
PNAS  2023  Vol. 120  No. 8  e2216142120� https://doi.org/10.1073/pnas.2216142120   1 of 9

RESEARCH ARTICLE | 

Significance

Invasion of the malaria vector 
Anopheles stephensi across 
sub-Saharan Africa poses a 
threat to disease control efforts, 
particularly in cities where 
malaria transmission has 
historically been low but where 
this invasive vector can thrive. 
We collate longitudinal catch data 
to systematically characterize the 
species’ seasonal dynamics in 
areas at risk of invasion, which is 
necessary to guide surveillance 
and control activities. An. 
stephensi’s temporal abundance 
is highly variable and, in contrast 
to dominant vectors across 
Africa, poorly predicted by 
patterns of rainfall, instead being 
shaped by temperature and 
patterns of land use. This 
variation has material 
consequences for effective 
control of this invasive vector and 
highlights an urgent need for 
longitudinal entomological 
monitoring of the vector in its 
new environments.
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Invasion of the malaria vector Anopheles stephensi across the Horn of Africa threatens 
control efforts across the continent, particularly in urban settings where the vector is 
able to proliferate. Malaria transmission is primarily determined by the abundance 
of dominant vectors, which often varies seasonally with rainfall. However, it remains 
unclear how An. stephensi abundance changes throughout the year, despite this being 
a crucial input to surveillance and control activities. We collate longitudinal catch data 
from across its endemic range to better understand the vector’s seasonal dynamics and 
explore the implications of this seasonality for malaria surveillance and control across 
the Horn of Africa. Our analyses reveal pronounced variation in seasonal dynamics, the 
timing and nature of which are poorly predicted by rainfall patterns. Instead, they are 
associated with temperature and patterns of land use; frequently differing between rural 
and urban settings. Our results show that timing entomological surveys to coincide with 
rainy periods is unlikely to improve the likelihood of detecting An. stephensi. Integrating 
these results into a malaria transmission model, we show that timing indoor residual 
spraying campaigns to coincide with peak rainfall offers little improvement in reducing 
disease burden compared to starting in a random month. Our results suggest that unlike 
other malaria vectors in Africa, rainfall may be a poor guide to predicting the timing 
of peaks in An. stephensi-driven malaria transmission. This highlights the urgent need 
for longitudinal entomological monitoring of the vector in its new environments given 
recent invasion and potential spread across the continent.

Anopheles stephensi | malaria ecology | urban malaria | population dynamics | epidemiology

There has been an estimated 40% reduction in the burden of malaria since 2000, pre-
dominantly due to significant scale-up of control interventions (1). Increasing urbanization 
of Africa’s human population [31 to 43% between 1990 and 2018, with >60% expected 
to live in urban areas by 2050 (2)] is also thought to have indirectly contributed to reduc-
tions in disease burden. Previous work has found significantly lower entomological inoc-
ulation rates (EIRs) in urban compared to rural settings (3, 4). This is thought to be 
underpinned by factors including differences in housing quality (5, 6), reduced suitability 
of habitats for Anopheles breeding in urban settings (7–9), better access to treatment (10), 
and higher population densities leading to lower mosquito-to-human ratios (and reduced 
transmission) (11). While these trends are not always consistently identified [including 
surveys where prevalence of malaria is higher in urban areas than in surrounding locations, 
(12, 13) or previous work highlighting that Anopheles gambiae s.s. can adapt to breeding 
in polluted water characteristic of urban environments (8, 14)], increasing urbanicity 
across Africa is anticipated to complement planned scale-up of malaria control interven-
tions aimed at achieving the targets outlined in the World Health Organization’s 2030 
Global Technical Strategy for Malaria (15).

This beneficial impact of increasing urbanization on malaria burden is contingent on 
urban settings remaining as areas of comparatively low transmission. This is currently 
under threat in Africa because of the invasion and establishment of Anopheles stephensi, a 
malaria vector that is potentially capable of thriving in urban areas of the continent (16). 
There are three known forms of the species (“type,” “intermediate,” and “mysorensis”) 
found across its native range in South Asia. The mysorensis form is predominantly found 
in rural settings, is highly zoophilic, and typically possesses a low vectorial capacity (17). 
By contrast, the type and intermediate forms represent efficient vectors capable of trans-
mitting both Plasmodium falciparum and Plasmodium vivax (18–20) in urban environ-
ments. This ability to proliferate in urban locations distinguishes this species from other 
malaria vectors in sub-Saharan Africa and is thought to be underpinned by an increased 
tolerance for breeding in polluted water sources (21) and the superior ability to utilize the 
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purpose-built water storage tanks present in many urban settings 
(22, 23). Indeed, while several studies across Africa have identified 
the potential for vectors already endemic to the continent (espe-
cially the An. gambiae complex) to adapt to urban aquatic habitats 
and drive malaria transmission (24, 25), recent work has demon-
strated consistently lower EIRs in rural compared to urban settings 
(3), suggesting that cities remain areas of comparatively low 
malaria transmission.

The African invasion by An. stephensi was first reported from 
Djibouti City in 2012 (26) and has since been recorded in Ethiopia 
(18, 27), Sudan (28, 29), Somalia, (30) and Somaliland (31), with 
recent work highlighting suitability of the continent’s largest pop-
ulation centers (where >100 million individuals live) as a habitat 
for this species (16). While causality has yet to be established, 
emergence of An. stephensi is thought to have contributed to resur-
gence of malaria transmission in Djibouti (10-fold increase in 
cases 2013 to 2019), highlighting the potential threat that this 
vector poses to malaria control across the Horn of Africa (32) and 
the continent more generally (33). Notably, An. stephensi has been 
identified across both rural and urban settings in the Horn of 
Africa to date (34, 35), highlighting the potential for this invasive 
vector to contribute to malaria transmission across a diverse range 
of different settings.

Despite the significant public health this vector poses, substantial 
uncertainty remains in how its establishment might influence 
malaria dynamics in the region, particularly in the (predominantly 
urban) settings where the disease is currently largely absent. A key 
driver of this will be the vector’s seasonal dynamics. Mosquito pop-
ulations may show marked variation in seasonal abundance, often 
exhibiting substantial annual fluctuations in size that drive the tem-
poral profile of disease risk. The efficacy of many malaria control 
interventions [such as seasonal malaria chemoprevention (36), 
indoor residual spraying (37) (IRS), or larval source management 
(38) (LSM)] depends on optimally timing their delivery relative to 
seasonal peaks in vector abundance. A better understanding of the 
seasonality of An. stephensi across its current range will help guide 
entomological monitoring and surveillance activities in areas of 
possible invasion and have material consequences for the effective 
control of An. stephensi-driven malaria transmission.

Here, we systematically collate longitudinal catch data for 
An. stephensi across its endemic range to better understand these 
dynamics. Our results highlight pronounced variation in the 
extent and timing of seasonality (poorly predicted by patterns of 
rainfall), with distinct dynamics separating rural and urban set-
tings, with the latter tending to possess more seasonal dynamics 
on average. We show that this variation has material consequences 
for the effective design of entomological surveillance programs. 
Integrating these results with a previously published model of 
malaria transmission also highlights how this variation will influ-
ence the efficacy of malaria control efforts in parts of the Horn of 
Africa where the disease is currently (or has previously been) 
largely absent and underscores the need for rapid scale-up of ento-
mological monitoring across the region.

Methods

Systematic Review of An. stephensi Surveys. We collated references from 
published systematic reviews of literature relating to An. stephensi (16, 39) and 
updated these previous searches by searching Web of Science and PubMed from 
January 2017 to September 2020. We included all records containing temporally 
disaggregated adult mosquito catch data with monthly (or finer) temporal resolu-
tion spanning at least 10 mo that had not been conducted as part of vector control 
intervention trials and where at least 25 An. stephensi mosquitoes had been 
caught over the study period. A total of 36 references were collated containing 

65 time series with monthly catch data (no study presented data at a finer tem-
poral resolution) from surveys carried out across Afghanistan, Djibouti, India, Iran, 
Myanmar, and Pakistan. See SI Appendix for further details and references therein.

Clustering of Similar Time Series and Random Forest Prediction of Cluster 
Membership. Following methodologies developed in previous work (39), we 
fitted a gaussian process-based model to smooth these mosquito count time 
series using a negative binomial likelihood to account for overdispersion and a 
periodic kernel function to capture the repeating patterns often observed sea-
sonally in mosquito populations. Model fitting was carried out within a bayesian 
framework using the probabilistic programming language Stan (40). We then 
calculated summary statistics for each smoothed time series to characterize their 
temporal properties (SI Appendix), generating a set of parameters for each time 
series that summarizes their temporal properties. We then scaled and normalized 
each summary statistic to give a mean 0 and unit variance—a process necessary for 
the PCA we apply to identify a lower-dimensional representation of the structure 
present in the data amenable to visualization.

Using k-means clustering, we identified clusters of time series with similar 
temporal properties—the output of this process is a label for each time series 
indicating which cluster (of time series with similar temporal properties) each 
specific time series was assigned to. For each study location, we extracted a suite 
of satellite-derived environmental variables (SI Appendix, Table  S2) and used 
these variables alongside empirically calculated rainfall seasonality and average 
monthly catch as covariates within a random forest-based classification frame-
work to predict cluster membership of each time series. These models were fitted 
using the R package Ranger (41) with sixfold cross-validation utilized to optimize 
hyperparameters. Results are based on averaging the results of 25 iterations of 
cross-validation and model fitting and predictions made using out-of-bag esti-
mates. There were significant imbalances in class size across clusters and so we 
carried out upsampling using the Synthetic Minority Oversampling Technique 
(SMOTE) (42) algorithm. For results without upsampling, see SI Appendix.

Probability of Detecting An. stephensi with Different Surveillance 
Strategies. We explore the implications of seasonal variation in An. stephensi 
abundance on the probability of detecting the vector in entomological surveys 
using a theoretical sampling method with a defined amount of effort (such as a 
human landing catch conducted by a single volunteer for one night). We use a 
statistical framework (described further in SI Appendix) that calculates the cumu-
lative probability of detection from i) an overall assumed An. stephensi annual 
biting rate (ABR, arbitrarily set to 20 for illustrative purposes here), ii) changes in 
vector density over the course of the year (from our collated time series), and iii) 
various factors relating to timing of, and effort expended in, the entomological 
survey. Specifically, for each time series, we identified the month with the highest 
rainfall and the month in which vector density was the highest (noting that these 
months were very rarely the same month). We then calculated the cumulative 
probability of An. stephensi detection using the framework under a range of differ-
ent surveillance strategies. Specifically, three strategies were simulated as follows:

• � Vector Peak Timed: Starting the survey at the month with peak vector 
density (noting that in the absence of preexisting detailed entomologi-
cal information, this is a hypothetical quantity designed to illustrate an 
approximate upper bound on the detection probability that could be 
achieved).

• � Rainfall Peak Timed: Starting the survey at the month with peak rainfall.
• � Random Month Timed: The expected probability of detection achieved if 

the survey was started during a random month (calculated by simulating 
survey starting in each of the year’s 12 mo and calculating the average 
cumulative probability).

In addition to varying the survey’s starting time, we also varied the amount 
of sampling effort (number of days sampled within each month) and overall 
duration of the survey (consecutive months sampled given a defined number of 
night sampling per month). Note that the aim here is not to describe the exact 
probability of missing An. stephensi in any given entomological survey as this 
will depend on a wide array of other, poorly defined and heterogeneous factors 
(e.g., type of catch methodology used and location). We also assume that the 
collection method is unbiased (i.e., not biased toward catching mosquitoes with 
particular resting or biting properties) which is also highly unlikely. Instead, the 
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aim is to highlight how variation in seasonal dynamics can influence the nature 
of surveillance required to successfully detect a single An. stephensi (i.e., success-
fully establish presence), and the probability of detection should be viewed as 
a relative measure (i.e., viewed in relation to other sampling efforts and survey 
timings possible for surveys) and not an absolute value. Note that this framework 
assumes no seasonal variation in factors other than mosquito abundance (such as 
the ability of the sampling method to accurately record ABR) that might influence 
the probability of An. stephensi being caught by our theoretical sampling method.

Modeling An. stephensi-Driven Malaria Dynamics and Control. We inte-
grated these vector abundance time series into a published population-level 
model of P. falciparum malaria transmission and disease dynamics (43–45) 
to explore the implications of An. stephensi seasonality on malaria control in 
settings in the Horn of Africa where malaria is currently largely absent (full 
description of the modeling framework is provided in SI Appendix). We use 
the modeling framework to understand how variation in mosquito seasonality 
might influence the impact of IRS, a key vector control intervention. As the 
dynamics of An. stephensi’s establishment and influence on temporal trends 
in malaria transmission during its establishment remain unclear, we focused 
on the time period immediately following establishment (when the disease 
is at equilibrium) and provide an illustrative example of how seasonality of 
An. stephensi-driven malaria transmission could influence the effectiveness 
of IRS in a site with no preexisting history of malaria control. For simplicity, we 
assume that all transmission is due to An. stephensi and that the IRS efficacy 
against this species is consistent with that observed against other species 
across the continent (46). We simulate the impact of a single, illustrative IRS 

campaign in a setting with an annual EIR of 1.5 (average malaria prevalence 
of 8 to 9%), timed for optimal impact, randomly or alongside peak rainfall, 
and assume that 80% of the vector’s resting sites are successfully sprayed 
(noting the vector is thought to also rest in animal houses which are not typi-
cally sprayed in public health campaigns). For further details, see SI Appendix.

Results

Diversity in Temporal Dynamics across the Collated An. stephensi 
Time Series. A total of 65 time series from across Afghanistan, 
Djibouti, India, Iran, Myanmar, and Pakistan were identified 
(Fig. 1A and SI Appendix, Fig. S1). Substantial variation in the 
degree and timing of vector seasonality was observed, with the 
maximum percentage of annual vector density in any consecutive 
4-mo period (a proxy for degree of seasonality) ranging from 35 to 
99% across the collated studies (average = 62%). This contrasted 
with rainfall seasonality, where highly seasonal rainfall patterns 
were consistently observed across the locations the surveys had 
been carried out in (maximum percentage of annual rainfall in any 
consecutive 4-mo period, mean = 82 and range 47 to 99%). We 
also observed a diverse range of temporal patterns ranging from 
highly seasonal dynamics with a single seasonal peak to bimodal 
population dynamics with two peaks within a single year or more 
perennial patterns of abundance (Fig. 1B).
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Fig. 1. Sources and locations of An. stephensi time series data and examples for each country. (A) Map of the geographical range over which time series 
entomological collections have been carried out. Countries with studies are highlighted in light gray, and the locations of individual studies indicated by the 
individual points colored according to country (Afghanistan = red, Djibouti = yellow, India = green, Iran = turquoise, Myanmar = blue, and Pakistan = pink). (B) A 
single example An. stephensi time series from each country, with the empirical monthly mosquito catch (black points), fitted gaussian process curves (mean = 
colored line, ribbon = 95% bayesian credible interval) and monthly rainfall (matching sampling location and year of sampling) for each (light blue bars with gray 
surround). The x-axis indicates the month of sampling; the y-axis indicates either the monthly rainfall (left-hand side y-axis) or number of vectors caught in each 
month (right-hand side y-axis; note that the absolute number of mosquitoes caught between time series are not comparable due to variable sampling effort). 
n indicates the number of time series in each country.
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Statistical Characterization and Clustering of Temporal Properties 
Highlight Distinct Archetypes. Summary statistics were calculated 
for each time series to characterize their temporal properties 
(SI Appendix, Fig. S2), followed by k-means clustering of the results 
to cluster the time series into groups with similar temporal patterns. 
Our results highlight two distinct clusters of time series (Fig. 2A), 
each characterized by distinct temporal patterns (Fig. 2B). Cluster 
1 time series had single seasonal peaks and were more seasonal 
(average of 68% of annual vector density in the consecutive 4-mo 
period with the highest density) than Cluster 2 time series, which 
had more perennial patterns of annual abundance (average 44% 
of annual vector density in the consecutive 4-mo period with 
the highest density) and contained several time series with two 
peaks across the year. Despite differing significantly in mean vector 
abundance seasonality (Fig. 2 C and D and P < 0.001), there was 
no significant difference between clusters in rainfall seasonality 

(Fig. 2D, P = 0.59). Seasonality of rainfall (defined as the highest 
proportion of total annual rainfall occurring in any consecutive 
4-mo period) across sampled locations was high (average 82% and 
84% for Clusters 1 and 2, respectively) despite a wide variation 
in vector abundance seasonality. Timing of peak rainfall relative 
to peak vector density significantly differed between clusters 
(SI Appendix, Fig. S3), with peak rainfall and vector abundance 
separated by <1 mo on average for Cluster 1 compared to 2.2 mo 
for Cluster 2. There was, however, considerable within-cluster 
variation in timing—within Cluster 1, timing of peak vector 
density relative to rainfall ranged from −5.8 mo to +5.3 mo 
(with 6 mo the maximum gap that can occur within an annually 
repeating 12-mo time series, highlighting that the peaks in vector 
density relative to rainfall were found across the entirety of the 
year). We also explored varying the number of clusters specified 
in the k-means algorithm. Specifying 4 clusters resulted in further 
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Fig. 2. Characterization and clustering to identify time series with similar temporal properties. (A) Results of principal component analysis (PCA) and k-means 
clustering for two clusters. Points on the main figure indicate individual time series, with point color indicating cluster membership. Ellipsoids demarcate the 75th 
quantile of the density associated with each cluster. Principal components 1 and 2 are plotted together explaining 69% of the total variation in temporal properties 
across the time series. (B) Time series belonging to each cluster. Pale lines represent individual time series; brighter line indicates the mean of all the time series 
belonging to that cluster—in all cases, vector density is normalized to sum to 1 over the course of the year and time standardized so that the highest vector density 
for each time series is arbitrarily set to occur at month 7. (C) Plot comparing the percentage of annual total mosquito catch and percentage of annual total rainfall 
occurring in any consecutive 4-mo period for each time series colored by cluster membership. (D) Box plots show the percentage of annual total mosquito catch 
(Left) and annual total rainfall (Right) series occurring in any consecutive 4-mo periods for each time series. Rainfall data come from the CHIRPS dataset (37) and 
are specific to study location and time period. Each point indicates an individual time series. (E) Variable importance plot for each of the covariates included in the 
random forest model used to predict cluster membership—bar height indicates the mean variable importance across the 25 individual iterations of random forest 
fitting, with error bars representing the 95% CI. Inset plots are the partial dependence plots for the top five most important variables in the model showing how the 
average prediction for Cluster 2 (y-axis, with higher values indicating an increased probability of Cluster 2 membership) varies with (normalized) variable value (x-axis).
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disaggregation of the 49 time series in Cluster 1 into 3 separate 
clusters, each characterized by a single seasonal peak, but which 
differed in the timing of peak vector density relative to peak 
rainfall (SI Appendix, Fig. S4).

Random Forest Modeling of Seasonal Dynamics Highlights Urbanicity 
as a Key Factor. We fitted a random forest-based classification 
framework to predict cluster membership (Cluster 1 or Cluster 
2, as defined in Fig. 2A). Due to the significant class size imbalance 
between Cluster 1 (n = 49) and Cluster 2 (n = 16), we upsampled 
Cluster 2 data to generate balanced classes. Across 25 iterations of 
random forest model fitting, the mean area under the curve (AUC) 
was 0.89 (indicating good predictive performance), and the model 
was able to correctly classify Cluster 1 and Cluster 2 time series 
equally well (83% and 85% accuracy, respectively).

We calculated the relative importance of each variable to the 
model’s predictive ability (Fig. 2E). Patterns of land use were 
strongly associated with different clusters—time series from sur-
veys in locations with lower population density (a proxy for rural-
ity) more likely to belong to Cluster 2 (less seasonal) as were areas 
with a high proportion of land occupied by irrigated cropland. 
By contrast, a high proportion of land occupied by rainfed crop-
land was associated with Cluster 1 (more seasonal) dynamics. We 
also observed strong associations with temperature covariates, 
including the mean temperature of the driest quarter (where a 
high temperature was associated with Cluster 2), temperature 
seasonality (where a nonmonotonically increasing relationship was 
observed; for all covariate response plots, see Fig. 2 E,  Inset panels 
and SI Appendix, Fig. S5), and whether the study had been con-
ducted in Iran (indicating potential spatial confounding). By 
contrast, rainfall seasonality was not an important predictor of 
temporal dynamics and was in the least five important variables. 
Examining the association between cluster membership and rural-
ity/urbanicity (defined by the study authors), there was indication 
of an association (chi-squared test, P = 0 .07), although this was 
not statistically significant at the 5% level. About 88% (n = 22/25) 
of time series from urban settings were assigned to Cluster 1, and 
only 12% (n = 3/25) were assigned to Cluster 2. About 65% 
(n = 24/37) of time series from rural settings were assigned to 
Cluster 1 and 35% (n = 13/37) to Cluster 2. We also explored 
how seasonality varied with both cluster membership and rurality/
urbanicity (SI Appendix, Fig. S6). There was indication that rural 
time series assigned to Cluster 1 (mean seasonality 71%) were on 
average more seasonal than urban time series assigned to Cluster 
1 (mean seasonality 64%), although this result was not statistically 
significant at the 5% level (P = 0.06, t test). No difference in 
seasonality between Cluster 2 time series carried out in rural (aver-
age seasonality 44%) and urban (average seasonality 45%) settings 
was observed (P = 0.59, t test).

Model predictive performance and variable importance rank-
ings were similar when no upsampling was applied (AUC = 0.81, 
SI Appendix, Fig. S7), although predictive accuracy was highly 
unbalanced (Cluster 2 accuracy = 50% and Cluster 1 accuracy = 
94%). Model performance and variable importance ordering 
remained similar when fitting the model and explicitly holding 
out a subset of the data to subsequently evaluate model perfor-
mance (n = 7 time series, SI Appendix, Fig. S8). Predictive power 
for seasonality (percentage of vector catch in any 4-mo period) 
was more modest, although estimates were positively correlated 
(r = 0.43, SI Appendix, Fig. S9).

Implications of Seasonal Dynamics for Entomological Surveillance of 
An. stephensi across the Horn of Africa. We collated the same covariates 
for countries across the Horn of Africa and used the random 

forest model to predict cluster membership and potential temporal 
dynamics of An. stephensi across the region (Fig. 3A). Our results 
highlight distinct geographical areas considered more likely to 
belong to Cluster 1 (more seasonal) and Cluster 2 (less seasonal) and 
areas of significant uncertainty. We next asked what consequences 
this seasonality might have on entomological surveillance of the 
vector, with a focus on how these seasonal dynamics might interact 
with features of surveillance programs such as the timing and 
duration of entomological surveys. Across the collated temporal 
profiles, in a setting with an ABR of 20, surveys consisting of 3-mo 
sampling and three sampling days per month that were timed to 
start at periods of peak An. stephensi density were on average 64% 
more likely to detect the vector compared to starting the survey at 
a random month of the year and 57% more likely to successfully 
detect the vector compared to starting the survey in the month 
of peak rainfall (Fig.  3B). Timing of entomological surveys to 
coincide with peaks in rainfall did not lead to a significant increase 
in the probability of successfully detecting An. stephensi (average 
4% increase), suggesting that the timing of peak rainfall may be 
a poor measure for guiding entomological surveys searching for 
the vector. We next stratified these results by temporal cluster 
(Fig. 3C). For Cluster 1 (and a survey lasting 3 mo, with a 3-d 
sampling per month), we observed differences in the cumulative 
probability of detection when comparing strategies which start 
surveys at the location’s rainfall peak compared to starting them 
at peak An. stephensi abundance—on average, the latter strategy 
increased the cumulative probability of detection by 62% 
compared to a randomly timed survey compared to only a 40% 
increase over random timing for Cluster 2.

Modeling the Impact of An. stephensi Seasonality on Vector Control 
Measures. Integrating the temporal profiles of An. stephensi 
abundance with a malaria transmission model, we explored how 
variation in temporal dynamics influences the impact of IRS 
(with two different insecticides, Fig. 4A). Across the An. stephensi 
temporal profiles, optimal timing of IRS delivery resulted in an 
average of 47.6% reduction in annual malaria incidence in the 
12 mo following spraying for pirimiphos-methyl and 28.9% for 
bendiocarb (Fig.  4B). These results represent 1.12×  and 1.41× 
increases over the average impact achieved if the campaign is timed 
to a random month of the year. The extent to which optimal timing 
provided greater impact than random timing was dependent on 
the degree of seasonality and insecticide, however—it increased 
with the degree of seasonality and was consistently larger for 
bendiocarb than pirimiphos-methyl (due to the latter’s longer 
duration and retention of residual activity following spraying). 
Timing of the IRS campaign to occur when rainfall peaks did not 
significantly increase impact compared to timing of the campaign 
to a random month [with less than a 2% average increase in 
impact for both pirimiphos-methyl (Fig.  4C) and bendiocarb 
(Fig. 4D)] had significantly lower impact than optimally timed 
campaigns (39% and 15% lower impact for pirimiphos-methyl 
and bendiocarb, respectively).

Discussion

Invasion and establishment of An. stephensi across the Horn of 
Africa represents an urgent threat to malaria control in the region. 
Understanding the temporal profile of vector abundance of the 
species will inform effective deployment of surveillance, monitor-
ing, and control interventions aimed at mitigating this potential 
impact, particularly in urban settings where malaria has historically 
been largely absent or only minimally present. Collating data from 
across the vector’s endemic range, we identify broad diversity in 

http://www.pnas.org/lookup/doi/10.1073/pnas.2216142120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2216142120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2216142120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2216142120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2216142120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2216142120#supplementary-materials
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the extent and nature of An. stephensi seasonal dynamics. This var-
iation is associated with a wide array of ecological factors, including 
seasonal fluctuations in temperature and patterns of land use, 
including a potential role of urbanicity in shaping dynamics.

Our analyses identified population per km2 as the most impor-
tant predictor of cluster membership, with high population den-
sity (a proxy for urbanicity) being strongly associated with Cluster 
1 dynamics (more seasonal patterns of abundance). Intriguingly, 
while urban settings were frequently seasonal, our analyses high-
lighted a wide diversity of dynamics in rural settings—ranging 
from seasonal peaking dynamics (that were, on average, more 
seasonal than urban settings) to bimodal or more perennial pat-
terns of abundance (that were less seasonal than the dynamics 
observed in urban settings). This potential disparity in temporal 
dynamics across rural and urban settings will likely have implica-
tions for both how resources aimed at surveillance control should 
be targeted to these different settings and the public health impact 
of different control interventions.

It is important to note however that the statistical associations 
identified here do not represent causal statements, and so further 
fieldwork exploring An. stephensi’s niche (both across its historical 
range and the Horn of Africa) is needed to identify the mecha-
nisms underpinning the different dynamics. A related limitation 
is the absence of sufficiently spatially granular data to explore 
seasonal patterns at subcity resolution and assess potential differ-
ences in dynamics across typically heterogeneous urban land-
scapes. These caveats notwithstanding, our results suggest that 
urban An. stephensi populations are likely to display more seasonal 
dynamics, supporting the utility of temporally targeted interven-
tions like short-lived IRS or LSM in these settings. The same is 
not necessarily true in rural settings, where shorter-duration 

control interventions are likely to be impactful but may be less 
consistent in their effectiveness (without local surveys being con-
ducted to establish the timing and extent of seasonality) due to 
the range of seasonal profiles observed, which included more per-
ennial patterns of abundance. This is before considering other 
factors that differ between urban and rural settings [e.g., predom-
inant household building material and wall structure (47)] that 
may contribute to differences in the efficacy between rural and 
urban settings and that are not considered here. Furthermore, 
implementing these measures and achieving sufficient intervention 
population coverage in urban settings is likely to present logistical 
challenges, given the historical absence of large-scale vector control 
campaigns from urban communities. If these barriers can be sur-
mounted, however, our results suggest such measures are likely to 
be impactful, although remaining uncertainty around the degree 
of endophily An. stephensi can display (48) might necessitate alter-
native interventions to IRS that are not dependent on resting 
behavior, such as LSM (38).

Our results also suggest a limited role for rainfall in shaping the 
diverse temporal dynamics across the collated An. stephensi catch 
data contrary to results observed for other African malaria vector 
species [e.g., An. Gambiae (49, 50)]. Specifically, that areas with 
highly seasonal rainfall may not have highly seasonal patterns of 
An. stephensi abundance. Instead, our analyses highlight an asso-
ciation between temperature and seasonal patterns of abundance 
with both temperature seasonality and the average temperature 
during the driest quarter being highly predictive of dynamics. This 
is consistent with previous work identifying temperature as a key 
driver of mosquito population dynamics due to its impact on an 
array of mosquito life history traits including biting rate, life span, 
and fecundity (among several others) (51, 52).
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We also observed a strong association with land use, with crop-
land being associated with different dynamics depending on 
whether it was irrigated or rainfed. The absence of a relationship 
linking seasonal dynamics and rainfall seasonality when considering 
our collated data in aggregate might therefore arise from the diverse 
array of land use contexts in which surveys were carried and how 
they interact with incipient rainfall, as well as the interactions of 
other factors such as temperature, which may limit mosquito breed-
ing and survival even when water is available for breeding. Rainfall 
is clearly important—but its impact on mosquito abundance is 
likely mediated by the structure of the local environment (including 
both land use and climactic factors such as temperature). It should 
be stressed however that these covariates identified here are not 
necessarily predictive of absolute An. stephensi abundance in a 
region but rather the seasonality in abundance. A much more 
detailed sampling strategy considering variability in the accuracy 
and biases of sampling methods and other geospatial methods will 
be needed to identify whether the vector has invaded a region.

The work also highlights the exceptionally limited amount of 
longitudinally collected entomological data from across An. stephensi's 

current geographical range (including the Horn of Africa region) 
that currently exists. In highly seasonal settings, there is a risk of 
erroneously concluding An.stephensi’s absence, particularly as the 
time of low vector catches may not coincide with times of low 
rainfall, as is frequently the case for other mosquitoes endemic to 
Africa. Longitudinal surveys enabling better description of these 
dynamics would therefore be useful in enabling subsequent refine-
ment and timing of shorter surveys aimed at detecting presence only 
(while also providing additional information on temporal dynamics 
that can facilitate the effective targeting and timing of interventions 
such as IRS or LSM). Indeed, our results suggest that rainfall may 
provide a poor guide to timing of intervention campaigns in settings 
where An. stephensi is the dominant vector, underscoring the crucial 
role detailed entomological data collection and establishment of 
patterns empirically will play in optimizing vector surveillance and 
disease control efforts.

There are several important limitations to the work presented 
here. First, we assume that the inferred ecological relationships 
linking environmental features to temporal dynamics will translate 
from the vector’s historical range to the Horn of Africa.  
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Indeed, our results highlight significant plasticity and variation in 
An. stephensi’s seasonal abundance depending on the setting, and 
therefore, the extent to which our results will extrapolate to new 
settings remains unclear—making collection and analysis of lon-
gitudinal catch data collected from the Horn of Africa an urgent 
research priority. Relatedly, due to the limited amount of data 
available and the wide geographical range over which the collated 
studies were conducted, we cannot rule out the possibility of 
spatial confounding in shaping the inferred associations. Analysis 
of the distribution of locations stratified by rural/urban status and 
cluster assignment did not reveal obvious patterns of spatial con-
founding (SI Appendix, Fig. S10), although the study being con-
ducted from Iran was a high-ranking variable in the random forest 
model, and it is possible that some degree of spatial confounding 
is present. Additionally, the limited spatial resolution typically 
available for our collated data precluded finer-scale evaluation of 
seasonal dynamics and meant our analyses were limited to using 
coarse environmental covariates that are likely imperfect proxies 
for the underlying drivers of dynamics (e.g., population per km2 
as a proxy for urbanicity and recognizing that the urban landscape 
itself is typically highly heterogeneous across a single city). 
Moreover, the use of population per km2 as a proxy for urbanicity 
neglects the likely significant variation between urban locations 
in ecological factors relevant to anopheline seasonal dynamics 
(such as patterns of water storage or severity of pollution); factors 
we were unable to explore in the results presented here.

We were also unable to consider the possibility of variation in 
temporal dynamics between An. stephensi forms. Identification 
of the An. stephensi form is challenging, requiring close visual 
examination (53) or molecular methods (54). Availability of these 
data was limited, and we lack the ability to disaggregate time 
series by the specific form caught and hence preclude form as a 
confounder of some of the identified relationships linking envi-
ronmental factors and temporal dynamics. Another limitation 
relates to our usage of mosquito abundance data, which is highly 
prone to biases driven by the collection method used. Collections 
were carried out using different sampling methods, locations, and 
timings, although there was insufficient information in most 
studies to include these covariates within the analyses. Biases 
associated with the trapping method, location, and/or timing 
might vary between seasons, such as the comparative probability 
of detection indoors vs. outdoors [and its interaction with the 
vector’s well-documented resistance to insecticides (55)], or vary 
depending on the time of day when sampling was occurring. 
These biases could affect the reliability of the seasonal patterns 
inferred here and the probability of detecting An. stephensi under 
different sampling efforts.

We do not include insecticide resistance into our model of 
malaria transmission. Extensive insecticide resistance has been 
demonstrated for An. Stephensi (55–57), and recent populations 
assayed in Ethiopia showed resistance to all four major insecti-
cide classes (34, 58), suggesting that IRS might have a lower 
impact than suggested here. Relatedly, we do not consider uncer-
tainty in An. stephensi bionomic properties (e.g., timing of biting 
or whether resting occurs predominantly indoors or outdoors), 
which might vary by season and could further modulate the 
impact of interventions such as IRS where killing is mediated 
primarily through indoor resting following feeding. Variation 
in An. stephensi’s bionomic properties has previously been iden-
tified (59), including a propensity for crepuscular biting and 
resting outside of houses compared to other Anopheles species 
dominant in sub-Saharan Africa (16, 19, 48) that might render 
IRS less effective and necessitate consideration of other strategies 

such as LSM. While the aim of this work is to illustrate how 
seasonality modulates intervention impact, these considerations 
underscore the urgent need for a more detailed characterization 
of An. stephensi across the Horn of Africa to quantify its bion-
omic properties and insecticide resistance profile, as well as more 
detailed quantification of larval dynamics and breeding site uti-
lization, which will be required for effective LSM deployment. 
Indeed, these will be crucial inputs to future work evaluating 
the range of potential interventions (including but not limited 
to IRS, as is the case with the work presented here) aimed at 
controlling An. stephensi to identify the most effective package 
to deploy.

Our work highlights significant variation in temporal dynamics 
across An. stephensi populations; variation that is shaped by distinct 
ecological factors can markedly differ between urban and rural 
settings, which has material consequences for the effectiveness of 
vector control interventions. Our work also highlights the need 
to better understand the vector’s dynamics in settings where it has 
newly established, how these dynamics might differ from and 
interact with other Anopheles species also present, and the mech-
anistic relationships underpinning these different responses to 
factors such as urbanization. Indeed, the trajectory of An. stephen-
si’s establishment and subsequent dynamics in the Horn of Africa 
remains deeply unclear, and the scarcity of published entomolog-
ical studies from the region underscores the need for studies lon-
gitudinally surveying locations where An. stephensi has recently 
arrived. This will be important to understanding the patterns of 
seasonal variation the vector displays and support optimizing the 
delivery of malaria control interventions aiming to mitigate the 
impact of this invasive vector.

Data, Materials, and Software Availability. All data collated as part of this 
study and the code required to reproduce these analyses can be found at the 
following link: https://github.com/cwhittaker1000/stephenseasonality (60).

ACKNOWLEDGMENTS. C.W. was supported by Sir Henry Wellcome 
Postdoctoral Fellowship, reference 224190/Z/21/Z. This research was funded 
in whole, or in part, by the Wellcome Trust (reference 224190/Z/21/Z). S.B. 
and A.G. both acknowledge grant support from the Bill and Melinda Gates 
Foundation. S.B. acknowledges support from the Novo Nordisk Foundation 
via The Novo Nordisk Young Investigator Award (NNF20OC0059309).SB 
acknowledges support from the Danish National Research Foundation via 
a chair grant. S.B. acknowledges support from The Eric and Wendy Schmidt 
Fund For Strategic Innovation via the Schmidt Polymath Award (G-22-63345). 
T.S.C. and A.H. both acknowledge the Wellcome Trust (NIH Research–Wellcome 
Partnership for Global Health Research Collaborative Award and Controlling 
emergent An. stephensi in Ethiopia and Sudan, ref. 220870_Z_20_Z). The 
work was supported by the Medical Research Council (MRC) Centre for Global 
Infectious Disease Analysis (reference MR/R015600/1) which is jointly funded 
by the UK MRC and the UK Foreign, Commonwealth and Development Office 
(FCDO) under the MRC/FCDO Concordat agreement and the EDCTP2 program 
supported by the European Union and Community Jameel. G.C.-D. acknowl-
edges funding from the Royal Society.

Author affiliations: aMedical Research Council Centre for Global Infectious Disease 
Analysis, School of Public Health, Imperial College London, London W2 1PG, UK; 
bDepartment of Biology, University of Oxford, Oxford OX1 3SZ, UK; cRoyal Botanic 
Gardens Kew, Richmond, Surrey TW9 3AQ, UK; dUnited Nations Environment Program 
World Conservation Monitoring Centre, Cambridge CB3 0DL, UK; eVector Control 
Research Centre, Puducherry 605006, India; and fSection of Epidemiology, Department of 
Public Health, University of Copenhagen, Copenhagen 1353, Denmark

Author contributions: C.W., A.H., and T.S.C. designed research; C.W. performed research; 
C.W., A.H., E.S.-S., M.S., S.P., S.B., and T.S.C. contributed new reagents/analytic tools; C.W., 
M.S., S.P., and T.S.C. analyzed data; and C.W., A.H., E.S.-S., P.W., G.C.-D., P.G.T.W., M.S., S.P., 
A.K., A.G., S.B., and T.S.C. wrote the paper.

http://www.pnas.org/lookup/doi/10.1073/pnas.2216142120#supplementary-materials
https://github.com/cwhittaker1000/stephenseasonality


PNAS  2023  Vol. 120  No. 8  e2216142120� https://doi.org/10.1073/pnas.2216142120   9 of 9

1.	 S. Bhatt et al., The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 
2015. Nature 526, 207–211 (2015).

2.	 United Nations, Revision of world urbanization prospects. (United Nations Department of Economic 
and Social Affairs, New York, NY, 2018).

3.	 P. Doumbe-Belisse et al., Urban malaria in sub-Saharan Africa: Dynamic of the vectorial system and 
the entomological inoculation rate. Malar. J. 20, 364 (2021).

4.	 V. Robert et al., Malaria transmission in urban sub-Saharan Africa. Am. J. Trop. Med. Hyg. 68, 
169–176 (2003).

5.	 J. F. Trape, A. Zoulani, Malaria and urbanization in central Africa: The example of Brazzaville. Part III: 
Relationships between urbanization and the intensity of malaria transmission. Trans. R. Soc. Trop. 
Med. Hyg. 81, 19–25 (1987).

6.	 G. F. Killeen, N. J. Govella, Y. P. Mlacha, P. P. Chaki, Suppression of malaria vector densities and 
human infection prevalence associated with scale-up of mosquito-proofed housing in Dar es 
Salaam, Tanzania: Re-analysis of an observational series of parasitological and entomological 
surveys. Lancet Planet Health 3, e132–e143 (2019).

7.	 P. M. De Silva, J. M. Marshall, Factors contributing to urban malaria transmission in sub-saharan 
Africa: A systematic review. J. Trop. Med. 2012, 819563 (2012).

8.	 T. S. Awolola, A. O. Oduola, J. B. Obansa, N. J. Chukwurar, J. P. Unyimadu, Anopheles gambiae s.s. 
breeding in polluted water bodies in urban Lagos, southwestern Nigeria. J. Vector Borne Dis. 44, 
241–244 (2007).

9.	 S. Kasili et al., Entomological assessment of the potential for malaria transmission in Kibera slum of 
Nairobi, Kenya. J. Vector Borne Dis. 46, 273–279 (2009).

10.	 D. J. Weiss et al., Global maps of travel time to healthcare facilities. Nat. Med. 26, 1835–1838 (2020).
11.	 V. Romeo-Aznar, R. Paul, O. Telle, M. Pascual, Mosquito-borne transmission in urban landscapes: The 

missing link between vector abundance and human density. Proc. Biol. Sci. 285, 20180826 (2018).
12.	 J.-R. Mourou et al., Malaria transmission in Libreville: Results of a one year survey. Malar. J. 11, 40 

(2012).
13.	 S.-J. Wang et al., Rapid Urban Malaria Appraisal (RUMA) IV: Epidemiology of urban malaria in 

Cotonou (Benin). Malar. J. 5, 45 (2006).
14.	 E. Klinkenberg, P. McCall, M. D. Wilson, F. P. Amerasinghe, M. J. Donnelly, Impact of urban 

agriculture on malaria vectors in Accra, Ghana. Malar. J. 7, 151 (2008).
15.	 World Health Organization, Global technical strategy for malaria 2016–2030. 2021 update. World 

Health Organization: Geneva (2021).
16.	 M. E. Sinka et al., A new malaria vector in Africa: Predicting the expansion range of Anopheles 

stephensi and identifying the urban populations at risk. Proc. Natl. Acad. Sci. U. S. A. 117, 
24900–24908 (2020).

17.	 S. K. Subbarao, K. Vasantha, T. Adak, V. P. Sharma, C. F. Curtis, Egg-float ridge number in Anopheles 
stephensi: Ecological variation and genetic analysis. Med. Vet. Entomol. 1, 265–271 (1987).

18.	 F. G. Tadesse et al., Anopheles stephensi mosquitoes as vectors of Plasmodium vivax and falciparum, 
Horn of Africa, 2019. Emerg. Infect. Dis. 27, 603–607 (2021).

19.	 N. S. Korgaonkar, A. Kumar, R. S. Yadav, D. Kabadi, A. P. Dash, Mosquito biting activity on humans & 
detection of Plasmodium falciparum infection in Anopheles stephensi in Goa, India. Indian J. Med. 
Res. 135, 120–126 (2012).

20.	 A. Kumar et al., Anopheles subpictus carry human malaria parasites in an urban area of Western 
India and may facilitate perennial malaria transmission. Malar. J. 15, 124 (2016).

21.	 C. P. Batra, T. Adak, V. P. Sharma, P. K. Mittal, Impact of urbanization on bionomics of An. culicifacies 
and An. stephensi in Delhi. Indian J. Malariol. 38, 61–75 (2001).

22.	 S. Thomas et al., Overhead tank is the potential breeding habitat of Anopheles stephensi in an 
urban transmission setting of Chennai, India. Malar. J. 15, 274 (2016).

23.	 A. Kumar, D. Thavaselvam, Breeding habitats and their contribution to Anopheles stephensi in 
Panaji. Indian J. Malariol. 29, 35–40 (1992).

24.	 A. O. Oduola, J. B. Olojede, I. O. Oyewole, O. A. Otubanjo, T. S. Awolola, Abundance and diversity of 
Anopheles species (Diptera: Culicidae) associated with malaria transmission in human dwellings in 
rural and urban communities in Oyo State, Southwestern Nigeria. Parasitol. Res. 112, 3433–3439 
(2013).

25.	 C. Antonio-Nkondjio et al., High mosquito burden and malaria transmission in a district of the city of 
Douala, Cameroon. BMC Infect. Dis. 12, 275 (2012).

26.	 M. K. Faulde, L. M. Rueda, B. A. Khaireh, First record of the Asian malaria vector Anopheles stephensi 
and its possible role in the resurgence of malaria in Djibouti, Horn of Africa. Acta Trop. 139, 39–43 
(2014).

27.	 M. Balkew et al., Geographical distribution of Anopheles stephensi in eastern Ethiopia. Parasit. 
Vectors 13, 35 (2020).

28.	 A. Ahmed et al., Invasive malaria vector anopheles stephensi mosquitoes in Sudan, 2016–2018. 
Emerg. Infect. Dis. 27, 2952–2954 (2021).

29.	 A. Ahmed, R. Khogali, M.-A.B. Elnour, R. Nakao, B. Salim, Emergence of the invasive malaria vector 
Anopheles stephensi in Khartoum State, Central Sudan. Parasit. Vectors 14, 511 (2021).

30.	 A. Ahmed, M. Abubakr, Y. Ali, E. E. Siddig, N. S. Mohamed, Vector control strategy for Anopheles 
stephensi in Africa. Lancet Microbe 3, e403 (2022).

31.	 S. Ali, J. N. Samake, J. Spear, T. E. Carter, Morphological identification and genetic characterization of 
Anopheles stephensi in Somaliland. Parasit. Vectors 15, 247 (2022).

32.	 A. Hamlet et al., The potential impact of Anopheles stephensi establishment on the transmission of 
Plasmodium falciparum in Ethiopia and prospective control measures. BMC Med. 20, 135 (2022).

33.	 R. G. A. Feachem et al., Malaria eradication within a generation: Ambitious, achievable, and 
necessary. Lancet 394, 1056–1112 (2019).

34.	 M. Balkew et al., An update on the distribution, bionomics, and insecticide susceptibility of 
Anopheles stephensi in Ethiopia, 2018–2020. Malar. J. 20, 263 (2021).

35.	 V. P. de Santi et al., Role of anopheles stephensi mosquitoes in malaria outbreak, Djibouti, 2019. 
Emerg. Infect. Dis. 27, 1697–1700 (2021).

36.	 ACCESS-SMC Partnership. Effectiveness of seasonal malaria chemoprevention at scale in west and 
central Africa: An observational study. Lancet 396, 1829–1840 (2020).

37.	 B. B. Tukei, A. Beke, H. Lamadrid-Figueroa, Assessing the effect of indoor residual spraying (IRS) on 
malaria morbidity in Northern Uganda: A before and after study. Malar. J. 16, 4 (2017).

38.	 L. S. Tusting et al., Mosquito larval source management for controlling malaria. Cochrane Database 
Syst. Rev. 2013, CD008923 (2013).

39.	 C. Whittaker et al., A novel statistical framework for exploring the population dynamics and 
seasonality of mosquito populations. Proc. Biol. Sci. 289, 20220089 (2022).

40.	 B. Carpenter et al., Stan: A probabilistic programming language. J. Stat. Softw. 76, 1–32 (2017).
41.	 M. N. Wright, A. Ziegler, Ranger: A fast implementation of random forests for high dimensional data 

in C++ and R. Journal of Statistical Software 77, 1–17 (2015).
42.	 N. V. Chawla, K. W. Bowyer, L. O. Hall, W. P. Kegelmeyer, Smote: Synthetic minority over-sampling 

technique. J. Artif. Intell. Res. 16, 321–357 (2002).
43.	 J. T. Griffin, N. M. Ferguson, A. C. Ghani, Estimates of the changing age-burden of Plasmodium 

falciparum malaria disease in sub-Saharan Africa. Nat. Commun. 5, 3136 (2014).
44.	 J. D. Challenger et al., Predicting the public health impact of a malaria transmission-blocking 

vaccine. Nat. Commun. 12, 1494 (2021).
45.	 J. T. Griffin et al., Reducing Plasmodium falciparum malaria transmission in Africa: A model-based 

evaluation of intervention strategies. PLoS Med. 7, e1000324 (2010).
46.	 E. Sherrard-Smith et al., Systematic review of indoor residual spray efficacy and effectiveness against 

Plasmodium falciparum in Africa. Nat. Commun. 9, 4982 (2018).
47.	 Z. Desalegn, T. Wegayehu, F. Massebo, Wall-type and indoor residual spraying application quality 

affect the residual efficacy of indoor residual spray against wild malaria vector in southwest Ethiopia. 
Malar. J. 17, 300 (2018).

48.	 P. K. Sumodan, A. Kumar, R. S. Yadav, Resting behavior and malaria vector incrimination of 
Anopheles stephensi in Goa, India. J. Am. Mosq. Control Assoc. 20, 317–318 (2004).

49.	 M. Appawu et al., Malaria transmission dynamics at a site in northern Ghana proposed for testing 
malaria vaccines. Trop. Med. Int. Health 9, 164–170 (2004).

50.	 P. E. Okello et al., Variation in malaria transmission intensity in seven sites throughout Uganda. Am. 
J. Trop. Med. Hyg. 75, 219–225 (2006).

51.	 L. M. Beck-Johnson et al., The importance of temperature fluctuations in understanding mosquito 
population dynamics and malaria risk. R Soc. Open. Sci. 4, 160969 (2017).

52.	 E. A. Mordecai et al., Thermal biology of mosquito-borne disease. Ecol. Lett. 22, 1690–1708 (2019).
53.	 B. N. Nagpal, A. Srivastava, N. L. Kalra, S. K. Subbarao, Spiracular indices in Anopheles stephensi: A 

taxonomic tool to identify ecological variants. J. Med. Entomol. 40, 747–749 (2003).
54.	 A. R. Chavshin et al., Molecular characterization, biological forms and sporozoite rate of Anopheles 

stephensi in southern Iran. Asian Pac. J. Trop. Biomed. 4, 47–51 (2014).
55.	 S. Yared et al., Insecticide resistance in Anopheles stephensi in Somali Region, eastern Ethiopia. 

Malar. J. 19, 180 (2020).
56.	 N. H. Z. Safi et al., Status of insecticide resistance and its biochemical and molecular mechanisms in 

Anopheles stephensi (Diptera: Culicidae) from Afghanistan. Malar. J. 18, 249 (2019).
57.	 H. Vatandoost, A. A. Hanafi-Bojd, Indication of pyrethroid resistance in the main malaria vector, 

Anopheles stephensi from Iran. Asian Pac. J. Trop. Med. 5, 722–726 (2012).
58.	 S. Tiwari, S. K. Ghosh, V. P. Ojha, A. P. Dash, K. Raghavendra, Reduced susceptibility to selected 

synthetic pyrethroids in urban malaria vector Anopheles stephensi: A case study in Mangalore city, 
South India. Malar. J. 9, 179 (2010).

59.	 N. C. Massey et al., A global bionomic database for the dominant vectors of human malaria. Sci. Data 
3, 160014 (2016).

60.	 C. Whittaker et al., Data for “cwhittaker1000/stephenseasonality.” https://github.com/
cwhittaker1000/stephenseasonality. Accessed 3 February 2023.

https://github.com/cwhittaker1000/stephenseasonality
https://github.com/cwhittaker1000/stephenseasonality

	Seasonal dynamics of Anopheles stephensi and its implications for mosquito detection and emergent malaria control in the Horn of Africa
	Significance
	Methods
	Systematic Review of An. stephensi Surveys.
	Clustering of Similar Time Series and Random Forest Prediction of Cluster Membership.
	Probability of Detecting An. stephensi with Different Surveillance Strategies.
	Modeling An. stephensi-Driven Malaria Dynamics and Control.

	Results
	Diversity in Temporal Dynamics across the Collated An. stephensi Time Series.
	Statistical Characterization and Clustering of Temporal Properties Highlight Distinct Archetypes.
	Random Forest Modeling of Seasonal Dynamics Highlights Urbanicity as a Key Factor.
	Implications of Seasonal Dynamics for Entomological Surveillance of An. stephensi across the Horn of Africa.
	Modeling the Impact of An. stephensi Seasonality on Vector Control Measures.

	Discussion
	Data, Materials, and Software Availability
	ACKNOWLEDGMENTS
	Supporting Information
	Anchor 25



