be 

trained with a large number of training images. However, ground truth data is difficult to 

obtain in medical imaging. In order to compensate for a paucity of gold-standard images, 

weakly-supervised ConvNet-based approaches have been proposed [41–43]. These methods 

train neural networks with weakly annotated data such as bounding boxes for ROIs or 

using whole image-level labels. In [37], Kim et al. proposed a segmentation model that 

can be trained in a self-supervised manner using a novel loss function that is based on the 

Chen et al. Page 5

Med Phys. Author manuscript; available in PMC 2023 February 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Mumford-Shah functional [44]. This loss function enables the ConvNet to train itself using 

the unlabeled images as elements of the training data. This can be particularly useful for 

training ConvNet-based models in cases where gold-standard segmentation is not available. 

In a discrete setting, the loss function is formulated as:

ℒMS = ∑
k = 1

C
∑

j ∈ Ω
zjk yj − ck 2 + λ ∑

k = 1

C
∑

j ∈ Ω
∇zjk , (7)

where zjk is the softmax output from a neural network that follows:

∑
k = 1

c
zjk = 1, ∀ j ∈ Ω, (8)

and |∇zjk| represents the Total variational (TV) norm of zjk, where the grandient ∇(·) can 

be approximated by the forward difference (i.e., ∇zjk ≈ zj+1k − zjk). Finally, ck denotes the 

average voxel intensity value given by a similar form as (6):

ck = ∑j ∈ Ωzjkyj
∑j ∈ Ωujk

. (9)

Notice that if λ is set to 0, then (7) is a special case of the FCM problem (1), in which 

q = 1. Then, the loss function can be thought of as a K-means clustering problem with 

TV regularization for suppressing noise in the membership function, zjk. Kim et al. then 

proposed to incorporate a weighted supervised cross-entropy loss in addition to ℒMS to 

consider semantic information from the ground truth labels [37]:

ℒsemi−MS
α = ℒMS + αℒCE . (10)

Since this loss function consists of an unsupervised part that only requires information from 

the input image itself, and a supervised part that leverages ground truth segmentation, the 

resulting combined loss function is thus semi-supervised.

In nuclear medicine, image quality is severely affected by the partial volume effects (PVEs) 

[45], resulting in voxel values that are sums of the uptakes from or actually contain a 

mixture of different tissues. For this reason, algorithms like K-means or active contour 

that produce “hard” segmentation (i.e., a voxel can only belong to one class) may not be 

suitable for nuclear medicine. Here, we proposed incorporating the classical FCM objective 

function into ConvNet training owing to FCM’s inherent suitability to nuclear medicine’s 

low resolution properties. This has the benefit that it takes advantage of the fast computation 

speed of ConvNets. The details of the proposed method are described in the following 

subsection.

1.3 Proposed Method

Let y be the input image defined over a spatial domain Ω ∈ ℝn. For the rest of this paper, 

we focus on the 2-dimensional (n = 2) case; however, our implementation is dimension 

independent. We assume that input image y is normalized in a preprocessing step.
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Fig. 1 shows an overview of the method. The ConvNet with parameters θ, takes y as 

its input (i.e., f(y; θ)), and outputs a C-channel probability map, where each channel 

corresponds to the probabilities of pixels in y belonging to a specific class. The optimal 

parameter θ  is determined by minimizing the expected loss function within a training 

dataset, i.e., θ = argminθℒ(y; θ). Here, we present three novel loss functions for the task of 

image segmentation. The first loss is proposed based on JRFCM (3), which is denoted as 

ℒunsupervised in Fig. 1. It is an unsupervised loss that depends on no ground truth labels but 

only on the input image y. The second loss, which is denoted as ℒsupervised in Fig. 1, is a 

modified version of JFCM (1) that leverages the available ground truth information during 

training. Combining ℒunsupervised and ℒsupervised, we obtain the third loss function, which 

represents the semi-supervised application of the ConvNet model. A detail description of the 

network architecture and the loss functions are discussed in the following sections.

1.3.1 Network Architecture—The neural network architecture, as seen from Fig. 2, 

is based on the recurrent convolutional neural network proposed by Liang et al. in [46]. 

The network consists of eight convolutional layers, where the first five are recurrent 

convolutional layers. For each recurrent convolutional layer, T = 3 time-steps where used, 

resulting in a feed-forward subnetwork with a depth of T + 1 = 4 [46]. Each convolutional 

layer has a kernel size of 3 by 3, and it is followed by a batch normalization and a Rectified 

linear unit (ReLU). In the final layer, a 3-channel softmax activation function is used, where 

each channel represents the probability of being classified as background, bone, or lesion.

1.3.2 Unsupervised Loss Function—We propose to model the membership 

functions, u, in the objective function of RFCM (3) by using the softmax output of the 

last layer of the ConvNet model, i.e., f(y; θ), using:

ℒRFCM(y; θ) = ∑
j ∈ Ω

∑
k = 1

C
fjk

q (y; θ) yj − vk 2 + β ∑
j ∈ Ω

∑
k = 1

C
fjk

q (y; θ

) ∑
l ∈ Nj

∑
m ∈ Mk

flm
q (y; θ),

(11)

where fjk(y; θ) is the kth channel softmax output from the ConvNet at location j, and the 

class mean vk shares a similar form as (6):

vk =
∑j ∈ Ωfjk

q (y; θ)yj

∑j ∈ Ωfjk
q (y; θ)

. (12)

This differentiable loss function relies solely on characterizing the intensity statistics of 

the input image y that are independent of ground truth labels. This property makes it an 

unsupervised loss function that can be minimized in a self-supervised manner using deep 

neural networks; that is, the loss function enables the training of a network using unlabeled 

images. As described in [37,47], the self-supervised training framework can be interpreted 

as an unfolded fixed number of iterations for solving for the membership functions (5). 

Next, we describe the techniques for incorporating a supervised loss function.

Chen et al. Page 7

Med Phys. Author manuscript; available in PMC 2023 February 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1.3.3 Semi-supervised/Supervised Loss Functions—While networks trained 

using unsupervised loss functions can be more robust to test images from an “unseen” 

domain, their performances are generally limited due to the sole dependence on pixel-level 

intensity information. Supervised losses, on the other hand, leverage the prior knowledge 

that includes knowledge of ground truth to learn about semantic and shape information. 

However, the trade-off is that these supervised ConvNet models may suffer from overfitting 

and lack of generalizability (to images differing substantially from those used in training) 

depending on the size of the training dataset [48]. In the semi-supervised setting described in 

[37], the ConvNet is trained with both supervised and unsupervised loss functions so that the 

network can take into account the intensity statistics in an individual image while embracing 

the supervised information provided by the ground truth. The proposed unsupervised loss 

function, ℒRFCM, can be paired with any supervised loss function in a similar way as 

described in [36,37]. That is:

ℒ(y; θ) = ℒRFCM((y; θ)) + αℒsupervised(y, g; θ), (13)

where α is a weighting parameter for controlling the strength of the supervised term, and 

g denotes ground truth label map. It is, however, difficult to use supervised loss functions 

such as Dice similarity (DSC) loss or cross-entropy (CE) because they are not immediately 

compatible with the ‘fuzziness’ of the classification produced by FCM and inherent in 

ℒRFCM, and that they may take different value ranges from ℒRFCM. Inspired by [49], here 

we propose a novel supervised segmentation loss function on the basis of the FCM objective 

function:

JFCMlabel = ∑
j ∈ Ω

∑
k = 1

C
ujk

q gjk − μk 2, (14)

where the membership function, ujk, can be modeled using fjk(y; θ), which is the ConvNet’s 

softmax output, gjk is the ground truth label at location j for kth class, and μk is the class 

mean computed within g. The ground truth images, g, have C channels, where each channel 

is a binary segmentation mask specifying the spatial domain of class k ∈ {1, …, C}. The 

class mean μk can be simply defined in advance as a constant 1, i.e., μk = 1 (by suitably 

rescaling gjk). The loss function can thus be defined as:

ℒFCMlabel(y; θ) = ∑
j ∈ Ω

∑
k = 1

C
fjk

q (y; θ) gjk − 1 2, (15)

This loss function incorporates the main idea of FCM, for which the parameter q is included 

to regulate the fuzzy overlap between softmax channels. Thus, the proposed semi-supervised 

loss function is thus written as:

ℒsemi−RFCM
α (y; θ) = ℒRFCM(y; θ) + αℒFCMlabel(y; θ) . (16)
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1.4 Experimental Setup

The proposed ConvNets were implemented and tested using TensorFlow [50]. Unless 

otherwise specified, all the experiments are carried out in Python 3.8 on a PC with AMD 

Ryzen 9 3900X 3.79 GHz CPU and an NVIDIA Titan RTX GPU (24 Gb). We investigated 

the performance of the proposed model on the task of bone and lesion segmentation 

in SPECT/CT images. We first (Section 2.1) present a hyper-parameter analysis for the 

proposed unsupervised loss on a dataset of realistic QBSPECT simulations. In the second 

experiment (Section 2.2), we present a series of segmentation experiments using the 

proposed supervised loss in which the performance is compared to several widely used 

supervised loss functions on the realistic QBSPECT simulations. In the third experiment 

(Section 2.3), we demonstrate the effectiveness of the proposed semi-supervised, simulation-

trained ConvNet on segmenting lesion and bone from a clinical SPECT scan; the result 

from the ConvNet was compared to VOIs manually delineated by an experienced physician, 

which served as a gold-standard. Since CT images provide higher resolution and likely 

better anatomical information for bone structures, in the final experiment (Section 2.4), we 

applied and evaluated the proposed semi-supervised loss to the task of segmenting bones in 

a clinical CT scan.

1.4.1 Dataset—The proposed algorithm was assessed on three datasets, where the 

training and a testing set consist of the attenuation maps generated from the XCAT phantom 

[51, 52] and their corresponding simulated SPECT images; another testing set is a set 

of clinical SPECT/CT bone scans obtained from an institutional-review-board-approved 

protocol. A brief description of the data is provided below:

1.4.1.1 XCAT attenuation maps & SPECT simulations:  The bone SPECT simulations 

were generated based on the 3D activity and attenuation distributions obtained using a 

population of highly realistic NURBS-based XCAT phantoms. The phantom variations were 

generated using our previously proposed deformable-registration-based phantom generation 

method [53, 54]. Nine XCAT variations were created by mapping a single XCAT attenuation 

map to capture the anatomical variations of the CT scans from nine patients. The values 

of the XCAT attenuation maps were calculated on the basis of the material compositions 

and the attenuation coefficients of the constituents at 140 keV, the photon energy of 

Tc-99m methylene diphosphonate (MDP) bone imaging. The activity distribution modeled 

that seen in Tc-99m. The uptake of bone was modeled as 8 to 13 times that of the soft-

tissue background. We modeled sclerotic bone lesions in the simulation with increased 

attenuation coefficient and radio-pharmaceutical uptake. The attenuation coefficient was 

varied randomly with uniform probability in the range 1.13 to 1.27 times the attenuation 

coefficient of cortical bone. The uptake in lesions had a mean of 4 times that of the bone, 

and varied randomly with a uniform distribution by a factor of 0.5 to 1.75 around that mean. 

SPECT projections were simulated using an analytic projection algorithm that realistically 

models attenuation, scatter assuming a 20% wide energy window centered at 140 keV, and 

the spatially-varying collimator-detector response (CDR) of a low-energy high-resolution 

collimator on a GE Discovery 670 scanner [55] [56]. Projections were simulated at 256 

projections over 360 degrees and collapsed after projection to model an acquisition voxel 

size of 0.22 cm. The acquisition time was such that it modeled a whole-body scan time of 
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30 minutes, and the projections were scaled appropriately and Poisson noise was simulated. 

Bone SPECT images were then reconstructed using a quantitative reconstruction method 

described in [57], which is based on the ordered subsets expectation-maximization algorithm 

[58] (OS-EM) and modeled attenuation, scatter, and the CDR. We used 2 iterations of 10 

subsets per iteration during reconstruction. No post-filtering was performed. A total of nine 

3D SPECT volumes were simulated using the XCAT phantom variations.

1.4.1.2 Clinical patient SPECT/CT scans:  We used 11 clinical SPECT and 12 clinical 

CT images in this study. The SPECT scans were acquired on a Siemens Symbia T16 

SPECT/CT system. The bone SPECT acquisitions were performed using our clinical bone 

SPECT protocol (120 views per bed position, and two energy windows with widths of 

15% and centered at 140 KeV and 119 keV with the latter serving as a scatter window), 

followed by CT acquisition. The clinical CT images were acquired from 12 patients, with 8 

on the Siemens SPECT/CT system and 4 on a GE CT system. Both SPECT and CT images 

were reconstructed using scanner software. The SPECT reconstructions were obtained using 

Flash 3D/OS-EM (with default numbers of iteration and subsets) with attenuation, energy-

window-based scatter, and geometric collimator-detector response compensations enabled. 

Bone and lesion in the SPECT and CT images were manually delineated by consensus of 

two experienced radiologists, where the initial segmentation was produced by a radiology 

fellow and verified by an attending physician. Two different fellows produced the initial 

segmentations.

1.4.2 Baseline Methods—We compared the results obtained using the proposed loss 

functions with those from two widely used supervised loss functions for ConvNet-based 

image segmentation, Dice loss (ℒDSC) and Cross-entropy loss (ℒCE). We also compared 

the results to a newly proposed unsupervised loss function, Mumford-Shah loss (ℒMS) [37], 

and a semi-supervised variant of it. For fair comparison, the same network architecture 

(described in section 1.3.1) was used for all loss functions. The baseline loss functions are 

briefly described below, we refer g as the ground truth segmentation here:

1.4.2.1 Dice Loss: Dice similarity coefficient (DSC) quantifies the overlap between two 

segmentation labels, its loss function is defined by:

ℒDSC(y; θ) = 1 − 2 f(y; θ) ∩ g
f(y; θ) + g . (17)

1.4.2.2 Cross-entropy Loss :  CE is computed as the log loss, summed over all pixel 

locations and all the possible classes. It can be written as:

ℒCE(y; θ) = − 1
Ω ∑

j ∈ Ω
∑

k = 1

C
gjklogfjk(y; θ) . (18)

1.4.2.3 Mumford-Shah Loss: The unsupervised and the semi-supervised Mumford-Shah 

losses [37] were previously given in (7) and (10).

Chen et al. Page 10

Med Phys. Author manuscript; available in PMC 2023 February 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1.4.2.4 Fixed Thresholding: The proposed method was also compared to the fixed-

threshold (FT) method. The threshold value was set to 42% of the maximum voxel value 

of the image for segmenting lesion, which has been proposed as a threshold value in 

SPECT imaging [6, 59]. We used 2% of the maximum voxel value based on our empirical 

experiments for bone segmentation in SPECT. The intensity of bone in CT images according 

to the literature ranges from 400–800 in Hounsfield Unit (HU) [60–63]. In this study, the 

threshold was empirically set to be 400 HU for identifying bone in CT.

1.4.3 Evaluation Metrics—We used four commonly used metrics in image 

segmentation to quantify 3D segmentation performance. In addition to these common 

metrics, the recently proposed surface DSC was also used to take segmentation variability 

into consideration. The five evaluation metrics are briefly introduced below:

1.4.3.1 Dice Similarity Coefficient (DSC): DSC is a measure of the spatial overlap 

accuracy of the segmentation results.

1.4.3.2 Recall: Recall, also referred to as sensitivity, measures the completeness of the 

positive segmentation relative to the ground truth segmentation.

1.4.3.3 Precision: Precision effectively demonstrates the purity of the positive detection 

relative to the ground truth segmentation.

1.4.3.4 Intersection over Union (IoU): Similar to DSC, IoU is a metric for quantifying 

segmentation overlap between prediction and ground truth, it is also referred to as the 

Jaccard index.

1.4.3.5 Surface Dice Similarity Coefficient: Inter- and intra-observer variability exists if 

the delineations were performed by different observers (i.e., physicians). The surface DSC 

[64] was proposed to take segmentation variability into consideration. In this study, the 

training dataset consisted only of simulated images with ground truth boundaries. Thus, 

the ConvNets did not learn how the humans would delineate the object-of-interest or the 

variability in delineation by different observers. Thus, the segmentation provided by the 

ConvNets might vary, and especially at the boundaries, from the physicians’ delineation 

of the same object. The conventional DSC weighs all regions of misplaced segmentation 

equally, and it has been shown that the DSC has a strong bias toward larger objects (i.e., 

segmenting larger objects often yields higher DSC). However, bone metastases observed in 

the SPECT images can be small in size. Therefore, even small variations in the segmentation 

boundary can result in a low DSC, even when these variations are well within an observers 

ability to accurately delineate a tumore. To overcome these shortcomings, Nikolov et al. 

in [64] proposed the surface DSC. The surface DSC provides a measure of the fraction 

of a region’s contour that must be redrawn compared to the “gold-standard”. The surface 

DSC considers a tolerance (in mm) within which the delineations’ variations are clinically 

acceptable. A surface, , refers to the boundary of a segmentation mask, ℳ (i.e.,  = ∂ℳ), 

and the area of the surface is defined as:
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S = ∫
S

dσ, (19)

where σ ∈  is a point on . The mapping (denote as ξ) from σ to a point, x, in ℝ3 is given 

as ξ:S ℝ3. Then the border region, ℬ, for the surface  at a distance tolerance τ is given 

by:

ℬ(τ) = x ∈ ℝ3 ∣ ∃σ ∈ S, ∥ x − ξ(σ) ∥ ≤ τ . (20)

Finally, the surface DSC at tolerance τ can be written as:

DSCsurf =
Sp ∩ ℬg

(τ) + Sg ∩ ℬp
(τ)

Sp + Sg
, (21)

where p and g denote, respectively, the prediction from the method under test and the 

“gold-standard”. Similar to the convention DSC, DSCsurf ranges from 0 to 1. A DSCsurf 

of 0.95 simply means that 95% of the segmentation boundary was within τ mm of the 

“gold-standard” while 5% needs to be redrawn [64]. The tolerance τ was set to be one 

voxel width for lesion segmentation and twice the voxel width for bone segmentation. The 

tolerance used for these two objects was based on our observation of the variations in organ 

boundaries of the “gold-standard” delineations provided by our two physicians. We observed 

a greater deviation for the normal bone, possibly because segmenting them required a much 

larger amount of work, and possibly because they deemed accurate segmentation of the 

normal bones less important than the lesions.

Because the patient studies were acquired under different imaging protocols (i.e., varying 

from 1-bed to 3-bed positions), and considering the variations and imbalances in the number 

of lesions and lesion sizes in different patients, a weighted average scheme was used to 

assess the segmentation performances on the patient studies:

E[s] = ∑
pi

vpi
∑ivpi

spi, (22)

where s ∈ {DSC, Recall, Precision, IoU} denotes the evaluation metric, and vpi denotes the 

volume (based on the “gold-standard”) of the object-of-interest (i.e., lesion or bone) in a 

patient pi. Notice that the DSCsurf scores were averaged across all patient studies because 

DSCsurf is independent of the sizes of the object-of-interest [64].

2 Results

2.1 Unsupervised Loss on QBSPECT simulations

The ConvNet was trained using the proposed RFCM loss function in a self-supervised 

manner without the use of ground truth information. We used the realistic QBSPECT 

simulations for both training and testing. The effectiveness of the parameters β and q was 

first tested. We then compared the proposed model to the unsupervised Mumford-proposed 
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Shah loss [37], and two clustering methods, FCM [18] and RFCM [28]. We first studied 

the effects of the two hyper-parameters in (11). The first parameter is β, for controlling 

the strength of the regularizer. We tested β in a range of 0 to 0.0016 with a step size 

of 0.004. Fig. 3 shows the qualitative results provided using different β values. From 

left to right, the images are the original image, the original image with the addition of 

random Gaussian noise (σ = 0.01), classification results from 5 different β values. As visible 

from the classification images, larger β values lead to cleaner classification results due to 

the increased strength of spatial smoothness prior, which tends to suppress isolated pixel 

classification. Notice that the high noise level used here is not clinically realistic, but it 

was used to show the effectiveness of the proposed spatial regularization. Thanks to the 

good intrinsic noise-suppressing ability of the ConvNet architecture [65], even when beta 

was set to zero (i.e., without the spatial smoothness prior), the unsupervised ConvNet still 

yielded a robust segmentation result. The effectiveness of the spatial prior is also proven 

by the quantitative results shown in Table 1, where the segmentation accuracy gradually 

improves as β increases. We evaluated the sensitivity of the resulting segmentation to the 

fuzzy exponent, q, in values of q ∈ [1, 2, 4]. Some qualitative results are show in Fig. 

4. The last four columns in the left panel of Fig. 4 exhibit the maximum membership 

classification (i.e., the class that have the maximum membership value) results and the 

membership functions for the three classes (background, bone, and lesion). When q = 1 

(the first row), the membership functions are nearly binary, but as q increases from 1 to 4, 

the degree of overlap between classes becomes higher, resulting in “fuzzier” membership 

functions. We also compared the proposed loss function to the unsupervised ℒMS [37]. As 

we previously described in section 1.2, ℒMS has a similar form to the K-means problem. 

So its resulting softmax output, zjk, is thus, almost binary, as shown in the first row of the 

left panel in Fig. 4. Finally, we compared the ability of noise regularization between the 

ConvNets trained by the different unsupervised loss functions. We used a noise-free dataset 

for training the ConvNet models, then we used the Gaussian noise corrupted (σ = 0.01) 

images for testing. The parameter, λ, was set to be = 10−9 for ℒMS based on the empirical 

experiments, and β = 0.0016 and q = 2 for ℒRFCM. For the clustering algorithms, we set 

q = 2 for both FCM and RFCM, and beta = 0.01 for RFCM. Visually, as shown in the 

right panel of Fig. 4, the ConvNet trained using ℒRFCM delineated the true objects in the 

image and was more robust to the noise than ℒMS. The FCM failed on the noisy images, 

resulting in unacceptably noisy segmentations. The RFCM, however, achieved comparable 

results to the segmentation obtained using ConvNet-based methods. Quantitatively, as shown 

in table 2, the performance decreased as the testing images were corrupted by noise for both 

unsupervised loss functions. However, the proposed ℒRFCM provided higher values of the 

quantitative metrics than ℒMS regardless of the noises. The best lesion segmentation score 

was achieved using the proposed unsupervised ConvNet, and the best bone segmentation 

score was achieved by the RFCM. However, as shown in Table. 3, compared to the RFCM, 

the proposed unsupervised ConvNet was 2.868
0.013 ≈ 221 times faster.

2.2 Supervised Loss on QBSPECT simulations

In this experiment, we used the ground truth labels to train the ConvNets using the 

supervised loss functions applied to the realistic simulated QBSPECT images. We first 
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evaluated the effectiveness of the fuzzy exponent, q, in (13), with values of q ∈ [1, 

2, 4, 6]. Then, we compared the proposed supervised loss, ℒFCMlabel with two widely 

used loss functions for ConvNet-based segmentation, ℒDSC and ℒCE, on a set of 

simulated QBSPECT images. The proposed supervised loss, ℒFCMlabel, based on the 

FCM formulation that incorporates the parameter q for controlling the fuzzy overlap 

between channels of the softmax output. Fig. 5 illustrates some examples of the resulting 

segmentation and membership functions (i.e., outputs of the last softmax layer) for ℒDSC, 

ℒCE, and ℒFCMlabel with different values of q. The third through last rows are the results 

produced using ℒFCMlabel with q values ranging from 1 to 6. We observed the same trend 

as in Fig. 4, where larger q values tended to produce fuzzier membership functions. Note 

that the ConvNet trained using ℒDSC and ℒCE produced hard (i.e., non-fuzzy) membership 

functions, which are similar to the results produced using ℒFCMlabel with q = 1. Table 4 

shows the quantitative evaluations for segmentation of the realistic QBSPECT simulations. 

Except for q = 1, the proposed ℒFCMlabel yielded comparable scores to ℒDSC and ℒCE, 

while providing an interesting property that the resulting membership functions was not 

necessarily hard. This could potentially be beneficial when quantifying activity inside 

regions in SPECT images.

2.3 Semi-supervised Loss on Clinical SPECT

In this experiment, we used the proposed semi-supervised loss to train the ConvNet using 

the simulated QBSPECT images. Before training, data augmentation was applied to the 

training dataset, where a Gamma correction [66, 67] was performed with γ ∈ [0.9, 1.1]. 

The training and testing image volumes were standardized to their Z-scores by subtracting 

their means and dividing by their standard deviations (i.e., yz − score =
y − uy

σy
). We validated 

the trained networks using the proposed loss function on 2 clinical SPECT scans and 

evaluated their performances on 9 clinical scans. The segmentation performance of the 

proposed semi-supervised loss, ℒsemi−RFCM
α  using q = 2, was compared with that of a semi-

supervised loss, Mumford-Shah loss (10) [37], and two supervised losses, Dice loss (17) and 

cross-entropy loss (18). Please note we also compared different values of α, the weighting 

factor controlling the relative strength of the supervised and unsupervised loss functions. 

Fig. 7 shows the segmentation results for four example slices of the clinical SPECT 

scan, from left to right: the first column displays the SPECT images; the second column 

shows the gold-standard segmentation provided by the radiologist, where the red contour 

indicates lesion and the green contour indicates bone; the third through last columns are the 

segmentation results generated by the ConvNet models trained using different loss functions. 

As indicated by the arrows in Fig. 7, the semi-supervised loss functions (the third through 

fourth columns) yielded better visual results than the supervised loss functions and the 

fixed-threshold method, where the semi-supervised models generally detected the locations 

and the shapes of the lesion and bone. The mean segmentation scores are shown in Table 5, 

and statistical plots of the DSC and surface DSC scores are shown in the left panel of Fig. 6; 

the top two figures show the mean and standard deviation of the DSC scores, and the bottom 

figures present boxplots of the surface DSC. We find that the highest segmentation scores 
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were also provided by the semi-supervised losses, in which the proposed ℒsemi−RFCM
0.1

yielded 0.747 in DSC and 0.788 in surface DSC for lesion segmentation, and the highest 

bone segmentation scores with a DSC of 0.742 in DSC and 0.95 in surface DSC. Among 

the semi-supervised losses, the proposed ℒsemi−RFCM loss function outperformed ℒsemi−MS 

loss function [37] in both lesion and bone segmentation tasks. When compared with the 

supervised segmentation loss functions, the proposed ℒsemi−RFCM outperformed them with 

p-values < 0.001 from a paired t-test. The supervised loss functions, ℒDSC, ℒCE, and the 

proposed ℒFCMlabel, all failed in this case, producing unacceptable segmentation results 

with DSC less than 0.4 for lesion segmentation. This suggests that the simulation-trained 

ConvNets using the supervised losses did not generalize well on clinical SPECT data.

2.4 Semi-supervised Loss on Clinical CT

This experiment evaluates the performances of the proposed model applied to clinical CT 

images. In order to train a ConvNet to segment anatomical structures from CT images, 

a possible choice for the training dataset is the realistic CT simulations generated using 

attenuation maps of the XCAT phantom [51,68]. However, since the Hounsfield Unit (HU) 

in CT is simply a linear transformation of the linear attenuation coefficient of human body, 

and the scope of this work is to explore the robustness of the proposed method in a setting 

where the images used for training and testing are from different domains, we instead, 

trained the ConvNets directly on the attenuation maps of a single XCAT phantom. We 

applied the same semi-supervised training scheme (with q = 2, and α=0.3 and 0.5), as 

described in the previous section. The proposed method was applied to 12 clinical CT scans, 

where 2 scans were used for validation and 10 were used for evaluation. We normalized the 

2D slices of the training and testing images so that the intensities of the slices had values in 

the interval [0, 1]. Data augmentation using Gamma correction was applied to the training 

images with γ ∈ [1.4, 1.6, 1.8]. The resulting segmentation was compared both qualitatively 

and quantitatively to the gold-standard segmentation provided by a radiologist. Fig. 8 shows 

some qualitative segmentation results with the corresponding gold-standard segmentation. 

The proposed method achieved a more accurate bone delineation; specifically, the proposed 

method was able to detect the boundary of the bone region in more detail (as indicated by 

the yellow arrows). Table 6 shows the mean segmentation scores, and the right panel of Fig. 

6 shows statistical plots of the scores. The proposed method, ℒsemi−RFCM
0.2 , outperformed 

other loss functions by a significant margin with the high scores of 0.841 in surface DSC 

and 0.794 in DSC. Interestingly, the proposed supervised loss, ℒFCMlabel, achieved 0.770 

in surface DSC and 0.778 in DSC, which were the highest among the supervised loss 

functions. The proposed semi-supervised loss function yielded p-values < 0.001 from the 

paired t-test was obtained when it was compared to ℒDSC, ℒCE, and ℒsemi−MS
0.2 .

3 Discussion

3.1 Unsupervised Model

In the traditional paradigm of learning-based methods, there often exists a prior training 

stage that involves ground truth labels. In this study, we presented, by contrast, a 
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novel unsupervised loss function that extends the ability of neural networks to perform 

unsupervised segmentation without the need for ground truth labels at any stage. The 

quantitative results shown in Table 1 and 2 indicate that, although the unsupervised loss 

functions yielded a low DSC that was around 0.50, they provided recalls of > 72%. In 
99mTc-MDP based bone SPECT, lesions often have the highest mean uptake, followed 

by bone and soft tissue. The proposed unsupervised ConvNets were trained to distinguish 

different characteristics of intensity distributions between different organs. As a result, the 

proposed model was often able to capture lesion and bone as two separate classes, thus 

leads to higher recall. We applied a network visualization method proposed by Erhan et 

al. [69] to visualize some example filters in the ConvNets. Erhan’s method maximizes 

a particular filter’s activation by updating a random image. We refer the readers to [69] 

for the implementation details. The visualizations of five filters from the second-to-last 

layer of the ConvNets are shown in Fig. 9, where the first row exhibits the visualizations 

for the proposed unsupervised ConvNet, and the second through the last row show the 

visualizations for the supervised models. These images demonstrate that the unsupervised 

ConvNet produced filter patterns, representing image features, that are drastically different 

from those of the other methods. The supervised ConvNets performed well at differentiating 

shapes and patterns in images [69,70]. Therefore, the differences observed in filter 

visualizations imply that the proposed unsupervised training scheme considered additional 

information other than shapes and patterns within a given image.

We also demonstrated that the proposed unsupervised ConvNet model was robust to noise 

in the test image. It is important to mention that the ConvNets were trained on a noise-free 

dataset, but the ConvNet architecture and the MRF-based regularizer (4) in ℒRFCM were 

able to provide good noise suppressing performances that outperformed the TV regularizer 

used in ℒMS [37]. This improvement was also demostrated by the results shown in Table 2 

and Fig. 4. Specifically, ℒRFCM outperformed ℒMS by 0.01 in DSC for lesion segmentation 

and 0.08 in DSC for bone segmentation on a Gaussian noise corrupted test image set.

The proposed ℒRFCM loss function incorporates an important idea from FCM, where there 

is a parameter, q, that allows for the non-binary membership functions. The effects of 

different values of q are shown in Fig. 4, where smaller q values lead to crisper membership 

values. As described previously, the formulation of ℒMS in [37] is similar to a special case 

of ℒRFCM where the fuzzy exponent, q, is 1. Therefore, the membership functions produced 

by training with ℒMS resulted in “hard” (non-fuzzy) membership values, which were similar 

to those produced by training using ℒRFCM with q = 1.

3.2 Supervised Model

The proposed supervised loss function was inspired by [49], for which Chen et al. modified 

the objective function of the well-known Active contour without edges (ACWE) to operate 

on the ground truth segmentation during training the ConvNet. With the similar idea, 

we proposed a novel supervised loss function that is based on the objective function of 

the classical FCM. This loss function, ℒFCMlabel, shares the property of ℒRFCM that it 

incorporates a parameter that supports fuzziness in the membership function. This enabled 

us to combine ℒFCMlabel with ℒRFCM as a new loss function that can be minimized by 
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a ConvNet in a semi-supervised manner. To the best of our knowledge, this is the first 

work that introduces the idea of fuzzy clustering into the loss function of CNN-based 

segmentation.

The effectiveness of q in ℒFCMlabel is visually shown in Fig. 5. As opposed to the 

membership values generated by ℒCE and ℒDSC which were crisper, ℒFCMlabel offered 

different degrees of fuzzy overlap between resulting membership functions by selecting 

different values of q. Unlike hard membership functions, the fuzzy exponent, q, enables 

a voxel to be in multiple classes. This could be useful in quantifying nuclear medicine 

images as the images often exhibit partial volume effects, where a voxel usually contains 

uptake information from more than one class. Quantitatively, on a test dataset comprised 

of simulated QBSPECT images, a mean DSC of 0.85 produced by the ConvNets trained 

using ℒFCMlabel was comparable to those trained using ℒCE and ℒDSC (as shown in Table. 

4). Interestingly, although the ConvNet models trained using the supervised losses did not 

perform well on the clinical dataset, the proposed ℒFCMlabel still outperformed the other 

two supervised losses, particularly by 0.035 in DSC on the bone segmentation from the 

clinical CT.

3.3 Semi-supervised Model

We combined the proposed unsupervised and supervised losses in a novel loss function, 

ℒsemi−RFCM
α . that enables the ConvNet to perform semi-supervised segmentation. This loss 

function was evaluated on a clinical SPECT/CT scan. We emphasize that the ConvNet 

models were purely trained using QBSPECT simulations and attenuation maps from 

the XCAT phantom. As shown in Tables 5 and 6, in general, semi-supervised training 

outperformed supervised training by a large margin of ~ 0.4 in DSC and surface DSC for 

lesion segmentation on the clinical SPECT and ~ 0.08 in DSC on the clinical CT. This 

is because of the poor generalizability provided by the ConvNets when they are trained 

using supervised loss functions on purely simulation images, for which they tend to over-

fit the semantic information in the training data. Therefore, the performance degradation 

is expected when testing (i.e., clinical studies) and training data (i.e., simulated images) 

are not drawn from a same distribution. Whereas the semi-supervised losses impose the 

ConvNet models to consider both pixel-level intensity distributions, provided by minimizing 

the unsupervised losses, and semantic information, provided by minimizing the supervised 

losses, of a given image. Notice that, as highlighted by the arrows Fig. 10, there are some 

clear errors in the “gold-standard” segmentation. In comparison, the proposed model would 

seem to have provided a more accurate delineation. The regions with higher intensity levels 

and the regions within cortical bones (i.e., bone marrow) were all correctly being classified 

as a bone by the automated observers, in contrast to the human observers. The parameter 

α is a hyper-parameter that controls the weight of the supervised loss. When α is set to 

be small, the network focuses more on characterizing intensity distributions rather than the 

segmentation labels from the training dataset. The impact of α in ℒsemi−RFCM
α  (q = 2) and 

ℒsemi−MS
α  on the performance of segmenting the clinical data are quantitatively studied, and 

the results are shown in Fig. 11. For the SPECT data, ℒsemi−RFCM
α  outperforms ℒsemi−MS

α

Chen et al. Page 17

Med Phys. Author manuscript; available in PMC 2023 February 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in lesion segmentation for all the α values tested, while sharing the similar performances in 

bone segmentation. On the other hand, for the CT data, the performance of ℒsemi−RFCM
α

was consistently higher than that of ℒsemi−MS
α  for all α values we tested.

One focus of this work has been to present a series of loss functions to use ConvNets 

that require limited amounts of training data. The work concentrated on the development 

of the loss functions, and an effort to optimize the ConvNet architecture is an interesting 

avenue for future study. A limitation of this work is that the amount of clinical data used 

for evaluation is relatively small. However, the existing results have demonstrated that the 

proposed semi-supervised loss function successfully enabled ConvNets trained using purely 

simulated images that were totally independent of the clinical images to produce usable 

segmentation for clinical images. Further evaluation using more clinical images will be 

needed before clinical application of the proposed method.

4 Conclusion

In this work, we proposed a set of novel FCM-based loss functions for semi-, unsupervised, 

and supervised SPECT/CT segmentation using deep neural networks. An advantage of the 

proposed loss functions is that they enable the ConvNets to consider both voxel intensity 

and semantic information in the image during the training stage. The proposed loss functions 

also retain the fundamental property of the conventional fuzzy clustering, where the fuzzy 

overlap between the channels of softmax outputs can be adjusted by a hyper-parameter in 

the loss function. Various experiments demonstrated that the model trained using a dataset of 

simulated images generalized well and led to fast and robust segmentation on both simulated 

and clinical SPECT/CT images.
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Fig. 1: 
Overview of the proposed method.

Chen et al. Page 23

Med Phys. Author manuscript; available in PMC 2023 February 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2: 
ConvNet architecture.
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Fig. 3: 
The proposed unsupervised model applied to a 2D QBSPECT image. The first image: 

QBSPECT image. The second image: Ground truth segmentation of bone (green) and lesion 

(red). The third image: QBSPECT image corrupted by Gaussian noise with σ = 0.01. The 

fourth image to the last image: Maximum membership classification results using different 

β.
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Fig. 4: 
Visual comparison of segmentation results obtained from the ConvNets trained using the 

proposed unsupervised loss function and other unsupervised segmentation methods. Left 

panel: Clustering results and membership images generated using ℒMS [37] (the first row), 

the proposed ℒRFCM (the second through fourth rows), FCM [18] (the second through last 

row), and RFCM [28] (the bottom row). Right panel: Comparisons between the maximum 

membership classification results generated using two unsupervised losses (the second and 

the third columns), FCM (the fourth column), and RFCM (the last column) on the Gaussian 

noise (σ = 0.01) corrupted images.
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Fig. 5: 
Visual comparisons of the output membership functions generated using ℒDSC, ℒCE, the 

proposed ℒFCMlabel with different fuzzy exponent q. The red and green contours in the 

second column indicate truth regions for lesion and bone. The blue and yellow regions in the 

third column represent segmented lesion and bone.
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Fig. 6: 
Statistical plots of DSC and surface DSC scores for SPECT and CT segmentation using 

different loss functions. The top three figures plot the mean scores in DSC with standard 

deviations as error bars. Figures in the bottom row are boxplots of the surface DSC, where 

the triangles denote the means, and the center lines represent the medians.
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Fig. 7: 
Qualitative comparison results of the proposed semi-supervised loss and other losses on the 

clinical SPECT scan. The yellow arrows highlight the differences between the segmentation.
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Fig. 8: 
Qualitative comparison of bone segmentation results between gold-standard and ConvNets 

trained using different losses on the clinical CT. The yellow arrows highlight the differences 

between the segmentation.
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Fig. 9: 
Visualization of five filters from the second-to-last convolutional layer of the networks 

trained using un- and fully-supervised loss functions.
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Fig. 10: 
Left panel: A slice of CT image (top). The “gold-standard” delineation (bottom). Right 

panel: Magnified segmentation results. The first column denote the “gold-standard” 

segmentation, and the second column denotes the results obtained using the proposed 

method.
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Fig. 11: 
The impact of different α values in the semi-supervised losses on the performance of 

segmenting clinical SPECT (a), and CT (b).
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