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Abstract

Accurate treatment adjustment to physical activity (PA) remains a challenging problem in

type 1 diabetes (T1D) management. Exercise-driven effects on glucose metabolism depend

strongly on duration and intensity of the activity, and are highly variable between patients.

In-silico evaluation can support the development of improved treatment strategies, and can

facilitate personalized treatment optimization. This requires models of the glucose-insulin

system that capture relevant exercise-related processes. We developed a model of glu-

cose-insulin regulation that describes changes in glucose metabolism for aerobic moderate-

to high-intensity PA of short and prolonged duration. In particular, we incorporated the insu-

lin-independent increase in glucose uptake and production, including glycogen depletion,

and the prolonged rise in insulin sensitivity. The model further includes meal absorption and

insulin kinetics, allowing simulation of everyday scenarios. The model accurately predicts

glucose dynamics for varying PA scenarios in a range of independent validation data sets,

and full-day simulations with PA of different timing, duration and intensity agree with clinical

observations. We personalized the model on data from a multi-day free-living study of chil-

dren with T1D by adjusting a small number of model parameters to each child. To assess

the use of the personalized models for individual treatment evaluation, we compared sub-

ject-specific treatment options for PA management in replay simulations of the recorded

data with altered meal, insulin and PA inputs.

Author summary

Exercise represents a cornerstone of diabetes management. Yet, many people with type 1

diabetes refrain from exercising, since it increases the risk for hypoglycemia and requires

adjusted insulin treatment. The effect of exercise on blood glucose levels depends on
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exercise duration and intensity, but also varies strongly between individuals, making accu-

rate adjustment a challenge. Mathematical models can help to better understand exercise

physiology and to devise new treatment strategies. Here, we propose a model of glucose-

insulin regulation that captures the effects of exercise on glucose metabolism and person-

alize it to individual children with type 1 diabetes, allowing subject-specific treatment

assessment.

Introduction

Blood glucose (BG) homeostasis maintains glucose levels within a tight range in healthy indi-

viduals, where the two main hormones involved are insulin and glucagon to lower and raise

glucose levels, respectively. In type 1 diabetes (T1D), BG regulation is impeded by the autoim-

mune destruction of insulin-secreting β-cells of the pancreas [1]. The resulting lack of insulin

leads to elevated glucose levels if untreated. People with T1D therefore rely on exogenous insu-

lin either from multiple daily injections or an insulin pump together with BG monitoring to

keep glucose levels stable within a target range of usually 70–180 mg/dl, with insulin require-

ments varying strongly between individuals. Tight glucose control is essential to avoid long-

term complications such as cardiovascular disease and retinopathy from persistent hyperglyce-

mia, or acute complications such as loss of consciousness and seizures from severe

hypoglycemia.

Mathematical models of glucose-insulin regulation are a valuable tool for the in-silico eval-

uation of treatment strategies in T1D and play a critical role in the development of decision

support and closed-loop insulin delivery systems (artificial pancreas) [2–4]. One prominent

example is the UVa/Padova type 1 diabetes simulator [5] that has been approved by the FDA

for preclinical testing of control algorithms for insulin treatment. While such models are typi-

cally used with hypothetical in-silico patients, a recent approach uses a personalized model to

replay recorded data of individuals with T1D with altered carbohydrate (CHO) and insulin

inputs, allowing subject-specific treatment assessment for improved BG control [6].

T1D treatment also needs to be adjusted to physical activity (PA), but complex PA-driven

changes in glucose metabolism pose major challenges for accurate PA management. Changes

occur on different time scales and strongly depend on duration and intensity of PA. Glucose

demand increases drastically during the activity and insulin sensitivity remains elevated for

several hours following exercise [7], leading to an increased risk for both acute and late-onset

hypoglycemia. Current guidelines for treatment adjustment consider only coarse categories of

glycemia, PA duration and intensity, and need further tailoring to the individual person [8, 9].

Tailoring largely relies on trial-and-error, and while PA has numerous benefits and represents

a cornerstone in diabetes management [10, 11], fear of hypoglycemia restrains many people

with T1D from exercising [12].

Extended models that capture exercise metabolism can help evaluate PA guidelines and

treatment strategies [13] and the need for such models has long been recognized [14–16]. Roy

et al. [17] proposed a PA extension of the Bergman minimal model [18], considering acute,

insulin-independent effects of moderate-intensity PA on glucose uptake and production. They

also included effects of liver glycogen depletion for prolonged PA. In an alternative proposal,

Breton [19] studied increased glucose effectiveness and prolonged PA-driven changes in insu-

lin sensitivity during an euglycemic hyperinsulemic clamp protocol in people with T1D. How-

ever, the effects of exercise intensity and duration on insulin action were not incorporated.

Dalla Man et al. [20] integrated the model into their simulation model of the glucose-insulin
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system [21] in an in-silico study and added intensity- and duration-dependence, while Alkha-

teeb et al. [22] evaluated different variations of the Bergman minimal model and selected a

model that features an increase in glucose effectiveness and insulin sensitivity. Other models

have been proposed [23–26] and a virtual patient population has been generated [27] that

incorporates PA [24].

However, these models have been developed under very controlled conditions, e.g. in

clamp studies, have not been tailored to a T1D population, do not permit varying PA intensi-

ties or prolonged duration, or cover only a subset of the relevant processes. In addition, they

often do not consider insulin and carbohydrate inputs. Hence, they are not suited for (person-

alized) treatment evaluation under everyday-life conditions.

Recently, Romeres et al. [28–30] and Nguyen et al. [31] conducted two elegant studies in

which they evaluated exercise-induced changes in glucose utilization and endogenous glucose

production, and separated and quantified insulin-dependent and –independent contributions.

Incorporating their findings into models of exercise metabolism could alleviate some of the

persistent problems and is useful for several reasons. A more accurate representation of exer-

cise physiology by considering insulin-dependent and –independent effects separately facili-

tates prediction of exercise-driven changes in glucose levels and hypoglycemic events. In turn,

this could be used to develop and evaluate improved insulin treatment strategies for PA in

T1D. Furthermore, the quantification of overall glucose uptake and production rates allows to

develop separate model components for each process. Previously, insulin-independent

changes in glucose metabolism were often summarized in an exercise-induced increase in glu-

cose effectiveness in PA models for T1D. As discussed by Alkhateeb et al. [22], this allows for

decreasing glucose levels for moderate-intensity PA, but high-intensity PA can not be

described by such models due to rising BG levels. In addition, it is difficult to incorporate liver

glycogen depletion that affects the rate of glucose production for prolonged PA.

Here, we utilize these newly available data and develop a glucose-insulin regulation model

for exercise that explicitly considers insulin-dependent and -independent effects on glucose

uptake and production, and allows realistic full-day simulations and personalized replay simu-

lations. The model captures the acute and prolonged changes in glucose metabolism during

PA and subsequent recovery for moderate- to high-intensity exercise, and considers CHO

intake and insulin injections. We first calibrate the model for a healthy population, before

adjusting relevant parameters to people with T1D. We validate the model on independent data

from increasingly complex scenarios including PA, insulin and CHO intake.

We show how exercise duration, intensity and time of day alter BG dynamics in full-day

simulations. As a main result, we demonstrate that our model can describe real-world data of

individual patients. We personalize the model on data from children with T1D recorded in a

free-living observational study, using only data from sensors readily available during everyday-

life. We then perform replay simulations of the original scenarios with altered meal, insulin

and PA inputs to evaluate different treatment strategies and PA effects on the individual sub-

ject level.

Methods

Ethics statement

We used data from the ‘DiaActive’ study conducted in children with T1D under free-living

conditions [32] with ethics approval no. 341/12 provided by the Ethics Commission Cantons

of Basel on February 14, 2013. Written formal consent was obtained from the parent or guard-

ian for each study participant.
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Development of a glucoregulatory model including physical activity

Our proposed model is outlined in Fig 1 and comprises a simple core model extended by meal

intake and insulin injections. Accelerometer counts AC quantify the input for PA processes

affecting glucose regulation.

We use the Cobelli two-compartment minimal model [33] to describe glucose-insulin regu-

lation at rest and extend it to incorporate PA-driven changes in glucose metabolism:

dXðtÞ
dt

¼ � p2 � XðtÞ þ p3 � IðtÞ

dQ1ðtÞ
dt

¼ � ½p1 þ rGUðtÞ � ðrGPðtÞ � rdeplðtÞÞ þ ð1þ ZðtÞÞ � XðtÞ� � Q1ðtÞ

� p4 � Q1ðtÞ þ p5 � Q2ðtÞ þ p1 þ Xbð Þ � Q1b þ
RaðtÞ
BW

dQ2ðtÞ
dt

¼ p4 � Q1ðtÞ � p5 � Q2ðtÞ

GðtÞ ¼ Q1ðtÞ=Vg :

ð1Þ

The two glucose compartments Q1 and Q2 [mg/kg] represent glucose mass in plasma and

in a remote compartment, respectively. Plasma insulin I [μU/ml] promotes the disappearance

of plasma glucose into liver and tissue, and suppresses hepatic glucose production via the

dynamic state X [1/min]. The constants Q1b [mg/kg] and Xb = p3/p2 � Ib [1/min] provide the

basal levels of plasma glucose and state X, respectively, with the basal plasma insulin level Ib
[μU/ml]. The ratio p3/p2 represents insulin sensitivity and p1 describes glucose effectiveness.

The rate parameters p4 and p5 quantify the exchange between the two glucose compartments.

Glucose appearance from meals is described by Ra [mg/min] and scaled with bodyweight, BW
[kg]. The rates rGU [1/min] and (rGP − rdepl) [1/min] provide the exercise-induced insulin-

independent increase in glucose uptake (GU) and production (GP), respectively, while (1 + Z)

Fig 1. Schematic of the glucose-insulin model. Glucose, Q1, and insulin, I, dynamics are described using a two-

compartment model [33]. Extensions capture plasma insulin kinetics after subcutaneous injection u with basal insulin

infusion rate ub [34] and glucose appearance with rate Ra after a meal D [35]. PA is measured via accelerometer counts

AC and leads to changes in glucose metabolism indicated by dotted lines.

https://doi.org/10.1371/journal.pcbi.1010289.g001
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captures a PA-driven rise in insulin sensitivity. These processes depend on PA intensity (see

below) and introduce additional nonlinearities to the model as they are further modulated by

changing glucose levels. Finally, G [mg/dl] is the plasma glucose concentration and Vg [dl/kg]

the glucose distribution volume.

Measure of exercise intensity and duration. We consider accelerometer (AC) counts to

capture movement and link them to PA intensity Y [counts/min] following previous

approaches [17, 19, 23]:

dYðtÞ
dt
¼ �

1

tAC
� YðtÞ þ

1

tAC
� ACðtÞ : ð2Þ

The delay τAC [min] allows initial adaptation to PA.

We also track PA duration tPA [min], integrated AC count PAint [counts] and time spent at

high intensity th [min]:

dtPAðtÞ
dt

¼ f ðACðtÞ; aAC; n2Þ � ½1 � f ðACðtÞ; aAC; n2Þ� � tPAðtÞ

dPAintðtÞ
dt

¼ f ðACðtÞ; aAC; n2Þ � ACðtÞ � ½1 � f ðACðtÞ; aAC; n2Þ� � PAintðtÞ

dthðtÞ
dt

¼ f ðACðtÞ; ah; n2Þ � ½1 � f ðACðtÞ; ah; n2Þ� � q5 � thðtÞ;

ð3Þ

where transfer functions f(AC; aAC, n2) and f(AC; ah, n2), defined as

f ðx; p; nÞ ¼
ðx=pÞn

1þ ðx=pÞn
; ð4Þ

capture the transition in AC count from rest to exercise, respectively from moderate to high

intensity with corresponding AC thresholds aAC [counts/min] and ah [counts/min]. The expo-

nent n2 defines the steepness of the transition and q5 delays the switch back from the high- to

moderate-intensity mode during recovery. The use of transfer functions to introduce exercise-

related changes was previously proposed by Breton [19].

Insulin sensitivity. Insulin sensitivity increases during exercise and stays elevated after-

wards for up to 48 hours to replete liver glycogen stores [36]. Previous studies have further

established that the increase depends linearly on PA intensity and duration [20, 22], and we

consequently describe this rise Z by

dZðtÞ
dt
¼ b � f ðYðtÞ; aY ; n1Þ � YðtÞ �

1

tZ
� 1 � f YðtÞ; aY ; n1ð Þ½ � � ZðtÞ ; ð5Þ

where f(Y; aY, n1) defines the minimal intensity Y considered as PA with intensity threshold aY
[counts/min] and exponent n1, parameter b [1/count] specifies the proportional rise, and τZ
[min] the time for insulin sensitivity to return to its baseline level.

Insulin-independent glucose uptake and production. Glucose demand by active muscles

increases acutely during PA and glucose uptake from plasma is upregulated. Simultaneously,

hepatic glucose production by gluconeogenesis and glycogenolysis increases to maintain

plasma glucose levels [37]. These processes are linear in PA intensity [17]. We therefore define
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the insulin-independent rise in GU (rGU [1/min]) and GP (rGP [1/min]) rates as

drGUðtÞ
dt

¼ q1 � f ðYðtÞ; aY ; n1Þ � YðtÞ � q2 � rGUðtÞ

drGPðtÞ
dt

¼ q3 � f ðYðtÞ; aY ; n1Þ � YðtÞ � q4 � rGPðtÞ;

ð6Þ

where qi are rate parameters.

Glycogen depletion. Liver glycogen stores may deplete during prolonged PA and GP can-

not be maintained by gluconeogenesis alone, causing an accelerated drop in glucose levels [7,

38]. We follow Roy et al. [17] and assume that glycogen stores deplete in proportion to exercise

intensity and duration. The time tdepl [min] to depletion determined from the integrated AC

count and PA duration is then given by:

tdeplðtÞ ¼ � adepl �
PAintðtÞ
tPAðtÞ

þ bdepl: ð7Þ

After depletion sets in, we allow a drop in GP rate, rdepl [1/min], defined by

drdeplðtÞ
dt

¼ q6 � ½f ðtPAðtÞ; tdepl; n1Þ � rmðtÞ � rdeplðtÞ�

rmðtÞ ¼ b �
q3

q4

� YðtÞ þ rGPb

� �

;

ð8Þ

where the transfer function f(tPA; tdepl, n1) indicates whether exercise time exceeds tdepl and q6

is a rate parameter. The maximum decrease rm [1/min] in GP is the sum of the basal resting

GP rate, rGPb, and the PA-driven GP rate at steady state, q3/q4 � Y(t), scaled by the proportion

of net hepatic glucose production attributed to glycogenolysis, β.

High-intensity exercise. During high-intensity PA (> 80% VOmax
2

), GP may (initially)

exceed GU and result in rising plasma glucose levels due to an increase in catecholamines and

cortisol [39]. We mimic the drastic rise in GP by modulating parameters q3 and q4 between

low- (subscript l) and high-intensity (subscript h) values

q3 ¼ ½1 � f ðth; tp; n2Þ� � q3l þ f ðth; tp; n2Þ � q3h

q4 ¼ ½1 � f ðth; tp; n2Þ� � q4l þ f ðth; tp; n2Þ � q4h;
ð9Þ

where we use the transfer function f(th; tp, n2) to smoothly transition between the two exercise

regimes when time spent at a high PA intensity th exceeds tp [min].

Model extensions for full-day simulations

To enable full-day simulations, we further include existing models to provide plasma insulin

concentration after insulin injections and rate of glucose appearance after meals, and use these

as inputs to the exercise model.

Insulin kinetics. We use a model with two subcutaneous compartments of insulin masses

x1 and x2 [μU] and a plasma insulin compartment I [μU/ml] to model plasma insulin after a
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subcutaneous injection [34]:

dx1ðtÞ
dt

¼ � k1 � x1ðtÞ þ uðtÞ þ ubðtÞ

dx2ðtÞ
dt

¼ k1 � x1ðtÞ � ðk2 þ k3Þ � x2ðtÞ

dIðtÞ
dt

¼
k2

VI � BW
� x2ðtÞ � k4 � IðtÞ:

ð10Þ

Insulin is injected into x1, with u [μU/min] and ub [μU/min] defining the rates of correc-

tion and basal insulin infusion, respectively. VI [ml/kg] is the insulin distribution volume

and ki are rate parameters. We estimated the model parameters from insulin measurements

obtained after a subcutaneous injection of 0.3 U/kg insulin aspart [40] (Section 2 in S1

File).

Carbohydrate absorption. We describe the glucose appearance rate Ra [mg/min] after a

meal with carbohydrate content D [mg] with an established model [35]:

RaðtÞ ¼
f � D � t
t2
m

� e� t=tm : ð11Þ

A fraction f of glucose is absorbed into plasma and the time constant τm [min] characterizes

the time-of-maximum appearance rate. We determine f and τm individually for each meal (see

below).

Model calibration

We obtained parameter values from literature or physiological knowledge when feasible and

estimated the remaining parameters from published data. We followed a stepwise approach

for parameter estimation and calibrated a population-average model on data of healthy sub-

jects acquired during exercise, before adjusting parameters to describe glucose metabolism

and PA effects in people with T1D (Fig 2 and Table A in S1 File).

Parameter determination for healthy subjects. We used the original parameter values of

the two-compartment minimal model [33] and explicitly included the effect of basal insulin on

glucose. To calibrate the exercise model, we separated parameters into process-specific sets

and individually estimated these on data sets acquired during the corresponding exercise

modes using least squares regression.

We set the delay parameter τAC to 5 min [19, 20] and chose a time constant τZ of 600 min

[20] such that insulin sensitivity stays elevated for up to 48 hours in accordance with literature

reports [36].

We obtained the increase in insulin sensitivity during PA (parameter b) from measure-

ments of the insulin-dependent rate of glucose disappearance during rest and 100 min of

cycling at 80% VOmax
2

[41]. We converted %VOmax
2

to accelerometer count using

%VOmax
2
¼ 0:0135 � AC þ 1:7228; ð12Þ

estimated from simultaneous AC count (Actigraph model 7164; Actigraph, LLC; Pensacola,

Florida, USA) and %VOmax
2

measurements for different types and intensities of PA [42].

We estimated the insulin-independent GU and GP parameters q1, q2, q3l and q4l from total

GU and GP rates measured during 60 min of PA at 40% VOmax
2

[43] (Fig A (a) in S1 File). We

distinguished between resting and exercise-driven contributions by separating the net rate of
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glucose change into endogenous glucose production and glucose uptake:

GPðtÞ ¼ ðp1 þ XbÞ � Q1b � a � ½p1 þ ð1þ ZðtÞÞ � XðtÞ� � Q1ðtÞ

þ½rGPðtÞ � rdeplðtÞ� � Q1ðtÞ

GUðtÞ ¼ ð1 � aÞ � ½p1 þ ð1þ ZðtÞÞ � XðtÞ� � Q1ðtÞ þ rGUðtÞ � Q1ðtÞ;

ð13Þ

where we determined α from measurements at rest (Z = rGU = rGP = rdepl = 0). We assumed

that the prolonged exercise-driven change in insulin sensitivity affects both GP and GU as

found in Romeres et al. [29, 30] and subtracted its contribution to the total GU and GP rates

based on the insulin sensitivity parameter defined above.

We determined the time until hepatic glycogenolysis decreases due to glycogen depletion

from reported depletion times for different intensities [38] (parameters adepl and bdepl). We

estimated glycogen depletion parameters β and q6 from plasma glucose measurements [44]

recorded during 180 min of cycling at 58% VOmax
2

, where we restricted q6 to 0.1 min−1 to avoid

an overshoot in GP after PA and kept the remaining parameters fixed (Fig A (b) in S1 File).

Finally, moderate-intensity PA is defined by AC counts above 2296 counts/min [42] and we

enforced the transition from rest to PA between 1000 and 2000 counts/min with parameters

aY = 1500 counts/min and n1 = 20. Accordingly, we defined aAC = 1000 counts/min and n2 =

Fig 2. Model calibration. Schematic of the stepwise calibration process for healthy individuals and people with T1D.

https://doi.org/10.1371/journal.pcbi.1010289.g002
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100 to track duration and AC count immediately from the start of PA. High-intensity PA com-

mences at 80% VOmax
2

(5800 counts/min) [39], and we set ah = 5600 counts/min and tp = 2 min

for a transition between intensity regimes at 75%-80% VOmax
2

.

Adjustment of model parameters to T1D. To re-calibrate the exercise model to persons

with T1D, we relied on the study by Romeres et al. [30, 45], where people with T1D per-

formed 60 min of exercise at 65% VOmax
2

during a glucose clamp under three different glu-

cose and insulin conditions (V1: euglycemia—low insulin, V2: euglycemia—high insulin,

V3: hyperglycemia—low insulin). Plasma glucose and insulin concentrations were mea-

sured and glucose disappearance and production rates were determined from recorded

data. We estimated parameters defining insulin-independent (p1, q1-q4l) and -dependent

(p3, b) contributions to GU and GP at rest and during PA for all conditions, and defined the

resulting parameters determined under condition V1 as our standard T1D model, since V1

represents physiologically ‘normal’ conditions. For further details on the estimation proce-

dure, see Section 1.2.1 in S1 File. Additionally, we computed confidence intervals for all

parameter estimates from profile likelihoods to determine practical identifiability (Section

1.2.2 in S1 File).

We estimated the high-intensity exercise parameters q3h and q4h from interstitial glucose

measurements [46] of people with T1D performing 45 min of 4 min intervals at 82.5% VOmax
2

using least squares regression (Fig D in S1 File). We introduced the parameter q5 = 0.03 min−1

to prevent a switch to low-intensity parameters during recovery. For the remaining parame-

ters, we used the values determined for the hyperglycemia—low insulin condition (V3) of

the previously discussed data, as the high-intensity activity was recorded under comparable

conditions.

Model validation

We used independent data from six additional studies covering a range of exercise intensities

and durations for validating our model. Importantly, several studies include pre-exercise meal

intake and insulin bolus injections as well as different insulin reduction strategies. This allowed

us to validate the individual model parts and their interplay in the full model. The data sets are

the following:

1. In a study by Rabasa-Lhoret et al. [47], participants with T1D performed exercise at three

intensities (25%, 50% and 75% VOmax
2

) for different durations (30 and 60 min). Breakfast

with 75g of CHO and varying insulin bolus sizes (25%, 50% and 100% of typical dose) was

consumed 90 min prior to PA. Plasma glucose was measured.

2. In a second study conducted by Maran et al. [48], participants with T1D performed 30 min

of exercise at 40% VOmax
2

. The changes in plasma glucose and insulin concentrations were

recorded.

3. Participants with T1D exercised for 45 min at 67.8% VOmax
2

in a study presented by Iscoe

and Riddell [49], where the change in interstitial glucose levels was measured.

4. The effect of basal insulin suspension during exercise was studied by Zaharieva et al. [50].

Exercise was performed for 40 min at 45% VOmax
2

and the change in plasma glucose concen-

tration was assessed.

5. In a study by Dubé et al. [51], exercise was performed for 60 min at 50% VOmax
2

, 2h after

lunch including a pre-meal insulin bolus. Plasma glucose levels were monitored and partici-

pants did or did not consume a drink containing 30g of glucose 15 min pre-exercise.
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6. Healthy subjects cycled for 240 min at 30% VOmax
2

in a study conducted by Ahlborg et al.

[52] and plasma glucose was measured. For this PA duration, glycogen depletion affects GP

and subsequently glucose levels.

We generated 95% prediction intervals for studies (1)–(5) based on the T1D model derived

under condition V1. The predicted glucose ranges are shown in Fig 3 and Fig F (a)-(e) in S1

File (shaded areas). However, there is a high variation in the physiological response to PA

between individuals, regarding both the increase in insulin sensitivity and in the insulin-inde-

pendent processes [30]. Therefore, differences in study populations require tuning of the

model parameters to accurately reflect the data, and we re-estimated parameters b, q1l and q2l.

Note that we kept the ratio between q1l and q2l constant, enforcing a fixed steady-state level in

the insulin-independent rise in GU to maintain the original ratio between PA-driven changes

in GU and GP. The resulting glucose trajectories are shown as solid lines (Fig 3 and Fig F (a)-

(e) in S1 File). For study (6), we used the parameter values of the healthy population and kept

them unchanged (Fig F (f) in S1 File).

Overall, we observe good agreement between data and model predictions across all valida-

tion studies for both the prediction intervals based on the original calibration and the glucose

trajectories using tuned parameters.

Fig 3. Model validation. Data (mean ± SEM, n = 6) [47] and model predictions for validation study (1). PA sessions are marked by vertical lines. PA was

performed at different intensities (25%, 50% and 75% VOmax
2

) for durations of 30 or 60 min. A meal was consumed 90 min prior to PA, with a meal

insulin bolus u of 100%, 50% or 25% of the full dose. The shaded areas show the 95% prediction intervals of the T1D model (V1), and solid BG

trajectories display the tuned model (b = 1.83 � 10−6, q1 = 2.93 � 10−6, q2 = 2.93 � 10−6). Meal parameters f and τm = 105 min were determined from

glucose levels at rest.

https://doi.org/10.1371/journal.pcbi.1010289.g003
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Results

Effect of physical activity in full-day simulations

We evaluate our model’s performance in full-day simulations for a range of PA scenarios to

confirm that it reproduces clinical knowledge. We define a standard day consisting of three

meals and corresponding insulin bolus injections. We include a PA session in the morning or

afternoon and consider different intensities (30%, 60% and 90% VOmax
2

) and durations (30, 60

and 180 min) (Fig 4).

During moderate-intensity PA, BG levels decrease with increasing intensity and duration

[8] and drop even further once glycogen stores deplete [7]. In contrast, BG levels may rise [8]

during high-intensity PA, which can provide protection against acute hypoglycemia [53], but

the risk for late-onset hypoglycemia still increases with higher PA intensity and duration [48,

54]. Time of day also affects the risk for nocturnal hypoglycemia, which is higher for after-

noon- compared to morning-PA [55].

Our model accurately reflects the duration- and intensity-dependence in glucose trends for

moderate- and high-intensity PA. As expected, BG levels increase during high-intensity PA,

but drop below those of moderate-intensity PA after the activity. We also find lower nocturnal

BG levels following afternoon- compared to morning-PA. Our model thus reproduces clinical

observations regarding hypoglycemia risk for a range of different PA scenarios.

Model personalization on data from children with T1D

To establish our model’s capability to describe individual subject data, we personalize the

model on multi-day at-home data from five children aged 8–14 with T1D [32]. For each partic-

ipant, interstitial glucose levels were measured by continuous glucose monitoring (CGM),

exercise was monitored using an accelerometer, and CHO content and timing of meals as well

as timing and dosing of insulin injections were self-reported in logbooks. We provide

Fig 4. Comparison of glucose trajectories for different PA scenarios in a full-day simulation. PA is performed at 30%, 60% and 90% VOmax
2

for 30, 60

and 180 minutes (a) in the morning, or (b) in the afternoon. The PA session is marked by vertical lines. Meals are eaten at 7:00, 13:00 and 19:00 containing

40g, 60g and 50g CHO, respectively.

https://doi.org/10.1371/journal.pcbi.1010289.g004
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participant characteristics in Section 5.2.1 in S1 File and discuss data preparation in Section

5.2.2 in S1 File.

To personalize the model to each participant, we followed a strategy presented by Hughes

et al. [6] and determined subject-specific parameter values for insulin sensitivity (p3) and meal

parameters (f and τm) using least squares regression. We also estimated glucose effectiveness

(p1) and the basal glucose concentration Gb. We computed the basal insulin level Ib based on

the basal insulin infusion rate ub, and kept the remaining parameter values, including all exer-

cise-related parameters, at their previously determined population-average level (Table A in S1

File, V1). We confirmed local structural identifiability of the personalized parameters using

the STRIKE-GOLDD toolbox [56]. Furthermore, we established our model’s capacity for

personalization and replay simulations with altered meal and insulin inputs–but no PA–using

the UVa/Padova simulator (Python implementation [57]) (Section 5.1 in S1 File). Note that we

forewent the deconvolution step originally proposed to address further model mismatch.

We consider two–not necessarily consecutive–24 hour periods for each of the five chil-

dren. We estimate parameters p1 and p3 on data from the first day and keep these values for

the second day to confirm that the personalized models generalize to new scenarios. We

estimate basal glucose for each day, and estimate meal parameters independently for each

meal to account for inaccuracies in the self-reported meal sizes and for different meal

compositions.

The individual model fits show very good overall agreement with the recorded data and we

only observe a small number of non-explainable glucose excursions, which we attribute to

unrecorded meals or unknown residual dynamics carried over from the previous day (Fig 5,

and Fig H and Tables D-F in S1 File). We quantified the model fits using the root mean square

difference (RMSD) and the mean absolute relative difference (MARD) (Table 1). We reach

commonly used targets of RMSD below 25 mg/dl [58] and MARD below 10% [6] in most

cases.

Replay simulations using personalized models

Next, we use the personalized models to demonstrate their potential in replay simulations, a

promising approach for comparing and evaluating subject-specific treatment strategies in-sil-

ico, on two 24 hour episodes selected from our data.

We first consider day 1 of participant #3 with no PA and replay these data with changes in

lunch size or with an altered meal bolus (Fig 6(a)). As expected, a larger meal or lower bolus

increase BG levels, while a smaller meal or larger bolus lead to a corresponding reduction. Dif-

ferences between these treatments reduce over time and virtually vanish after dinner.

For our second scenario, we use the data for day 2 of participant #5, who exercises for 41

min at almost constant intensity of 70% VOmax
2

in the afternoon. Likely in anticipation of the

planned PA session, the participant used no insulin bolus for the preceding meal and com-

menced the session in hyperglycemia. We therefore ask if an alternative treatment decision

might have led to a more favorable BG trajectory, and consider reducing the pre-PA meal size

from 55g to 40g CHO or to administer an insulin bolus of 1.5U (Fig 6(b)). The replay simula-

tion indicates that a smaller pre-PA meal could have been favorable, reducing hyperglycemia

before PA without increasing the risk of hypoglycemia during the activity.

We also use this scenario to study the effect of exercise intensity and duration. First, we

replay the scenario with lower PA intensities (Fig 6(c)). Notably, BG trajectories only start to

diverge substantially after the post-PA meal as insulin sensitivity remains elevated for several

hours during recovery, and further measures to avoid post-PA hyperglycemia might be

required. Next, we consider varying PA duration (Fig 6(d)). The effect of elevated insulin
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sensitivity is clearly visible as the BG trajectories stay separated for the remaining simulation

time, and results suggest that no additional adjustments are necessary to protect against hypo-

glycemia for exercise up to an hour.

Discussion

Mathematical models are a valuable tool to develop and evaluate treatment strategies for T1D

in-silico. Finding accurate individual treatment adjustments for physical activity remains a

Table 1. Evaluation of personalized model fits. Unexplained glucose excursions are excluded and results for the full 24h period are given in brackets in these cases.

Participant # 1 # 2 # 3 # 4 # 5

day 1 day 2 day 1 day 2 day 1 day 2 day 1 day 2 day 1 day 2

RMSD [mg/dl] 11.4 12.1 3.7 6.6 9.3 15.8 11.0 16.8 12.8 9.0

(84.6) (34.2) (36.6) (43.1)

MARD [%] 6.7 10.3 2.9 5.4 5.9 7.6 5.3 10.7 10.1 4.9

(22.0) (7.8) (15.7) (15.9)

https://doi.org/10.1371/journal.pcbi.1010289.t001

Fig 5. Data and personalized model for study participants #3 and #5 for two days each. For each day, recorded (red) and fitted (blue) glucose data

and carbohydrate inputs (green) are shown in the upper panel. Modelled insulin concentration (blue) and insulin inputs (green) including the basal

insulin infusion rate (dashed) are shown in the middle panel. Accelerometer counts (dotted) and modelled PA intensity Y (blue) are shown in the lower

panel with periods of physical activity highlighted in grey. The remaining participants are shown in Fig H in S1 File.

https://doi.org/10.1371/journal.pcbi.1010289.g005
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complex process that could be facilitated by in-silico treatment evaluation, but comprehensive

models including all relevant aspects of exercise metabolism suitable for this task are currently

lacking.

PA-driven changes in glucose metabolism act on different time scales and require different

treatment adjustments. In particular, insulin-independent processes affect BG levels mainly

during PA, while insulin-dependent effects are the main cause for late-onset hypoglycemia

and need to be considered for several hours post-PA. BG levels often fall during moderate-

intensity PA when GU exceeds GP, while a drastic rise in GP during high-intensity PA can in

contrast cause rising BG levels. It is therefore crucial to incorporate all relevant exercise pro-

cesses in a PA model to study PA management in-silico.

In this work, we presented a model of glucose-insulin regulation in T1D that covers acute

insulin-independent changes in GU and GP during PA, and the prolonged PA-induced rise in

insulin sensitivity. We considered PA of moderate to high intensities, and accounted for deple-

tion effects during prolonged exercise. We suggested the use of transfer functions to switch

between these different exercise regimes, with the aim to keep the model compact without

affecting the individual PA processes. The model includes modules for insulin bolus injections

and meal intake as additional inputs to capture all aspects of daily life and diabetes manage-

ment, allowing simulation of realistic scenarios.

We proposed a stepwise approach for model calibration, estimating parameters of the dif-

ferent model components separately on corresponding population-average data from healthy

subjects. While the full model is not identifiable—a common problem for models of the glu-

cose-insulin system—this allowed us to quantify individual contributions of the different PA-

related processes accurately. Next, we adjusted the full model to a T1D population and com-

puted profile likelihoods to determine practical parameter identifiability. We validated the

model on independent data sets covering PA of different intensities and duration, and PA in

conjunction with CHO intake and insulin injections. The resulting prediction intervals show

the correct behavior in glucose trends, and the model accurately predicts the observed BG

Fig 6. Replay simulations. (a) Participant #3, day 1. Variations in meal size and insulin dose at lunch to 50% and 150% of their original size. (b)-(d)

Participant #5, day 2, with a PA session marked by vertical lines. The original glucose trajectory is shown in blue. (b) Meal or bolus adjustment for pre-PA

meal. (c) Alterations in PA intensity from 70% VOmax
2

to 55% and 40% VOmax
2

. (d) Alterations in PA duration from 41 min to 21, 61 and 81 min, with the

post-exercise meal following directly after the session.

https://doi.org/10.1371/journal.pcbi.1010289.g006
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trajectories after tuning a small subset of parameters with high inter-patient variability to the

examined patient population, demonstrating the feasibility of stepwise model identification

and its potential for calibrating complex T1D models. Additionally, we evaluated the model’s

prediction capabilities in full-day simulations with a range of PA scenarios against clinical

knowledge.

The presented model structure is consistent with literature reports studying exercise-

induced changes in glucose metabolism. Studies demonstrated that glucose utilization

increases with exercise intensity for healthy subjects [59, 60] and for people with T1D [61]. It

was shown by Romeres et al. [30] and Nguyen et al. [31] that this increase can be separated

into insulin-dependent and –independent contributions. In particular, they confirmed that

insulin-mediated GU increases gradually during the activity and remains elevated for several

hours post-PA, while non-insulin-mediated GU increases rapidly at PA onset and drops to its

baseline level immediately after. Nguyen et al. [31] did not find intensity-dependence for GU,

but discuss that this might have been caused by PA intensities that were not sufficiently differ-

ent or by varying levels of fitness between participants.

Similarly, it was shown that endogenous glucose production increases with exercise inten-

sity to counteract the rise in GU [31, 59–62]. In contrast to its effect on GU, insulin suppresses

GP. Romeres et al. [28] found that the PA-driven rise in GP is consequently inhibited in people

with T1D with hyperinsulinemia, and identified a delayed effect of insulin on GP [29]. In con-

trast, Nguyen et al. [31] did not find insulin-mediated changes in GP. In this work, we followed

the findings of Romeres et al. [29], since GU and GP rates were estimated in a model-indepen-

dent way, and our model is able to describe their data well when including a PA-driven, ele-

vated effect of insulin on GP.

Furthermore, the rate of hepatic glycogenolysis during PA increases linearly with intensity

[38], supporting our assumption that the time until depletion occurs decreases in proportion

to PA intensity. However, we estimated depletion parameters of the model only on data from

healthy subjects, and data from individuals with T1D are required to validate this model part

for a T1D population. Petersen et al. [62] observed that differences in GP between healthy and

T1D subjects arise from varying contributions of gluconeogenesis, and that glycogenolysis at

rest and for different PA intensities is similar for both populations. Hence, we believe that our

model assumptions also hold for individuals with T1D and that predictions are therefore quali-

tatively correct for this population.

During high-intensity PA, counterregulatory hormones such as catecholamines and corti-

sol are upregulated. They are associated with increased hepatic GP that exceeds GU, and thus

lead to (initially) rising BG levels during exercise [9, 39]. The rise in BG levels persists only

while these hormone levels are elevated, and is followed by several hours with an increased

risk for hypoglycemia [63]. We incorporated the drastic rise in GP in our model and were able

to accurately reflect the resulting glucose dynamics. However, we were unable to perform an

independent validation for this scenario due to lack of additional data. Moreover, we applied a

fixed threshold to transition between moderate and high intensities, although we expect this

transition to be different between individuals, especially when considering different age

groups. In addition, the threshold might depend on the specific situation and type of PA the

person is performing, where for example stress in competitive scenarios could lead to an ear-

lier onset of high-intensity-like glucose dynamics.

Here, we only considered aerobic exercise of moderate to high intensity. We did not incor-

porate anaerobic exercise that is encountered for example in high-intensity interval or strength

training. Anaerobic exercise can cause different trends in glucose levels for people with T1D

[15], and it would be useful to integrate this modality into a PA model. Additionally, exercise

has been reported to induce changes in insulin absorption that might affect plasma insulin
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concentrations [8, 64]. Our model currently does not consider this effect, as exact mechanisms

remain elusive and potential changes cannot be estimated from our available data sets.

Exercise was recorded with accelerometers in our patient data, and we therefore chose AC

count as PA input for our model. Other models use heart rate or %VOmax
2

instead, which

might be better suited to quantify PA as they measure direct physiological responses to exer-

cise. However, it would be straightforward to convert these measures and adjust the model to

different inputs, since AC count, %VOmax
2

and heart rate are all linearly dependent [42, 65].

We applied our model to evaluate subject-specific treatment strategies in-silico based on

model personalization and replay simulations. First, we validated this approach for altered

meal and insulin inputs–but without exercise–against the UVa/Padova simulator. We then

personalized our model to several children with T1D by adjusting a small number of parame-

ters to each child, and accurately reproduced their glucose data recorded under real-life condi-

tions. We presented examples of replay simulations from these personalized models to study

subject-specific treatment alternatives and PA effects. Our results provide a promising proof-

of-principle for adjusting treatment strategies to the individual person to improve PA manage-

ment. The approach only requires data easily available in everyday settings from CGM devices

and activity trackers, and we therefore expect that it also applies to the challenging case of

unplanned and unstructured PA typical for children.

We anticipate that our model could be used in practice to describe and simulate blood glu-

cose levels and to predict hypoglycemia associated with PA. Model personalization allows

replay of recorded data and simulation of alternative treatment strategies to improve individ-

ual patient care, which would provide entirely new possibilities for clinical assessment and

treatment adjustment. In addition, more fine-grained solutions to different exercise scenarios

can be provided compared to current clinical guidelines that rely on observations of glucose

changes during PA. We also anticipate that our model might find application in decision sup-

port systems or meal bolus calculators to determine insulin requirements for improved glyce-

mic control, and would in particular allow to consider PA-induced changes in insulin

sensitivity that can lead to late-onset hypoglycemia. Further applications might include the

development of control algorithms for insulin treatment adjusted to glucose metabolism dur-

ing and after exercise.

Conclusion

We proposed a model of glucose-insulin regulation that captures the acute and prolonged

effects of moderate- to high-intensity PA on glucose metabolism. The model accurately pre-

dicts BG during PA and subsequent recovery and is capable of describing data from individu-

als with T1D. We illustrated its use in replay simulations for personalized PA management in

children, which could support clinicians in tailoring treatment strategies to individuals in the

future. We also anticipate that it finds applications as an ‘exercise calculator’ [14] for clinical

decision support, as well as for improving control algorithms for closed-loop insulin delivery.

We evaluated the model’s performance on several data sets, but further validation of the

model and personalized replay are warranted before application in a clinical setting.

Supporting information

S1 File. Details of model calibration and validation. Definition of standard patient. Addi-

tional information on replay simulations.

(PDF)
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