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CONTEMPORARY REVIEW

Biomechanical and Mechanobiological 
Drivers of the Transition From PostCapillary 
Pulmonary Hypertension to Combined 
Pre−/PostCapillary Pulmonary Hypertension
Betty J. Allen, MD*; Hailey Frye, BS*; Rasika Ramanathan , MS*; Laura R. Caggiano , PhD;  
Diana M. Tabima , PhD; Naomi C. Chesler , PhD†; Jennifer L. Philip, MD† 

ABSTRACT: Combined pre−/postcapillary pulmonary hypertension (Cpc-PH), a complication of left heart failure, is associated 
with higher mortality rates than isolated postcapillary pulmonary hypertension alone. Currently, knowledge gaps persist on 
the mechanisms responsible for the progression of isolated postcapillary pulmonary hypertension (Ipc-PH) to Cpc-PH. Here, 
we review the biomechanical and mechanobiological impact of left heart failure on pulmonary circulation, including mecha-
notransduction of these pathological forces, which lead to altered biological signaling and detrimental remodeling, driving the 
progression to Cpc-PH. We focus on pathologically increased cyclic stretch and decreased wall shear stress; mechanotrans-
duction by endothelial cells, smooth muscle cells, and pulmonary arterial fibroblasts; and signaling-stimulated remodeling of 
the pulmonary veins, capillaries, and arteries that propel the transition from Ipc-PH to Cpc-PH. Identifying biomechanical and 
mechanobiological mechanisms of Cpc-PH progression may highlight potential pharmacologic avenues to prevent right heart 
failure and subsequent mortality.
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Left heart failure (LHF) impacts nearly 5.9 million 
adults and contributes to 1 out of every 9 deaths 
in the United States.1 Pulmonary hypertension (PH) 

occurs in 36% to 83% of those with LHF (PH-LHF)2 
and dramatically increases morbidity and mortality.3,4 
PH-LHF begins as a passive process termed isolated 
postcapillary PH (Ipc-PH), diagnosed by elevated 
mean pulmonary artery pressure (mPAP) with normal 
pulmonary vascular resistance (PVR). Mortality signifi-
cantly increases once Ipc-PH transitions to combined 
pre−/postcapillary PH (Cpc-PH), with increased PVR, 
which also typically marks a change from reversible to 
irreversible disease.5 Although genetic, environmental, 
and metabolic factors likely impact disease progression 

in individual patients, biomechanical forces and mech-
anobiological signaling may be common drivers of this 
key pathophysiological transition.

Vascular biomechanical forces such as cyclic 
stretch, which acts on all cells in the vascular wall, 
and shear stress, which acts on the cells that line the 
lumen of the vascular wall, are transduced into biolog-
ical signals in a process termed mechanotransduction. 
Mechanotransduction pathways contribute to the patho-
physiology of cardiovascular diseases including ath-
erosclerosis, arteriovenous malformations, and type 2 
diabetes, among others.6–9 Specifically, mechanotrans-
duction induces biological signals that drive vascular re-
modeling including hypertrophy, hyperplasia, apoptosis, 
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and extracellular matrix (ECM) synthesis and degra-
dation.10 This remodeling in turn alters the mechanical 
function of the vessels.11 For example, increased colla-
gen synthesis (and less degradation) in the vessel wall 
will decrease vessel compliance and pulse wave damp-
ening.12 Within a less compliant vessel, cells stretch less 
with each pressure pulse, which alters the biomechani-
cal forces on those cells. Although this self-perpetuating 
process—biomechanical forces transduced into biologi-
cal signals that cause vascular remodeling, which in turn 
change biomechanical forces—can be homeostatic and 
adaptive, it can also be maladaptive, especially for tis-
sues upstream and downstream. In PH caused by LHF, 
the ultimate outcome is right heart failure (Figure 1).

This review examines the known and suspected roles 
of LHF-induced hemodynamic changes in altering 2 key 
vascular biomechanical forces: cyclic stretch and wall 
shear stress (WSS), which activate mechanotransduc-
tion pathways; drive pulmonary venous, capillary, and 
arterial remodeling; and characterize the transition from 
Ipc-PH to Cpc-PH and subsequent right heart failure.

CLINICAL DEFINITIONS OF IPC-PH 
AND CPC-PH
As left ventricular function declines, left ventricular fill-
ing pressures rise, inducing a concomitant elevation in 

left atrial pressure (LAP). The passive transmission of 
elevated LAP into the pulmonary veins is characteristic 
of Ipc-PH. Increased pulmonary venous pressures are 
transmitted across the capillaries and arteries in a 1-to-1 
fashion such that the rise in mPAP is proportional to the 
rise in LAP. The 2022 European Society of Cardiology/
European Respiratory Society Guidelines for the 
Diagnosis and Treatment of Pulmonary Hypertension 
defined Ipc-PH as mPAP >20 mm Hg, pulmonary artery 
wedge pressure >15 mm Hg with PVR <2 Woods units.13 
As the disease progresses, pulmonary vasoconstriction 
contributes to a >1-to-1 rise in mPAP.14 In this reactive 
phase, the increase in mPAP can be reversed with ad-
equate left ventricular afterload reduction.15

Twelve percent to 38% of patients with PH-LHF prog-
ress through this reversible reactive phase of Ipc-PH to 
irreversible Cpc-PH.15 The clinical definition of Cpc-PH 
is mPAP >20 mm Hg, pulmonary artery wedge pressure 
>15 mm Hg, and PVR >2 Woods units.13 The elevation in 
PVR in Cpc-PH is associated with a greater risk of right 
heart failure and mortality in comparison with patients 
with Ipc-PH alone.15 Postmortem studies have demon-
strated that increased PVR is associated with pulmo-
nary vascular remodeling, including pulmonary venous 
and arterial medial hypertrophy, diffuse lung intimal fi-
brosis, and distal arterial luminal occlusion.16

In addition to increasing PVR, Cpc-PH is associated 
with decreased pulmonary arterial compliance (PAC), 
which is calculated as the pulse pressure (systolic pul-
monary artery pressure minus diastolic pulmonary ar-
tery pressure) divided by stroke volume and represents 
the ability of the pulmonary arterial compartment to 
absorb and dampen hemodynamic pulsatility.17 Large 
clinical studies have found that PAC is more predic-
tive of mortality than mPAP or PVR in PH-LHF.18–20 
Importantly, decreased PAC has consequences dis-
tinct from increased PVR on the mechanical forces 
imposed on the upstream right ventricle (RV) and 
downstream pulmonary capillaries via altered pulse 
wave reflection and transmission, respectively.17

BIOMECHANICS: THE MISSING LINK
The initial insult to the pulmonary vasculature in Ipc-PH 
is increased pulmonary venous, capillary, and arterial 
pressure. The impact of increased pressure on the 2 key 
vascular biomechanical forces, cyclic stretch and wall 
shear stress, in the pulmonary vasculature depends, 
in part, on the mechanical properties of the pulmonary 
vasculature. Because each compartment in the pulmo-
nary vasculature, namely arteries, capillaries, and veins, 
has a different structure,21 the cells in each compart-
ment will be exposed to different biomechanical stimuli.

Healthy pulmonary arteries are rich in elastin and 
have concentric layers of smooth muscle cells (SMCs), 
yielding a highly compliant structure.22 They are 
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populated with pulmonary arterial fibroblasts in the 
adventitia, which are responsible for ECM remodel-
ing. As the distance from the main pulmonary artery 
(PA) increases, the relative amount of ECM protein de-
creases, and the percentage of SMC increases, reach-
ing a maximum at the arterioles.23 The capillary system 
is a vast but fragile network consisting only of endothe-
lial cells (ECs) and ECM. Although thin-walled and lack-
ing in SMCs and elastic fibers, the capillaries derive 
tensile strength from type IV collagen.24 The pulmonary 
venules consist of elastic fibers and connective tissue, 
with minimal SMCs. As pulmonary venules become 
veins approaching the left atrium, the number of SMCs 
and amount of elastin increases.25 Overall, pulmonary 
veins are less compliant than pulmonary arteries.26

Cyclic stretch occurs in a compliant vessel in which 
pressure is pulsatile; it is defined as the change in 

diameter from systole to diastole divided by the diam-
eter at diastole (Figure 2). Thus, increased pulse pres-
sure (PP) (defined as systolic pressure minus diastolic 
pressure) can drive increases in cyclic stretch. In the 
pulmonary vasculature, PP is highest in large proximal 
arteries and drops precipitously at the pulmonary arte-
rioles.27 Although difficult to measure, PP (ie, pulsatil-
ity) in the capillaries in a healthy state is thought to be 
minimal; pulsatility in the pulmonary veins is also low. 
Therefore, cyclic stretch in the capillaries and veins in 
the healthy state is likely negligible.

As noted above, with Ipc-PH, increased LAP is 
transmitted from the veins across the capillaries to ar-
teries in a 1-to-1 fashion, such that the rise in mPAP 
is proportional to the rise in LAP. For no change in 
cardiac output or PVR, the increase in mPAP is equal 
to the increase in LAP. How this affects cyclic stretch 

Figure 1.  Mechanotransduction is the key step in the pathophysiologic progression of pulmonary vascular disease in the 
setting of left heart failure.
The transition from isolated postcapillary pulmonary hypertension to combined pre−/postcapillary pulmonary hypertension is 
characterized by pulmonary vascular remodeling and results in right heart failure. Cpc-PH, combined pre−/postcapillary pulmonary 
hypertension; EC, endothelial cell; Ipc-PH, isolated postcapillary pulmonary hypertension; mPAP, mean pulmonary artery pressure; 
PAWP, pulmonary artery wedge pressure; PVR, pulmonary vascular resistance; SMC, smooth muscle cell; and WSS, wall shear stress.
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in the 3 compartments is not precisely known. A com-
mon feature of all vessels is nonlinear compliance; 
arteries, capillaries, and veins are more compliant at 
low pressures than at high pressures.28 Uniquely, in 
the pulmonary circulation, there is a linear relationship 
between mPAP and PP, such that as mPAP increases, 
PP increases proportionally.29 Thus, increased mean 
pressure decreases compliance and increases PP, 
which increases cyclic stretch on vascular cells.30 
In 2000, West hypothesized that high mPAP injures 
pulmonary capillaries and leads to stress failure31; 
alternatively, excessive cyclic stretch could be the 
mechanism. Whether this putatively increased pul-
satility is then transmitted downstream of capillaries 
to pulmonary veins is unknown. In sum, the cyclic 
stretch imposed on cells in the pulmonary vasculature 
depends on PP (which itself depends on mean pres-
sure), and vessel wall structure, both of which depend 
on compartment (artery, capillary, vein) and distance 
from the heart.

WSS in the pulmonary vasculature also depends on 
the compartment and distance from the heart. On the 
basis of Poiseuille’s law, WSS is proportional to blood 
flow velocity and blood viscosity, and inversely propor-
tional to the lumen radius32 (Figure 2). The branching 
pattern of the pulmonary arteries and veins is thought 
to keep time-averaged WSS relatively constant with 
distance from the heart, because flow rate decreases 
in proportion to radius cubed.33 WSS in the capillar-
ies is difficult to define and measure. With Ipc-PH, 
increased mean pressure increases diameter, which 
should decrease WSS in all compartments (again, 
dependent on vascular compliance). Moreover, when 
cardiac output decreases because of LHF, blood flow 
velocities, and thus WSS, will decrease in all compart-
ments. Decreased pulmonary venous systolic velocity 
has been found in subjects with LHF,34 which supports 
decreased WSS in the pulmonary veins.

Cyclic stretch, which acts directly on ECs, SMCs, 
and fibroblasts in the vessel wall, and WSS, which acts 
directly on ECs and can have consequences for SMCs 
and fibroblasts, are potent mechanical stimuli for vas-
cular remodeling. Below, we review the pathways 
through which these biomechanical stimuli act on each 
cell type and provide evidence that biomechanics and 
mechanobiology incite key pulmonary vascular events 
in the transition from Ipc-PH to Cpc-PH.

MECHANOTRANSDUCTION OF 
CYCLIC STRETCH AND WSS
Increased Cyclic Stretch

Increases in pulmonary pressure caused by LHF 
and Ipc-PH can increase cyclic stretch, which stim-
ulates EC signaling pathways that cause vasodila-
tion, inflammation, and pathologic vessel remodeling 
through ECM turnover and SMC proliferation (Figure 3). 
Because both pressures and wall mechanical proper-
ties vary throughout the pulmonary vasculature, with 
pressures decreasing from the arteries to the capil-
laries and veins, and mechanical properties reflecting 
their differing functions, the impact of Ipc-PH on cyclic 
stretch is distinct in each compartment and not entirely 
known. In the systemic circulation, a low magnitude 
cyclic stretch in the range of 5% to 10% is consid-
ered to be physiological, and a high magnitude stretch 
>20% is considered pathological.8 The physiological 
and pathological stretch levels in the pulmonary vas-
culature are not well defined. In particular, the mechan-
ical forces in PH-LHF have not been characterized, 
and further investigations are needed to fully under-
stand the abnormal biomechanical forces generated 
by this disease. Recent computational modeling sim-
ulations from Bartolo et al suggest that physiological 
cyclic stretch is 15% to 20% in the pulmonary arteries 

Figure 2.  Schematic representation of wall shear stress (WSS) and cyclic stretch in a vessel.
WSS is directly proportional to blood flow rate (Q) and blood viscosity (μ) and is inversely proportional to the radius of the vessel lumen 
(r). Cyclic stretch is the difference between lumen radius at systole (rs) and the lumen radius at diastole (rd) normalized by the radius 
at diastole.
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and <5% in the capillaries and veins; in the setting of 
Ipc-PH (an increase in LAP from 2 to 20 mm Hg), cyclic 
stretch is predicted to increase to up to 60% in the ar-
teries, 10% in the capillaries, and 40% in the veins.35 To 
understand the impact of these mechanical stimuli on 
biological changes in each cell type in the pulmonary 
vasculature, below we review key findings from in vitro 
studies examining the impact of cyclic stretch on ECs, 
SMCs, and fibroblasts, with the caveat that most of 
these studies use nonpulmonary cell sources. Table 1 
provides the subset of these study results conducted 
using pulmonary vascular ECs, SMCs, and fibroblasts.

Impact of Cyclic Stretch on ECs in Veins, 
Capillaries, and Arteries

High cyclic stretch on human umbilical vein endothe-
lial cells (HUVECs) in vitro increases endothelial nitric 
oxide synthase (eNOS) phosphorylation through the 
PKA (protein kinase A) and P13K (p13 kinase)/Akt (pro-
tein kinase B) pathways.36,37 Consequent vasodilation 
may contribute to the decreased pulmonary blood flow 
velocities found in LHF.34 HUVECs subjected to patho-
logical cyclic stretch also increase release of interleukin-
6 via NF-κB (nuclear factor-κB)-dependent pathway.38 

Figure 3.  Mechanotransduction of increased cyclic stretch because of left heart failure in endothelial cells, fibroblasts, and 
smooth muscle cells triggers a cascade of pathologic vascular remodeling.
Boxes within the cell signaling cascade are colored to match their corresponding box at the top of the figure (altered biomechanics, 
mechanotransduction, or vascular remodeling). AKT indicates protein kinase B; cAMP indicates cyclic adenosine monophosphate; 
Cox-2 indicates cyclooxygenase-2; ECM, extracellular matrix; eNOS, endothelial nitric oxide synthase; ERK, extracellular signal-
regulated kinase; FAK, focal adhesion kinase; FGF-2, fibroblast growth factor-2; GPCR, G protein-coupled receptor; IGF-1, insulin-
like growth factor-1;  IL-6, interleukin-6; JNK, c-Jun N-terminal kinase; MCP-1, myocyte chemoattractant protein-1;  MMP, matrix 
metalloproteinase; NF-κB, nuclear factor-κB; NOX-4, NADPH oxidase-4; P13K, p13 kinase; PKA, protein kinase A; PKC, protein kinase 
C; PLC, phospholipase C; Rac1, Ras-related C3 botulinum toxin substrate 1; RhoA, ras homolog family member A; ROS, reactive 
oxygen species; TGFβ, transforming growth factor beta; TNF-α, tumor necrosis factor-α; VCAM-1, vascular cell adhesion protein 1; VE 
cadherin, vascular endothelial cadherin; and VEGF, vascular endothelial growth factor.
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Increased activation of the NF-κB pathway triggered 
by EC cyclic stretch leads to reactive oxygen species 
(ROS) stress and cytokine release, resulting in inflam-
mation.39,40 Cyclic stretch–triggered ROS production 
has been further shown to lead to ET-1 (endothelin-1) 
production, a potent vasoconstrictor, in both HUVECs 
and bovine arterial endothelial cells (BAECs).41 Cyclic 
stretch also triggers production of inflammatory cy-
tokines including MCP-1 (myocyte chemoattractant 
protein-1) and interleukin-8.42,43 In addition to vaso-
dilation and inflammation, increased cyclic stretch 
stimulates ECM remodeling through matrix metallopro-
teinase (MMP) production and activation.44–46 Stretch 
leads to EC stiffening via cytoskeleton remodeling, 
characterized by increased actin fiber bundle thickness 
and fiber reorientation.47,48 This remodeling could con-
tribute to increased intimal thickness, which is a key 
histologic feature of PH-LHF remodeling and has been 
demonstrated throughout the pulmonary vascular bed 
in human patients.16,49,50 These findings highlight the 
potentially important role of EC-stimulated remodeling 
in Cpc-PH progression.

In the capillary bed, increased EC cyclic stretch 
has been hypothesized to cause alveolar-capillary 
stress failure.24 As first proposed by West, alveolar-
capillary stress failure is the physical disruption of 

the alveolar-capillary membrane in response to el-
evated capillary pressure and volume.3 Mechanical 
breakdown of the capillary membrane is theorized 
to increase permeability, stimulate remodeling, and 
release factors that further alter the function of the 
membrane.51 Microvascular remodeling and dysfunc-
tion could be a critical link in the transition of Ipc-PH to 
Cpc-PH. Consistent with this hypothesis, pulmonary 
microvascular remodeling, including thickened alveo-
lar septa and collapsed airspaces, were demonstrated 
in a mouse model of LHF.52 Human lung microvas-
cular ECs subjected to cyclic stretch demonstrated 
an increase in MMP-2, leading to degradation of the 
basement membrane, which can result in leakage of 
intraluminal fluid.53 This mechanism is consistent with 
increased systemic levels of MMP-2 and MMP-9 in 
subjects with heart failure with preserved ejection frac-
tion.54 Additionally, components of the EC cytoskele-
ton undergo rearrangement in response to pathologic 
stretch, which weakens junctional protein complexes 
with neighboring cells and reduces the integrity of the 
endothelium.55 A rat model of LHF provided further 
support for the alveolar-capillary stress failure theory, 
because altered capillary EC membrane permeabil-
ity and cytoskeletal rearrangement were revealed as 
additional signs of capillary EC dysfunction.56 These 

Table 1.  Cyclic Stretch in Pulmonary Vascular ECs, SMCs, and Fibroblasts

Cell type Stimulus vs static Mechanotransduction Biological response References

Bovine PAEC and 
PASMC

20% cyclic stretch 
at 1 Hz for 0–24 h

VE-cadherin– and Rac1-dependent EC 
proliferation; RhoA kinase-dependent SMC 
proliferation

Vessel remodeling Liu72

Bovine PAEC 25% cyclic stretch 
at 0.25 Hz for 24 h

Mitochondrial complex III-stimulated increase in 
ROS leading to increased FAK activation

Angiogenesis Ali66

Human PMVEC 20% cyclic stretch 
at 0.83 Hz for 24 h

Increase of IL-8 synthesis and release via p38 
activation

Inflammation Iwaki63

Human PMVEC 18% cyclic stretch 
at 0.5 Hz for 4 d

Increased MMP-2, 14, increased activity of tissue 
inhibitor of metalloproteinase-2

ECM remodeling Haseneen53

Rabbit PASMC 15% cyclic stretch 
at 1 Hz for 24 h

Increased tyrosine kinase phosphorylation of 
FAK leading to increased PDGF and PDGF-R 
expression

SMC proliferation Tanabe74

Ovine PASMC 5%–25% cyclic 
stretch at 1 Hz 48 h

Increased VEGF and FGF-2 SMC proliferation/
angiogenesis

Quinn75

Ovine PASMC 20% cyclic stretch 
at 1 Hz for 8 h

Increased TGF-β1 led to NADPH oxidase– and 
ROS-dependent increase in VEGF

Angiogenesis Mata-Greenwood73

Ovine PASMC 15% cyclic stretch 
at 1 Hz for 24 h

Increased ROS via NOX-4 SMC proliferation and 
migration

Wedgwood77

Rat PAAF 10% equibiaxial 
static stretch for 
24 h

Increased myofibroblast differentiation and 
increased Col1a1, Col3a1, Eln

Vessel remodeling Wang85

Human lung fibroblasts 20% cyclic stretch 
at 1 Hz for 30 min

Increased intracellular Ca2+, increased production 
of ROS leading to NF-κB activation and increased 
COX-2

Inflammation Amma91

COX-2 indicates cyclooxygenase-2; EC, endothelial cell; ECM, extracellular matrix; FAK, focal adhesion kinase; FGF-2, fibroblast growth factor-2; 
IL, interleukin; MMP, matrix metalloproteinase; NF-κB, nuclear factor-κB; NOX-4, NADPH oxidase-4; PAAF, pulmonary artery adventitial fibroblast; PAEC, 
pulmonary artery endothelial cell; PASMC, pulmonary arterial smooth muscle cell; PDGF, platelet derived growth factor; PDGF-R, platelet derived growth factor 
receptor; PMVEC, pulmonary microvascular endothelial cells; Rac1, Ras-related C3 botulinum toxin substrate 1; RhoA, ras homolog family member A; ROS, 
reactive oxygen species; SMC, smooth muscle cell; TGF-β1, transforming growth factor-β1; VE cadherin, vascular endothelial cadherin; and VEGF, vascular 
endothelial growth factor.
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studies demonstrate that cyclic stretch stimulates ECM 
turnover, cytoskeleton rearrangement, and endothelial 
dysfunction that is similar to the irreversible patho-
logical remodeling demonstrated in animal models of 
LHF and subsequent Cpc-PH.52,57,58 Thus, mechano-
transduction of increased cyclic stretch occurring in 
the capillaries because of Ipc-PH likely drives patho-
logic remodeling that characterizes the transition to 
Cpc-PH. The overall effects of increased cyclic stretch 
leading to altered capillary EC function, ECM remodel-
ing, and inflammation, which contribute to further pul-
monary vascular remodeling, may be key to inciting the 
development of Cpc-PH from Ipc-PH.59

In the arterial compartment, increased cyclic stretch 
similarly triggers vasodilation, inflammation, and ECM 
remodeling, although through some different pathways 
than in the venous and capillary compartments. Unlike 
in HUVECs, cyclic stretch applied to pulmonary artery 
endothelial cells (PAECs) increased proliferation and 
eNOS phosphorylation while reducing NO via the P13K 
pathway.37,60 In arterial ECs, cyclic stretch activates 
VEGFR2 (vascular endothelial growth factor receptor 
2), which leads to Src-dependent vascular endothe-
lial (VE)-cadherin tyrosine phosphorylation, resulting 
in proliferation and migration.61,62 Dynamically stretch-
ing human PAECs (20% versus 5%) for 24 hours led 
to time-dependent increases in interleukin-8 produc-
tion.63 Cyclically stretching PAECs also activates the 
interleukin-6 release pathways observed in the venous 
cells in addition to JNK (c-Jun N-terminal kinase), ERK 
(extracellular signal-regulated kinase), and p38 path-
ways unique to the arterial cells.64 Cyclically stretch-
ing PAECs further induces the upregulation of TSP-1 
(thrombospondin-1), which inhibits NO-stimulated pul-
monary arterial smooth muscle cell (PASMC) growth 
and proliferation.65 Similar to in venous and capillary 
ECs, in BAECs, 10% cyclic stretch induced a 9-fold 
increase in MMP-2 compared with static culture.46 
This study identified the stimulation of p38- and ERK-
dependent pathways as the mechanisms responsi-
ble for the MMP increase.46 Additional studies have 
demonstrated that when vascular ECs experience 
pathological cyclic stretch, the cytoskeleton transmits 
the force to the subcellular mitochondria. Dynamically 
stretched PAECs increase mitochondrial release of 
ROS and activation of protein kinase C and FAK (focal 
adhesion kinase), a key regulator of angiogenesis.66,67 
Given these findings, it is likely that the increased cyclic 
stretch associated with LHF contributes to intracellular 
mitochondrial-driven metabolic dysfunction.

Previous reviews compiled systemic and umbilical 
endothelial cell response to cyclic stretch,8,68 but EC 
characteristics depend on location.69 Nonpulmonary cell 
studies present targetable pathways, which should be in-
vestigated in pulmonary EC-specific experiments. The dif-
fering stretch-induced vasodilation, inflammation, and 

remodeling pathways observed in venous, capillary, 
and arterial EC further motivates studies to understand 
the biomechanical complexity of Ipc-PH progression 
to Cpc-PH. Key knowledge gaps include mechano-
transduction pathways in pulmonary specific cell lines 
as well as the mechanical forces imposed on these 
cell types in both the physiological and pathological 
conditions in each compartment of the pulmonary 
circulation.

Impact of Cyclic Stretch on SMCs in 
Veins and Arteries

Cyclic stretch is a key regulator of SMC function im-
pacting gene expression and cell signaling pathways 
to regulate proliferation, apoptosis, and remodeling.70 
Like ECs, pulmonary SMCs respond to pathologic 
cyclic stretch by increasing proliferation, ECM remod-
eling, and inflammation (Figure 4). In the systemic ve-
nous compartment, cyclic stretch activates the IGF-1 
(insulin-like growth factor 1) pathway to induce SMC 
proliferation.71 In the pulmonary arterial compartment, 
20% biaxial stretch induces a ras homolog family 
member A (RhoA)-dependent increase in SMC prolifer-
ation.72 Additionally, pulmonary arterial SMCs demon-
strate stretch-induced dysfunction through increased 
VEGF (vascular endothelial growth factor) expression 
via ROS-dependent TGF-β1 (transforming growth 
factor-β1) signaling promoting angiogenesis and in-
flammation.73 Beyond VEGF, cyclic stretch stimulates 
overexpression of other growth factors and their re-
ceptors in PASMCs, including PDGF (platelet-derived 
growth factor) and their receptors (PDGF-R) via phos-
phorylation of FAK. Overexpression of PDGF-R is also 
present in rat models of pulmonary artery hypertension 
(PAH), indicating its likely role in pathological pulmo-
nary vascular remodeling.74,75 Dynamically stretched 
rat aortic vascular smooth muscle cells show signif-
icant time-dependent increases in L-arginine activity 
and transport velocity, as well as L-arginine-dependent 
products such as L-proline, putrescine, and L-
ornithine.76 Increased levels of L-proline products result 
in decreased NO and increased collagen deposition 
by SMCs,76 a combination of effects that could drive 
remodeling associated with the transition from Ipc-PH 
to Cpc-PH. Similar to ECs, when PASMCs experience 
pathological stretch, activity of mitochondrial complex 
III increases, leading to elevated cytosolic ROS and 
NOX-4 (NADPH oxidase-4) activity, both of which con-
tribute to vascular remodeling.77 Pathological remod-
eling of PASMCs caused by increased cyclic stretch is 
characterized by proliferation, collagen deposition, and 
inflammation, which likely contribute to the decreased 
pulmonary arterial compliance associated with the pro-
gression to Cpc-PH. Thus, arterial stiffening because 
of cyclic stretch–stimulated pathological remodeling by 
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SMCs and ECs may compound the dysfunction and 
remodeling in the pulmonary capillaries and veins, driv-
ing the progression from Ipc-PH to Cpc-PH.

Impact of Cyclic Stretch on Fibroblasts 
in Arteries

The activation of fibroblasts and their differentiation into 
proinflammatory myofibroblasts is a major contributor 
to the arterial stiffening, alveolar membrane thickening, 
and interstitial fibrosis, which characterize the irreversi-
ble remodeling seen in Cpc-PH.51 Several studies have 
shown pulmonary artery adventitial fibroblasts (PAAFs) 
act as direct biomechanical transducers in response 
to stretch and injury. Increased cyclic stretch stimu-
lates PAAF differentiation into myofibroblasts and in-
creases expression of collagen and elastin messenger 

RNAs in vitro.78 Cyclic stretch directly activates latent 
TGF-β1, which sustains the myofibroblast phenotype79 
via activation of Smad proteins80 and the mitogen-
activated protein kinase/extracellular signal-regulated 
kinase (MAPK/ERK) signaling pathway.81 Indirectly, fi-
broblasts can act as mediators of pathological stress 
from SMCs and ECs induced by altered biomechanics. 
For example, cyclic stretch increases the expression 
of FGF-2 (fibroblast growth factor-2)75 and NOX-477 in 
pulmonary vascular SMCs. Notably, NOX-4 has been 
shown to regulate TGF-β1,82 which may act as a feed-
back mechanism for myofibroblast differentiation. 
Additionally, uniaxial cyclic stretch has been shown up-
regulate COX-2 (cyclooxygenase-2) in fibroblasts via an 
increase in intracellular Ca2+,83 introducing yet another 
mechanism of indirect biomechanical transduction via 
NF-κB activation. Thus, the differentiation of fibroblasts 

Figure 4.  Mechanotransduction of low wall shear stress because of left heart failure in endothelial cells and smooth muscle 
cells results in pathologic vascular remodeling throughout the vessel wall.
Boxes within the cell signaling cascade are colored to match their corresponding box at the top of the figure (altered biomechanics, 
mechanotransduction, or vascular remodeling). ECM indicates extracellular matrix; eNOS, endothelial nitric oxide synthase; ET-1, 
endothelin-1; F-Actin, anti-filamentous actin; MMP, matrix metalloproteinase; NF-κB, nuclear factor-κB; PDGF, platelet-derived growth 
factor; PECAM-1, platelet endothelial cell adhesion molecule-1; ROS, reactive oxygen species; SMC, smooth muscle cell; TGFβ, 
transforming growth factor beta; and VE cadherin, vascular endothelial cadherin.
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into myofibroblasts and their proliferation stimulated 
by cyclic stretch that lead to upregulation of ROS and 
other proinflammatory proteins and cytokines are im-
portant drivers of pathological fibrosis and remodeling 
observed in Cpc-PH.

Decreased WSS
WSS is the drag force (per unit area) exerted by blood 
on ECs throughout the vasculature.60 Endothelial shear 
stress is a key regulator of vascular tone, structure, gene 
expression, and remodeling.84–86 Regional variations 
in shear stress are associated with systemic vascular 
pathologies such as atherosclerosis and aneurysm 
development.85–87 Physiological WSS in the pulmonary 
arteries of healthy adults has been estimated to range 
from 15 to 20 dyn/cm2, whereas patients with severe 
pulmonary hypertension have lower WSS in the range 
of 5 to 8 dyn/cm2.88 Altered WSS has been shown to 
occur in a rat model of LHF; echocardiography showed 
increased PA luminal size and blood flow analysis found 
reduced WSS.58 Bartolo et al predicted a 50% or more 
decrease in WSS in PH-LHF from 10 to 25 dyn/cm2 (in 
the healthy state) to 2 to 5 dyn/cm2 (in PH-LHF) using 
a computational fluid dynamics model.35 Moreover, in 
humans with PH, computational fluid dynamics and 
phase-contrast cardiac magnetic resonance imaging 
have demonstrated lower WSS in the proximal arteries 
than controls.89 Pathological alterations in WSS acti-
vate EC mechanotransduction pathways, leading to a 
chronic proinflammatory state characterized by disor-
ganized alignment, vasoconstriction, increased vascu-
lar permeability, and maladaptive ECM remodeling.85,87

In vitro studies have investigated the mechanisms 
by which altered shear stress triggers EC-driven re-
modeling. The molecular pathways involved in the 
resulting pathological inflammation, vasoconstriction, 
and vessel remodeling are illustrated in Figure  4. As 
with cyclic stretch, the majority of studies evaluating 
the impact of WSS have used HUVECs or arterial ECs 
as the prototype EC; however, some studies have spe-
cifically evaluated the impact of this mechanical stimu-
lus in PAECs, and these are detailed in Table 2. To date, 
findings highlight WSS as a potent mechanical stimu-
lus that is transduced into a wide array of biological 
signals influencing intracellular energetics, cytoskeletal 
structure, and vascular tone.90–92 Future work specifi-
cally evaluating these mechanotransduction pathways 
in EC from throughout the pulmonary vascular bed is 
essential to understanding disease progression and 
identifying therapeutic targets.

Impact of WSS on ECs in Veins and Arteries

Vascular ECs sense WSS and transduce it into bio-
chemical signals resulting in synthesis and release 
of the potent vasodilator NO.93,94 Under physiologi-
cal WSS, the production of NO is regulated through 
both calcium-independent eNOS phosphorylation and 
calcium-dependent pathways in ECs.90,95–97 However, 
this process is dysregulated under pathologically low 
WSS (Figure  4). Compared with physiological WSS, 
pathologically low WSS reduces the release of vaso-
dilators such as NO and PGF1α (prostaglandin F1-α) 
while increasing the release of vasoconstrictors such as 

Table 2.  Shear Stress in Pulmonary Vascular EC

Cell type Stimulus vs control Mechanotransduction Biological response References

Physiological shear stress

Human PAEC 3–8 dyn/cm2 vs static for 
10 min

Caveolin-mediated mitochondrial ATP generation EC homeostasis Yamamoto91

Bovine and human 
PAEC

10 dyn/cm2 vs static for 
24 h

Rac/PAK-dependent myosin light chain 
phosphorylation and actin polymerization

EC cytoskeleton 
rearrangement

Birukov92

Ovine PAEC 20 dyn/cm2 vs static 
for 8 h

Akt-dependent eNOS phosphorylation and NO 
production

Vasodilation Wedgwood90

Low shear stress

Bovine PAEC 5 vs 20–60 dyn/cm2 for 
20 h

Reduced eNOS phosphorylation NO, PGF-1α, and 
VEGF, increased ET-1, F-Actin, and VE-cadherin 
rearrangement

Vasoconstriction 
and cytoskeleton 
rearrangement

Li88

Mouse PMVEC Loss of flow vs 5 dyn/cm2 
for 1 h

NADPH oxidase–dependent ROS production Inflammation and 
angiogenesis

Milovanova104

Mouse PMVEC Loss of flow vs 5 dyn/cm2 
for 1 h

PECAM-1–dependent ROS production and 
proliferation

Inflammation and 
angiogenesis

Noel103

High shear stress

Ovine PAEC 30–100 dyn/cm2 vs 5–20 
dyn/cm2 for 4 h

Catalase inhibition increasing ROS, Akt-mediated 
eNOS phosphorylation increasing NO production

Inflammation and 
vasodilation

Kumar97

Akt indicates protein kinase B; EC, endothelial cell; ECM, extracellular matrix; eNOS, endothelial nitric oxide synthase; ET-1, endothelin-1; F-Actin, anti-
filamentous actin; PAEC, pulmonary artery endothelial cell; PAK, p21 activated kinase; PECAM-1, platelet endothelial cell adhesion molecule-1; PGF-1α, 
prostoglandin F1-α; PMVEC, pulmonary microvascular endothelial cell; Rac, ras-related C3 botulinum toxin substrate; ROS, reactive oxygen species; VE-
cadherin, vascular endothelial cadherin; and VEGF, vascular endothelial growth factor.
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ET-1 by up to 40% in cultured PAECs88 and HUVECs.98 
Moreover, total eNOS expression under pathologically 
low WSS is reduced by 65% compared with physi-
ological WSS, and downstream Akt phosphorylation 
is reduced by 81%.88 Consistent with this mechanism, 
patients with World Health Organization Group 2 PH, 
including PH-LHF, have reduced PA eNOS expression, 
which correlates with the degree of vascular remod-
eling.99 Infusion of NOS inhibitors such as N(omega)-
monomethyl-L-argenine acetate (L-NMMA)  into the 
pulmonary arteries of subjects with LHF caused a 
dose-dependent reduction in pulmonary blood flow 
velocity with no change in PA pressure,100 demonstrat-
ing that NO-dependent pulmonary vasoconstriction 
was a key contributor to increased PVR in this cohort. 
These studies suggest that low WSS drives increased 
ET-1 and reduced NO, both of which have been dem-
onstrated in subjects with PH-LHF.100–102

Beyond vasoconstriction, chronically low WSS can 
drive pathological remodeling via altered EC, and sub-
sequently altered SMC, structure, and function. Under 
physiological WSS conditions, EC alignment is parallel 
to flow. However, low WSS is associated with disor-
ganized EC cytoskeletal alignment in bovine PAECs.88 
Low WSS, as modeled by in vivo and in vitro cessation 
of flow in mouse pulmonary microvasculature, triggers 
ROS production via PECAM-1 (platelet endothelial cell 
adhesion molecule-1) and NADPH oxidase, leading to 
inflammation and angiogenesis.103,104 In coculture of 
rat aortic ECs and SMCs, low WSS upregulates PDGF 
release in ECs, which increases SMC proliferation and 
migration,105 2 hallmarks of pathological pulmonary ar-
teriole remodeling.106 Additionally, ECs exposed to low 
WSS stimulate SMC migration via MMP-2 activation 
and increased PDGF.107,108 Because MMP-2 activa-
tion degrades the extracellular matrix through type IV 
collagen proteolysis, increased expression promotes 
integrin detachment and SMC migration.109 ECM re-
modeling driven by MMP activation is a key feature of 
pathologic changes in PH.106,110 Both low WSS and 
elevated MMPs have been found in PH-LHF.54,58 The 
in vitro studies cited above provide a potential mecha-
nism that links the observed pathological mechanical 
stimulus of low WSS resulting from LHF to the ob-
served molecular changes that result in the pathologi-
cal vascular remodeling observed in the transition from 
Ipc-PH to Cpc-PH.

Both chronically impaired NO production and ECM 
remodeling driven by chronically low WSS in PH-LHF 
result in increased arterial stiffness. Arterial stiffening 
ultimately causes key hemodynamic changes that are 
the hallmark of Cpc-PH, such as decreased PAC.17 
Reduced compliance in the arterial compartment re-
sults in highly pulsatile flow downstream in pulmonary 
arterioles, which further stimulates EC dysregulation 
and SMC hypertrophy, ultimately driving the cycle of 

disease progression (Figure 1). In a vascular mimetic 
coculture model with PAECs and SMCs, high pulsatil-
ity flow increased SMC size and elevated expression 
of contractile proteins, such as SMA (smooth muscle 
actin) and smooth muscle myosin heavy chain (SM-
MHC).111 Moreover, high pulsatility flow reduced eNOS 
expression and increased ET-1, angiotensin-converting 
enzyme, and TGF-β1, all of which have been associ-
ated with SMC hypertrophy and vasoconstriction111 
that drive increased PVR, the pathological develop-
ment marking the transition from Ipc-PH to Cpc-PH.

ROLE OF BIOMECHANICS IN 
TRANSITION TO CPC-PH AND RVF
The presence of pulmonary arterial remodeling is the 
defining characteristic of Cpc-PH. Irreversible pulmo-
nary arterial muscularization, diffuse vascular fibro-
sis, and distal arterial luminal narrowing characterize 
Cpc-PH.16 Multiple animal studies have demonstrated 
that these structural features are associated with 
the functional change, namely elevation in PVR, in 
Cpc-PH.52,112 As chronic elevated pulmonary pressure 
and decreased flow change capillary and venous me-
chanical properties downstream, these same altered 
biomechanical factors can induce further pulmonary 
arterial remodeling. Because the structural and func-
tional changes that occur in the pulmonary vascula-
ture with Cpc-PH are similar to those that occur with 
PAH, computational simulations of pulmonary vascu-
lar blood flow dynamics in PAH subjects have been 
used to shed light on the impact of altered biomechan-
ics in Cpc-PH subjects. Using a combined magnetic 
resonance imaging–computational fluid dynamics ap-
proach, Tang and colleagues demonstrated a profound 
reduction in WSS by a factor of 6 in the proximal and 
distal pulmonary arteries of subjects with PAH com-
pared with control subjects.113 Similarly, a significant in-
verse relationship was found among WSS, mPAP, and 
PVR, and a significant positive relationship was found 
between WSS and capacitance in the main PA in sub-
jects with PH.89 Extensive muscularization of proximal 
and distal PAs associated with increased PVR and TPG 
has been confirmed in postmortem human studies.112 
Thus, once Ipc-PH occurs, pressures increase in the 
pulmonary arteries, leading to dilation and decreased 
shear stress. Subsequent remodeling increases PVR 
and lowers compliance, which in turn alters hemody-
namics downstream and promotes a vicious cycle of 
disease progression (Figure 1).

The irreversible pulmonary arterial remodeling that 
marks the transition to Cpc-PH is associated with and 
defined by PVR. In the setting of LHF, increased PVR 
dramatically increases risk of RV failure and mortality.114 
In a clinical study measuring RV function and mortality 
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in Ipc-PH and Cpc-PH subjects, the prevalence of RV 
enlargement, RV dysfunction, and all cause-mortality 
increased with higher PVR.115 Moreover, reduced PAC 
contributes to RV decline.17,116 Because the clinical 
outcomes of subjects with Cpc-PH depend on RV 
function, understanding the mechanisms by which 
mechanotransduction drives the transition from Ipc-PH 
to Cpc-PH is critical in determining therapeutic targets.

Therapeutic Implications
Currently, there are no Food and Drug Administration–
approved pharmacotherapies in the clinician’s arma-
mentarium for Cpc-PH. Therapeutic strategies beyond 
treatment of LHF are limited and largely have consisted 
of trials of pharmacologics developed for PAH, the 
vast majority of which target the altered biomechan-
ics of PH. Current clinical management of Cpc-PH 
involves the use of vasodilators, diuretics, angiotensin-
converting enzyme inhibitors, angiotensin receptor 
blockers, and phosphodiesterase type 5 (PDE5) inhibi-
tors. PAH drugs, including endothelin-1 antagonists, 
have shown variable effectiveness because of their 
potent systemic effects, which are generally not toler-
ated in the setting of LHF.117,118 The purpose of current 
treatments are to relieve dyspnea, improve exercise 
capacity, and define eligibility for heart transplanta-
tion.119 Targeting the mechanotransduction pathways 
in PH-LHF is a novel and potentially powerful thera-
peutic strategy that could disrupt a critical link in the 
transition from Ipc-PH to Cpc-PH. Thus, biomechani-
cal and mechanobiological mechanisms of disease 
progression and their transduction pathways should 
be future targets for Cpc-PH therapies.

BRIDGING THE KNOWLEDGE GAPS: 
DIRECTIONS FOR FUTURE WORK
Here we have reviewed the known and hypothesized 
altered biomechanical forces in pulmonary veins, cap-
illaries, and arteries that occur because of Ipc-PH and 
the mechanobiological mechanisms that may drive 
transition to Cpc-PH and subsequent RHF. There is 
an urgent clinical need for improved understanding 
of this disease pathophysiology and progression as 
well as for novel therapeutic interventions to improve 
patient outcomes. As highlighted in this review, criti-
cal knowledge gaps remain both in our understanding 
of pulmonary biomechanics in PH-LHF as well as in 
mechanotransduction of these signals in the context of 
the 3 pulmonary vascular compartments.

Robust clinical and animal studies that quantify the 
mechanical forces acting on ECs and SMCs in both 
Ipc-PH and Cpc-PH are integral to understanding the 
WSS and cyclic stretch distribution in Ipc-PH and tran-
sition to Cpc-PH. Invasive pressure measurements 

coupled with noninvasive flow and anatomic imaging 
with sufficient resolution will enable computation or es-
timation of these mechanical stimuli. In turn, knowledge 
of these mechanical stimuli will facilitate high quality, im-
pactful in vitro mechanistic studies that clarify the mech-
anotransduction pathways in this disease process.

Critically, these mechanistic studies should be per-
formed in pulmonary cell types. Research to date has 
been concentrated in systemic vascular-derived cell 
lines with mechanical stimuli that model disturbed and 
oscillatory flow conditions that drive atherosclerosis but 
are not relevant to either Ipc-PH or Cpc-PH. Beyond 
in vitro studies modeling physiological and pathological 
WSS or cyclic stretch in pulmonary vascular cells, both 
stresses need to be applied simultaneously. A limited 
number of studies have evaluated the impact of com-
bined WSS and cyclic stretch. One such study, per-
formed with systemic artery-derived cells, demonstrated 
potentiation of some mechanotransduction responses 
and inhibition of others, highlighting the need to study 
both mechanical forces together.120 Importantly, future 
studies should also consider the effects of the biological 
environment, including sex, sex hormone status, age, 
and systemic diseases such as metabolic syndrome 
and diabetes on mechanotransduction.

In vitro studies that interrogate the intersections be-
tween known risk factors and pulmonary vascular cell 
mechanotransduction will accelerate research break-
throughs. We posit that patient-specific factors such 
as sex, genetics, and comorbidities impact cellular 
mechanotransduction and may be key to outcomes 
and responses to treatment. Women are known to be 
at higher risk of developing PAH than men,121 although 
in other contexts estrogen is considered vasculo-
protective.122,123 Although sex differences in mech-
anotransduction have not been identified in vascular 
and ECs and SMCs, estrogen has been shown to af-
fect mechanotransduction in bone cell networks.124 In 
terms of genetics, CAV1, a gene responsible for encod-
ing caveolin-1 protein, regulates mechanotransduction 
of vascular shear stress125 in pulmonary vascular ECs 
and has been shown to be dysfunctional in PH.126 CAV1 
mutations are also associated with lipid disorders such 
as type 2 diabetes,127 which itself has been shown to 
be an independent risk factor for PH.128 Previous stud-
ies have shown that diabetes may cause defects in the 
mechanotransduction of arterial SMCs via alterations 
in ECM composition, which lead to increased stiffness 
and decreased arteriolar compliance.129 Other comor-
bidities of Cpc-PH, such as obesity and age, have also 
been shown to alter mechanotransduction in ECs and 
SMCs.130,131 Thus, sex and its consequences for sex 
steroid hormones, certain genetic mutations, obesity, 
and age may modulate mechanotransduction and 
thereby drive the transition from Ipc-PH to Cpc-PH. 
These relationships warrant further investigation as 
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both mechanisms of disease progression and potential 
therapeutic targets.

CONCLUSIONS
PH-LHF alters pulmonary vascular biomechanical 
forces resulting in increased cyclic stretch and de-
creased WSS, which may drive transition from Ipc-PH 
to Cpc-PH. These mechanical stimuli and their biologi-
cal consequences need further investigation to identify 
targetable mechanisms to prevent progression of this 
disease. Understanding the mechanisms of mecha-
notransduction in pulmonary circulation will deepen 
our understanding of Ipc-PH and Cpc-PH and could 
open doors to new pharmacologic therapies.
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