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Abstract

Rationale & Objective: Chronic kidney disease (CKD) is a risk factor for cognitive decline, 

but evidence is limited on its etiology and morphological manifestation in the brain. We evaluated 
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the association of estimated glomerular filtration rate (eGFR) and urinary albumin-creatinine ratio 

(UACR) with structural brain abnormalities visible on magnetic resonance imaging (MRI). We 

also assessed whether this association was altered when different filtration markers were used to 

estimate GFR.

Study Design: Cross-sectional study nested in a cohort study.

Setting & Participants: 1,527 participants in the Atherosclerosis Risk in Communities (ARIC) 

Study.

Predictors: Log(UACR) and eGFR based on cystatin C, creatinine, cystatin C and creatinine in 

combination, or β2-microglobulin (B2M).

Outcomes: Brain volume reduction, infarcts, microhemorrhages, white matter lesions.

Analytical Approach: Multivariable linear and logistic regression models fit separately for each 

predictor based on a 1-IQR difference in the predictor value.

Results: Each 1-IQR lower eGFR was associated with reduced cortex volume (regression 

coefficient: −0.07 [95% CI, −0.12 to −0.02]), greater white matter hyperintensity volume 

(logarithmically transformed; regression coefficient: 0.07 [95% CI, 0.01–0.15]), and lower white 

matter fractional anisotropy (regression coefficient: −0.08 [95% CI, −0.17 to −0.01]). The results 

were similar when eGFR was estimated with different equations based on cystatin C, creatinine, 

a combination of cystatin C and creatinine, or B2M. Higher log(UACR) was similarly associated 

with these outcomes as well as brain infarcts and microhemorrhages (odds ratios per 1-IQR-fold 

greater UACR of 1.31 [95% CI, 1.13–1.52] and 1.30 [95% CI, 1.12–1.51], respectively). The 

degree to which brain volume was lower in regions usually susceptible to Alzheimer disease and 

LATE (limbic-predominant age-related TDP-43 [Tar DNA binding protein 43] encephalopathy) 

was similar to that seen in the rest of the cortex.

Limitations: No inference about longitudinal effects due to cross-sectional design.

Conclusions: We found eGFR and UACR are associated with structural brain damage across 

different domains of etiology, and eGFR- and UACR-related brain atrophy is not selective for 

regions typically affected by Alzheimer disease and LATE. Hence, Alzheimer disease or LATE 

may not be leading contributors to neurodegeneration associated with CKD.

Dementia and cognitive decline constitute a growing public health issue, causing lower 

quality of life, loss of independence, increased caregiver burden, and premature death.1 In 

addition to the heavy personal toll, estimated health care costs amount to over $150 billion 

annually in the United States, a financial strain similar to heart disease or cancer.2 Therefore, 

it is vital to identify high-risk patients and understand the underlying disease mechanisms 

to facilitate prevention and treatment strategies.3Dementia, both vascular and age-related, as 

well as cognitive decline are often accompanied or preceded by brain pathologies visible on 

magnetic resonance imaging (MRI).4–6 Certain brain regions including the entorhinal cortex, 

fusiform gyri, inferior temporal lobe, middle temporal lobe, and hippocampus are usually 

susceptible to neurodegenerative disease, including typical amnestic Alzheimer disease 

(AD) and, in later age, limbic-predominant age-related TDP-43 (Tar DNA binding protein 

43) encephalopathy (LATE).7,8 White matter hyperintensities (WMH) and lacunar infarcts 

are signs of small vessel disease, which is known to contribute to vascular dementia.9,10 

Scheppach et al. Page 2

Am J Kidney Dis. Author manuscript; available in PMC 2024 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Cerebral microhemorrhages have been shown to be more frequent in study participants with 

vascular dementia, cerebral amyloid angiopathy, and AD, depending on the hemorrhages’ 

location.11,12 An impaired microstructural integrity of white matter is a sign of subclinical 

brain damage and can be measured using diffusion tensor imaging (DTI). It is also a 

predictor for the development of brain atrophy and cognitive decline later in life.13–15

Patients with chronic kidney disease (CKD) are also at a higher risk of cognitive decline, and 

more advanced stages of CKD are associated with more severe cognitive impairment.16–18 

Previous studies have reported an association of kidney function measures with brain 

atrophy, cerebrovascular pathologies, and white matter abnormalities, but characterized the 

brain damage as primarily driven by vascular causes and its nature as being functional 

rather than structural.19–21 An evaluation of the effects of CKD on structural outcomes, 

including brain MRI pathologies in regions usually susceptible to neurodegenerative disease 

(eg, AD and LATE), has not been performed. In addition, most previous studies based 

their glomerular filtration rate (GFR) estimates on creatinine, which can be influenced by 

non-GFR determinants of creatinine such as unusual muscle mass, protein-rich diet, or 

intake of supplements containing creatine.22−25

In this study, we investigated the cross-sectional relationship of estimated GFR (eGFR) and 

urinary albumin-creatinine ratio (UACR) with structural brain abnormalities visible on MRI 

in the Atherosclerosis Risk in Communities (ARIC) Study cohort. We examined whether 

the association of these kidney function measures with brain MRI abnormalities differs for 

pathologies that are usually associated with AD and LATE compared with those typically 

related to vascular dementia. We also assessed whether the association between eGFR and 

brain MRI changes is different depending on which markers (cystatin C, creatinine, or 

β2-microglobulin [B2M])26–28 are used for the estimation of GFR.

Methods

Study Population

In 1987–1989, the ARIC cohort study recruited 15,792 participants between 45 and 64 

years old from 4 US communities (Washington County, MD; Forsyth County, NC; Jackson, 

MS; and Minneapolis, MN).29 Participants with evidence of cognitive impairment and a 

stratified random sample of the remaining participants were invited for a brain MRI scan 

at study visit 5 (2011–2013) as part of the ARIC Neurocognitive Study (NCS).10,30 For 

our cross-sectional analysis, we included all White or African American participants with 

complete data for brain MRI, eGFR, UACR, and covariates, resulting in 1,527 participants 

(Fig S1). This study was approved by the institutional review boards at all study sites (Johns 

Hopkins University, Wake Forest University, University of Mississippi Medical Center, and 

University of Minnesota), and all participants gave written, informed consent.

Exposures: Measures of Kidney Function

As exposures, we studied eGFR and UACR at ARIC visit 5. Creatinine was measured 

in plasma specimens using a modified kinetic Jaffé method, calibrated to the Cleveland 

Clinic laboratory measurements and standardized to an isotope-dilution mass spectrometry–
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traceable method.31,32 Cystatin C and B2M were also measured in plasma using a 

particle-enhanced immunonephelometric assay (Siemens Healthcare Diagnostics) followed 

by calibration and standardization.33 In the primary analysis, GFR was estimated using the 

CKD Epidemiology Collaboration (CKD-EPI) equation based on cystatin C.27 This was 

motivated by concerns that eGFR based on creatinine may be influenced by non-GFR 

determinants of creatinine. In a sensitivity analysis, associations with eGFR based on 

creatinine, a combination of creatinine and cystatin C, or B2M were also tested.26–28 For use 

of creatinine and the creatinine–cystatin C combination, the 2021 CKD-EPI equations were 

used.28 Urine albumin was measured in spot urine samples via a nephelometric method with 

either the BN-100 (Dade Behring) or the Beckman Nephelometer (Beckman Coulter).

Outcomes: Brain Imaging

Structural brain images were obtained using 3-T MRI scanners (Siemens Verio [Maryland 

study center], Siemens Skyra [North Carolina and Mississippi study centers], or Siemens 

Trio [Minnesota study center] following identical protocols.34 The scans included sagittal 

T1-weighted magnetization–prepared rapid gradient-echo (MPRAGE) imaging, axial T2 

fluid attenuation inversion recovery (FLAIR), and axial DTI pulse sequences. Brain volumes 

were estimated based on T1-weighted scans. Data processing was done at the ARIC MRI 

Reading Center at the Mayo Clinic (Rochester, MN).

Volumes of regions of interest (ROIs) were estimated using the FreeSurfer system 

(Laboratory for Computational Neuroimaging). Specifically, we evaluated the volume of 

the whole brain, total cortical region, as well as a meta-ROI, which includes the entorhinal 

cortex, fusiform gyri, inferior temporal lobe, middle temporal lobe, hippocampus, and 

amygdala. This meta-ROI is typically susceptible to neurodegenerative disease, including 

typical amnestic AD and LATE.7,8 In our analysis, it is referred to as “temporal lobe 

meta-ROI.” WMH volume was measured using a semiautomated segmentation algorithm on 

T2-weighted FLAIR images.35

Brain microhemorrhages and infarcts were identified by a trained imaging technician 

and confirmed by a radiologist. Depending on the location, microhemorrhages were 

further classified as lobar (lobar or cortical gray matter) or subcortical (subcortical or 

periventricular) microhemorrhages; infarcts were further classified as lacunar or cortical 

infarcts. Fractional anisotropy (FA) is a measurement for the directional constraint of water 

diffusion with a unitless range from 0 to 1. Mean diffusivity (MD) is a scalar measure of 

how quickly water molecules diffuse (10−4 mm2/s). Lower levels of FA and higher levels of 

MD are a sign of impaired white matter microstructural integrity.14

Covariates

The covariates used for adjustment in statistical models were chosen as known dementia risk 

factors based on previous studies.36 Age, sex, race, education (less than high school, high 

school graduate or general equivalency diploma, beyond high school), and smoking status 

(current smoker, former smoker, never smoker) were self-reported. Additional covariates 

were apolipoprotein E (APOE) ε4 genotype (presence of 0, 1, or 2 alleles; genotyping 

was performed using the TaqMan assay [Applied Biosystems]), body mass index (in kg/

Scheppach et al. Page 4

Am J Kidney Dis. Author manuscript; available in PMC 2024 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



m2), serum low-density lipoprotein cholesterol (in mmol/L, measured using an enzymatic 

method), hypertension (systolic blood pressure > 140 mm Hg, diastolic blood pressure > 90 

mm Hg, or use of antihypertensive medication), diabetes (fasting glucose level ≥ 126 mg/dL 

with serum glucose assessed by the hexokinase method, self-report of physician-diagnosed 

diabetes, or use of diabetes medication), prevalent heart failure, and prior history of stroke. 

Information about sex, race, date of birth, self-reported education, and APOE genotype was 

obtained at ARIC visit 1. For all other covariates, the measurements were taken at ARIC 

visit 5.

Statistical Analysis

This is a cross-sectional analysis with eGFR and UACR as exposures and different brain 

pathologies visible on MRI as outcomes. eGFR was modeled either as a continuous or as 

a categorical exposure variable using standard categories of eGFR: <30, 30-<60, 60-<90 

(reference category), and ≥90 mL/min/1.73 mL/min/1.73 m2. Albuminuria was modeled as 

continuous UACR.

To account for skewness in the distribution, the exposure variable UACR and the outcome 

variable WMH were log-transformed. Logistic regression was used for binary outcomes to 

calculate odds ratios (ORs) with 95% CI per 1-IQR difference in the respective predictor, or 

to calculate ORs comparing predictor categories to the reference category. Linear regression 

was used for continuous outcomes to calculate regression coefficients with 95% CI per 1-

IQR difference in the respective predictor or comparing predictor categories to the reference 

category.

Owing to the variability in the distributions and units of the continuous outcome variables, 

and in order to facilitate the comparison of their regression results, the continuous 

outcome variables were standardized before regression to have a mean of 0 and SD of 

1. Models analyzing log(UACR) as a predictor were adjusted for the covariates age, sex, 

race, education, APOE ε4, smoking, body mass index, low-density lipoprotein cholesterol 

level, hypertension, diabetes, heart failure, stroke, and cystatin C–based eGFR. For brain 

volume measurements and WMH volume, models were further adjusted for total intracranial 

volume.

All statistical models were weighted to account for potential bias introduced by the stratified 

random sampling approach used to select participants for a brain MRI scan. We applied 

inverse probability weighting, using weights inversely proportional to the sampling weights. 

Potential interactions between exposures and race were evaluated by running separate 

models including interaction terms for cystatin C–based eGFR and race, as well as UACR 

and race.

In a sensitivity analysis, we evaluated the association of structural brain abnormalities 

visible on MRI with eGFR calculated using creatinine alone, a combination of creatinine 

and cystatin C, or B2M. P < 0.05 was considered statistically significant, and tests for 

significance were 2-tailed. All statistical analyses were performed using Stata Version 15.1 

(StataCorp LLC).
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Results

Participant Characteristics

Among the 1,527 participants in our analysis, the mean age was 76.4 ± 5.3 (SD) years, 

879 participants (57.6%) were women, and 417 (27.3%) were African American. Among all 

participants, 391 (25.6%) had 1 and 40 (2.6%) had 2 APOE ε4 risk alleles. In the assessment 

of cognitive status at the study visit, 926 (60.6%) of the participants had no cognitive 

impairment, 525 (34.4%) had mild cognitive impairment, and 76 (5.0%) had dementia. 

Lower eGFR was associated with a higher prevalence of hypertension, diabetes, heart 

failure, and previous stroke. Participants with an eGFR < 30 mL/min/1.73 m2 also showed 

higher levels of albuminuria compared with the rest of the study cohort (Table 1). In the 

study population, the mean brain volume was 1,016.0 ± 108.7 cm3, and cortex volume was 

399.1 ± 43.0 cm3. Brain MRI scans showed infarcts in 398 (26.1%) and microhemorrhages 

in 371 (24.3%) participants (Table 2).

Association of Kidney Function Measures With Brain Atrophy

Lower cystatin C-based eGFR was associated with lower brain cortex volume, with a 

regression coefficient of −0.07 (95% CI, −0.12 to −0.02) per 1-IQR lower eGFR (equivalent 

to 26.10 mL/min/1.73 m2). The association of decreased eGFR with brain atrophy in 

temporal lobe meta-ROIs, which identify regions of the cortex usually susceptible to 

neurodegenerative disease, including AD and LATE, had a regression coefficient of −0.05 

(95% CI, −0.11 to 0.01) per 1-IQR lower eGFR. This effect size, though not statistically 

significant, was similar in direction and magnitude to that of the cortex areas excluding 

these ROIs (regression coefficient per 1-IQR lower eGFR, −0.07 [95% CI, −0.12 to −0.03]) 

(Table 2). When assessing cortex volume according to standard eGFR categories, lower 

eGFR was also associated with brain cortex atrophy but was only statistically significant 

for participants with eGFR < 30 mL/min/1.73 m2 (regression coefficient: −0.21 [95% CI, 

−0.36 to −0.06]) compared with the reference group with an eGFR of 60−<90 mL/min/1.73 

m2. The effect size was again similar in direction and magnitude for atrophy in temporal 

lobe meta-ROIs (regression coefficient: −0.16 [95% CI, −0.35 to 0.02]; not statistically 

significant) compared with the remaining cortical regions (regression coefficient: −0.22 

[95% CI, −0.37 to −0.07]) (Table 3).

Higher levels of albuminuria were similarly related to lower brain volume, both in temporal 

lobe meta-ROIs and cortex areas excluding temporal lobe meta-ROIs; for log(UACR), the 

regression coefficients per 1-IQR-fold (equivalent to 1.26-fold) greater value were similar to 

the regression coefficients per 1-IQR lower eGFR (Table 2).

Association of Kidney Function Measures With Macrovascular Damage

Associations of albuminuria with macrovascular damage were expressed in adjusted OR 

(AOR) per 1-IQR-fold greater log(UACR). Participants with higher levels of albuminuria 

were more likely to have prevalent macrovascular brain damage, such as brain infarcts 

(AOR, 1.31 [95% CI, 1.13–1.52]). This could also be observed for the 2 subtypes of brain 

infarcts evaluated in this study: cortical infarcts (AOR, 1.27 [95% CI, 1.05–1.53]) and 

lacunar infarcts (AOR, 1.18 [95% CI, 1.00–1.39]). In addition, there was an association 
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between higher levels of albuminuria and increased odds of brain microhemorrhages in 

general (AOR, 1.30 [95% CI, 1.12–1.51]) and subcortical microhemorrhages in particular 

(AOR, 1.32 [95% CI, 1.13–1.54]). For lobar microhemorrhages, the effect estimate was 

similar in direction and magnitude but not statistically significant (Table 2).

Although the effect estimates were not statistically significant, participants with lower eGFR 

had nominally greater odds of prevalent brain infarcts of any kind and lacunar infarcts (but 

not cortical infarcts) as well as microhemorrhages of any kind and lobar microhemorrhages 

(but not subcortical microhemorrhages) (Table 2).

Association of Kidney Function Measures With Microvascular Abnormalities

Reduced eGFR and greater albuminuria showed similar associations with microvascular 

white matter pathologies in conventional MRI and DTI (associations are expressed as 

regression coefficients per 1-IQR lower eGFR or per 1-IQR-fold greater UACR). The 

volume of WMH, which is a sign of brain small vessel disease, was higher in patients 

with lower eGFR (regression coefficient, 0.07 [95% CI, 0.01–0.15]) and higher log(UACR) 

(regression coefficient, 0.09 [95% CI, 0.03–0.15]). Impaired microstructural integrity of 

white matter indicates subclinical brain damage and is reflected in lower levels of FA 

and higher levels of MD in DTI measurements. Lower white matter FA was associated 

with lower levels of eGFR (regression coefficient, −0.08 [95% CI, −0.17 to −0.01]) and 

higher levels of log(UACR) (regression coefficient, −0.09 [95% CI, −0.16 to −0.02]). White 

matter MD was increased for both lower eGFR and higher log(UACR), but only statistically 

significant for log(UACR) (regression coefficient, 0.11 [95% CI, 0.05 to 0.17]) (Table 2).

In the analysis of standard eGFR categories, white matter FA was also lower in participants 

with eGFR < 30 mL/min/1.73 m2 than in those in the reference group (regression 

coefficient, −0.30 [95% CI, −0.59 to −0.01]) (Table 3).

Sensitivity Analyses

To compare kidney function measurements based on different biomarkers, we repeated 

the analysis for continuous eGFR, but instead of using a cystatin C–based eGFR, we 

used GFR estimated with creatinine, a combination of creatinine and cystatin C, or B2M. 

The regression results for these other GFR estimates and their associations with brain 

volume, infarcts, microhemorrhages, and white matter lesions were similar in direction and 

magnitude to eGFR based on cystatin C, as was used in the main analysis (Table 2; Table 

S1).

In the analysis of interaction between kidney function measures and race, the interaction 

terms of cystatin C–based eGFR or log(UACR) with race were not statistically significant 

(Table S2).

Discussion

This study of 1,527 community-based participants shows that kidney function measures are 

significantly associated with markers of neurodegeneration and small vessel disease visible 

on brain MRI. These associations were robust against adjusting for known vascular risk 
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factors. Lower levels of eGFR and higher levels of UACR were associated with a reduction 

of cortical brain volume, and this association was as strong for cortical regions susceptible 

to AD and LATE as in the rest of the cortex. Both lower eGFR and higher UACR were 

also associated with greater WMH volume, a sign of small vessel disease in the brain, 

and impaired white matter microstructural integrity visible on DTI measurements, such 

as reduced white matter FA. Beyond that, the participants with higher levels of UACR 

had greater odds of ischemic brain damage, such as lacunar and cortical infarcts and 

of subcortical microhemorrhages. Increased UACR was also associated with higher MD, 

another sign of microstructural white matter damage. The effect sizes were generally similar 

in direction and magnitude when GFR estimation was based on cystatin C, creatinine, a 

combination of creatinine and cystatin C, or B2M.

The relationship between albuminuria and structural brain pathologies is supported by 

previous studies, which have found associations with reduced brain volume, increased 

WMH volume, and microstructural white matter damages in patients with CKD, diabetes, or 

other cardiovascular risk factors.20,37–42 Our study adds an analysis of a large, biracial 

population-based sample, finding a significant correlation of UACR with white matter 

lesions, microhemorrhages, and infarcts. This contributes further evidence to previous 

studies linking albuminuria to cerebral small vessel disease.20,43 An association of UACR 

with brain atrophy was visible in the cortex but was not selective for regions typically 

affected by AD and LATE. Therefore, etiologies other than AD or LATE, such as vascular 

damage, are likely to play a leading role as pathomechanisms for cognitive decline in 

patients with albuminuria.

Compared with albuminuria, the evidence linking eGFR to MRI markers of 

neurodegeneration is less clear. Some studies reported that albuminuria but not eGFR was 

associated with WMH and brain atrophy affecting both grey and white matter.38,41 Others 

found marginal associations of eGFR with brain volume and white matter lesions, which 

were statistically significant at first but did not persist after adjusting for other factors.44 Yet 

most previous studies reported significant associations of eGFR with brain atrophy,40,45,46 

microvascular damage,20,21 and impaired white matter microstructural integrity,39,40 which 

is consistent with our findings.

Mixed results of previous studies regarding the association of eGFR and brain pathologies 

visible on MRI may be explained by small sample sizes in some analyses and different 

study populations regarding age, nationality, severity of cognitive impairment, etiology 

of CKD, duration of CKD, as well as variation in severity of CKD in the cohort. It is 

noteworthy that all but one of these studies used GFR estimations based on serum creatinine, 

which can potentially be influenced by muscle mass, meat-based diet, or creatine dietary 

supplements.22–25 Older people are more likely to have less than average muscle mass due 

to chronic illness, leading to low creatinine values and potential overestimation of GFR, 

which may blur associations with adverse outcomes. By contrast, markers such as cystatin C 

or B2M may be less affected by such non-GFR determinants of creatinine.28,47

For our main analysis, we therefore used eGFR based on cystatin C and performed 

a sensitivity analysis comparing the results with estimations based on creatinine, a 
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combination of creatinine and cystatin C, and B2M. Comparability was ensured by 

standardizing all changes of eGFR to their respective IQRs. However, the associations 

between eGFR and morphological brain abnormalities for cystatin C–based GFR estimates 

were similar in direction and magnitude compared with the estimates based on other 

biomarkers. We therefore conclude that the association between eGFR and MRI signs of 

neurodegeneration in our cohort is not influenced by the way GFR is estimated.

Compared to previous studies, our analysis adds a more detailed breakdown of affected 

brain regions. The effect size for the association of lower eGFR and reduced brain 

volume was similar in direction and magnitude for brain regions usually susceptible to 

AD and LATE and other regions of the cortex. The generalized atrophy pattern, which we 

observed in association with both eGFR and UACR, was not selective for regions typically 

affected by AD and LATE. This suggests that AD and LATE may not be leading factors 

in the development of brain pathologies related to CKD but may coexist with vascular 

etiologies of reduced brain volume. Our analysis shows statistically significant associations 

of decreased kidney function with brain atrophy, microvascular brain damage, and impaired 

white matter integrity. Hence, CKD appears to be related to various domains of macro- 

and microstructural brain damage suggestive of a multifactorial pathomechanism in the 

development of neurodegeneration and brain small vascular disease.

The strengths of our study include a large population-based sample with both White 

and African American participants, enhancing the generalizability of the results, as well 

as use of variety of filtration markers for estimating GFR and comprehensive brain 

imaging techniques covering different areas of morphological brain damage. However, this 

study also has limitations. The cross-sectional study design does not allow for inference 

about longitudinal effects. Although a one-time measurement of brain volume relative to 

intracranial volume has been used in the previous literature to measure brain atrophy, the 

rate of brain atrophy over time cannot be assessed.48 Conducting MRI scans on only a 

part of the ARIC cohort at study visit 5 (all participants with cognitive impairment plus a 

stratified random sample of the remaining participants) may introduce potential selection 

bias. This was addressed by using inverse probability weighting. B2M can be measured 

by different methods, such as immunoassay, nephelometry, or turbidimetry; due to a lack 

of standardization, there is discordance between these methods.49 However, we would not 

expect this to affect our analysis because all measurements were performed with the same 

immunonephelometric assay followed by calibration and standardization.33

A principal objective of ARIC-NCS is to characterize the morphological manifestation 

of dementia and cognitive decline. This study builds upon previous reports, which 

linked kidney function measures to dementia and cognitive decline,16–18 and confirms 

the association of UACR and eGFR with structural brain damage while also providing 

new information about its etiology as well as its localization in the brain. Future studies 

need to collect longitudinal data and confirm predictors as risk factors to increase clinical 

applicability.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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PLAIN-LANGUAGE SUMMARY

Cognitive decline is a major public health issue and common in patients with 

kidney disease. To better understand this condition, we measured kidney function and 

albuminuria in 1,527 participants from the Atherosclerosis Risk in Communities Study. 

The participants were also scanned for different types of brain damage using magnetic 

resonance imaging. We found that low kidney function and albuminuria are associated 

with various structural brain pathologies, such as brain atrophy, microvascular damage, 

and white matter defects. These results confirm the connection between kidney function 

and albuminuria with brain damage and provide new information about its cause and its 

localization in the brain.
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