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Abstract

Purpose—Understanding the three-dimensional anatomy of percutaneous intervention in 

prostate cancer is essential to avoid complications. Recently, attempts have been made to use 

machine learning to automate the segmentation of functional structures such as the prostate 

gland, rectum, and bladder. However, a paucity of material is available to segment extracapsular 

structures that are known to cause needle deflection during percutaneous interventions. This 

research aims to explore the feasibility of the automatic segmentation of prostate and extracapsular 

structures to predict needle deflection.

Methods—Using pelvic magnetic resonance imagings (MRIs), 3D U-Net was trained and 

optimized for the prostate and extracapsular structures (bladder, rectum, pubic bone, pelvic 

diaphragm muscle, bulbospongiosus muscle, bull of the penis, ischiocavernosus muscle, crus 

of the penis, transverse perineal muscle, obturator internus muscle, and seminal vesicle). The 

segmentation accuracy was validated by putting intra-procedural MRIs into the 3D U-Net to 

segment the prostate and extracapsular structures in the image. Then, the segmented structures 

were used to predict deflected needle path in in-bore MRI-guided biopsy using a model-based 

approach.

Results—The 3D U-Net yielded Dice scores to parenchymal organs (0.61–0.83), such as 

prostate, bladder, rectum, bulb of the penis, crus of the penis, but lower in muscle structures (0.03–

0.31), except and obturator internus muscle (0.71). The 3D U-Net showed higher Dice scores for 

functional structures (p <0.001) and complication-related structures (p <0.001). The segmentation 

of extracapsular anatomies helped to predict the deflected needle path in MRI-guided prostate 

interventions of the prostate with the accuracy of 0.9 to 4.9 mm.

Conclusion—Our segmentation method using 3D U-Net provided an accurate anatomical 

understanding of the prostate and extracapsular structures. In addition, our method was suitable for 
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segmenting functional and complication-related structures. Finally, 3D images of the prostate and 

extracapsular structures could simulate the needle pathway to predict needle deflections.
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Introduction

Transperineal percutaneous interventions, such as biopsies, brachytherapy, or ablative 

therapies, against prostate cancer assumes that the treatment devices are placed straight 

through template guides and in relation to the anatomy of the intended targets [1,2]. A 

deviation from the intended straight path leads to the inaccurate placement of devices, 

which causes ineffective diagnoses and treatments. For a prostate biopsy, failure to collect 

significant tissue that is detected during magnetic resonance imaging (MRI) or transrectal 

ultrasonography translates into a lower diagnostic yield and delays the appropriate treatment 

[3]. For brachytherapy involving the placement of radioactive seeds to optimally irradiate the 

tumor and protect the healthy tissue, deviation from the planned device paths means fewer 

treatment effects and more toxicity to the healthy tissues [4]. Lastly, in ablative therapies, 

where the resection probe is placed straight through the guiding template, deviation from the 

straight path can cause complications in healthy tissue [5]. Therefore, an attempt to predict 

needle deflection using the pre-procedural or intra-procedural MRI avoids complications due 

to the needle intervening in extra-prostate organs [6].

A transperineal biopsy is anecdotally known to be subject to needle deflection compared to 

transrectal biopsies since the needle must pass through skin, subcutaneous fat, and pelvic 

floor muscles [7]. Moreover, there has been documented evidence that devices deflect more 

in transperineal procedures than in transrectal approaches [8]. Blumenfeld et al. reported 

that needle deflection contributed to a targeting error of 3.2 mm to 8.7 mm depending on 

tissue type, and 0.6 mm to 1.1 mm in with an asymmetrically beveled tip [9]. Moreira 

et al. identified that needles deflect the most in extracapsular procedures using an MRI, 

especially the pelvic diaphragm, bulbospongiosus, and bulb of the penis. In fact, clinicians 

are trained to estimate the needle deflection near the target by mentally extrapolating 

the needle deflection at extracapsular structures [10]. This unspoken process refutes the 

engineering researchers’ assumption that needles mostly deflect in the prostate gland. There 

has been, however, no research conducted to objectively and computationally predict the 

needle deflection path and suggest to steer to counter the deflection helping physicians to 

aim lesion in percutaneous prostate intervention.

Therefore, the objective of this paper is to investigate the feasibility of multi-class 

segmentation of the prostate and extracapsular structure and use the segmentation results to 

computationally predict deflected needle paths by the model-based approach. A multi-class 

segmentation method for eight pelvic structures has been proposed for preoperative planning 

of radiotherapy. However, multi-organ segmentation has not been applied to segment extra-

prostatic anatomies nor results of the multi-organ segmentation has never been applied 

to percutaneous needle intervention of the prostate. In this paper, we will validate the 
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deep-learning-based method to segment extracapsular structures that are known to impact 

needle defection during percutaneous interventions. Second, we will present highlighted 

examples of MRI-guided cryotherapy where needle deflection is predicted using the detailed 

extracapsular segmentation labels produced in the first step.

Material and methods

Ethics statement

All procedures performed in the study were performed following the 1964 Declaration of 

Helsinki and were approved by the Brigham and Hospital’s institutional review board (IRB) 

and were anonymized following HIPPA guidelines. (License No.2000P001520) This study 

was performed retrospectively using consecutive patients’ preprocedural and intraprocedural 

MRI image data sets. Informed consent was obtained from all individual participants who 

were included in the study.

Imaging

Intra-procedural T2-weighted MRIs from in-bore MRI-guided interventions were used, and 

data from 73 patients were collected between November 2016 and May 2017 for training in 

deep-machine learning as part of automatic segmentation of the prostate and extracapsular 

structures (ASPE) [11]. In addition, MRIs from 20 subjects who underwent in-bore MRI-

guided biopsy between December 2019 and December 2021 were separately collected to 

validate the ASPE. The biopsies were performed in a 3-T wide-bore MRI (Siemens Verio 

3T; Siemens Healthcare, Erlangen, Germany) or a ceiling-mounted 3-T wide-bore MR 

imager (IMRIS/Siemens Verio; IMRIS, Minnetonka, Minn).

Manual segmentation

An MRI was used to segment the prostate and extracapsular structures. The extracapsular 

structures were defined as periprostatic structures containing the bladder, rectum, pubic 

bone, pelvic diaphragm muscle, bulbospongiosus muscle, bull of the penis, ischiocavernosus 

muscle, crus of the penis, transverse perineal muscle, obturator internus muscle, and seminal 

vesicle in this study. We prepared the dataset of the MRI segmentation as inputs for 

supervised learning using a convolutional neural network model.

The axial T2-weighted MRI was selected as it contains the prostate and all extracapsular 

structures in the pelvis and because most current research literature focuses on automatic 

segmentation using a T2-weighted MRI [12]. All annotations were performed on a slice-by-

slice basis using a segmenting tool (3D Slicer version 4.11; Brigham and Women’s Hospital, 

Boston, MA, USA) by an experienced urologist for the training of machine learning and 

validation of the ASPE method [13].

Post-processing

Only subjects with labeled data for each structure in the pelvic region from the MRI image 

dataset were used for training and validation to evaluate and create a robust estimate of the 

model’s performance. The data were divided into training, validation, and testing sets using 

stratified sampling, and there was no patient overlap between the sets. Each image of the 
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prostate and extracapsular structures was prepared in the nii.gz format, and the segmentation 

data were labeled before being fed into the network.

Multi-organ segmentation for extra-capsular structures

Our segmentation approach uses a 3D U-Net from the Medical Open Network for Artificial 

Intelligence (MONAI) framework to segment the prostate and extracapsular structures [14]. 

An overview of ASPE method is provided in Figure 1.

The 3D U-Net enabled the seamless segmentation of 3D volumes with high accuracy and 

performance, and the neural network was composed of a contractive and expanding path that 

aims to build a bottleneck in its center by combining convolution and pooling operations 

[15].

The training was conducted on a desktop computer with an NVIDIA GTX 1660 16GB 

graphics processing unit. The softmax function was used as the activation function in the 

output layer and was associated with the input image data of the MRIs. The loss function 

was measured by the cross-entropy error from the label data of manual segmentation and the 

label data of segmentation using the ASPE method, and the weights were optimized using 

the adaptive moment optimization (Adam) optimizer, as provided by PyTorch [16].

When fine-tuning the hyperparameters, the training and test results were compared to 

evaluate the best values of the loss function and the Dice score using 3D U-Net with the 

Adam optimizer and 500 epochs. The epochs were only added up to 1000 step-by-step to 

evaluate the best values if the loss function and Dice score were inadequate.

Verification

After the model was created in ASPE, additional 20 cases in which the prostate and 

extracapsular structures were included in MRI were input into the automatic segmentation 

module in the prostate and extracapsular structures after training for validation, and the 

result of the segmentation that was obtained from the label data of each structure is shown in 

Fig. 2.

Our verification study evaluated the following six metrics to assess the performance of the 

segmentation: Dice score [17], true positive rate (TP), true negative rate (TN), false positive 

rate (FP), false negative rate (FN), and 95 % Hausdorff distance (HD) [18]. These metrics 

were assessed by calculating the voxels between manual and automatic segmentation data.

Statistical analysis

First, the accuracy of segmentation prostate gland using ASPE was compared against Slice 

Tracker using 40 MRIs [19]. Here, the accuracy was defined as the percentage of correct 

answers to all segmentation predictions, and the precision was defined as the ratio of manual 

segmentation to the segmentation results of the proposed method.

Second, an analysis of variance (ANOVA) was performed to investigate if significant 

differences in the metrics exist between subgroups of the anatomies. Specifically, we divided 

the prostate and extracapsular structures into two subgroups, namely muscle tissues vs. 
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parenchymal organs, and organs related to complications by percutaneous intervention vs. 

organs not related to complications were classified to compare the accuracy of automatic 

segmentation. The parenchymal organs were defined as the prostate, rectum, bladder, bulb 

of penis, crus of the penis, pubic bone and seminal vesicle. Organs related to complications 

were defined as the prostate, bladder, and rectum, and organs related to non-complications 

were defined as something other than the former.

All analyses were performed in combination with JMP Pro 13 software for Mac (version 

13.0.0; SAS Institute Inc., Cary, NC, USA). A p value of < 0.05 indicated a statistical 

significance, and all p values were two-tailed [20].

Simulation to predict the needle deflection

A convolutional neural network using the Keras deep learning library and TensorFlow was 

implemented to predict the needle deflection from the segmented structures. The needle 

deflection model was trained using 287 needle deflection trajectories from 18 prostate 

cryoablation cases and tested in four cryoablation cases as well as the segmentation results 

produced from the proposed method. The assumption was made that needles are inserted as 

deep as the MRI-visible target. The distance between the predicted path and the deflected 

path was measured at the height of the tip for the predicted needle path using horizontal 

images of MRI, and the error was evaluated.

Result

Dice score, TP, TN, FP, and FN after training

2220 images from 73 patients were distributed for training, validation, and test sets, 

respectively, for machine learning in Table 1.

The verification results showing the performance of segmenting prostatic and extracapsular 

structures are presented in Table 2 comprehensively, in and Fig. 3 to compare the Dice score 

of the anatomies.

A representative result of the segmentation in the verification study is shown in Fig. 4. 

Similarly, the 3D reconstruction of the segmented data using the anatomies with Dice score 

of 0.8 or higher (prostate, rectum, bladder, pubic bone, obturator internus muscle, bulb of the 

penis, and crus of the penis) is presented in Fig. 5.

Statistical analysis

The ASPE method significantly reduced the processing time for segmentation (Slicer 

Tracker vs. ASPE; 84 sec vs. 5 sec, p < 0.001), the TP (71.1 % vs. 78.9 %, p =0.002) 

was significantly higher, and the FN (27.3 % vs. 21.1 %, p = 0.001) and 95 % HD (5.1 mm 

vs. 4.9 mm, p = 0.023) was lower than the Slicer Tracker. Hence, the accuracy (0.81 vs. 

0.86, p = 0.001), the precision (0.89 vs. 0.94, p = 0.029) and the Dice score (0.79 vs. 0.82, p 
< 0.001) were improved significantly in the ASPE method group (Table 3).
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The Dice score of parenchymal organs was higher than muscle tissues in Table 4. When 

analyzing the organs related to procedural complications as in Table 5, the Dice score was 

higher in organs related to complications than ones not related to complications.

Simulation to predict the needle deflection

The model was retrospectively tested in four prostate cryoablation cases. In four cases, the 

model was observed to generate predicted needle deflection paths that was typically toward 

the direction of deflection observed from the inserted needle in the cases (Fig. 6). The needle 

in the predicted path and the deflected path penetrated the pelvic diaphragm muscle or the 

bulb of the penis, the error between the predicted path and the deflected path was 0.9 mm to 

4.9 mm at the height of the tip for the predicted path (Table 6).

Discussion

This study is the first to report that the proposed automatic segmentation accurately 

identified and segmented the prostate and extracapsular structures from an MRI. In addition, 

the ASPE method we presented proved to be suitable for the automatic segmentation of 

the prostate, parenchymal organs and complication-related structures. Finally, we presented 

highlighted images where the needle deflection was predicted using automatic segmented 

labels of extracapsular structures.

A transperineal prostate needle biopsy is the standard test for patients with elevated 

prostate specific antigen levels among percutaneous interventions. As randomized trials have 

confirmed the superiority of MRI-guided prostate biopsies to detect significant cancers, 

MRIs could be used as a triage test to lead patients with significant prostate cancer 

to the proper treatment strategy [21,22]. Likewise, excellent oncological outcomes of 

brachytherapy and cryotherapy have been reported for significant prostate cancer, and it 

is one of the standard treatments for low- and intermediate-risk prostate cancers [23,24]. 

Hence, the accurate insertion of the needle into the targeted lesion of the prostate gland is 

essential for diagnosing and treating significant prostate cancer, and a 3D understanding of 

anatomy using pre-procedural MRI while predicting needle deflection leads to accurate 

needle placement in the target lesion [25]. Moreover, the 3D construction of pelvic 

structures in every detail may accelerate the spatial recognition of the physicians’ prostate 

and its surrounding structures, minimizing complications and improving the patient’s quality 

of life after the procedures [26]. Complications that are associated with prostate biopsy, 

brachytherapy, and ablation therapy have been reported as 3.1%, 5%, and 19%, respectively, 

and the invasion of the tip of the needle into extracapsular structures by needle deflection 

causes serious complications, such as a rectal injury, severe infection, bladder injury, 

bleeding, and associated urinary retention [27–29]. Despite the benefits of 3D images of the 

prostate and extracapsular structures, preprocedural has taken a great deal of time to segment 

these structures in MRI. Furthermore, few attempts exist to automate multi-segmentation 

for prostate and extracapsular structures in percutaneous interventions. Moreover, clinical 

challenges using multi-segmentation have not been researched comprehensively to predict 

needle deflection.
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Regarding the multi-class segmentation method, Kuisma et al. reported a multi-organ 

segmentation method using an MRI and reported Dice scores of the prostate (0.84), bladder 

(0.92), and rectum (0.86) [30]. Furthermore, Nuo et al. reported that a multi-task edge-

recalibrated network attains superior performance of the quantitative Dice score for seminal 

vesicle (76.4 %) [31]. This paper, however, handles more detailed extra-prostatic tissue than 

these prior-art.

This study relates to prior arts that argue the clinical impact of needle deflection caused by 

anatomical structures within the pelvis in percutaneous intervention. The prior prediction 

study for needle deflection focused on biomechanical modeling within the prostate and 

physically modeling the needle-tissue interactions within the prostatic tissues. Du et al. 

reported that needle-tissue interaction was modeled by a series of nonlinear springs and the 

needle deflection was predicted with the Rayleigh-Ritz method [32]. Patil et al. reported that 

by developing a new needle steering system that could automatically reach the target in a 

3D environment, the needle could be delivered to the target with an average error of 3 mm 

or less [33]. Stone et al. reported a straight sampling method in the majority of the prostate 

gland by combining a 3-point trocar tip on the needle with a 20 vet tip on the cutting cannula 

[34]. The current study is the first attempt to use extra-prostatic segmentation as a material 

for a data-driven approach, not a biomechanical approach to study needle-tissue interaction, 

to simulate needle deflection. We anticipate the data-driven approach is potentially more 

clinically feasible and realistic than the biomechanical modeling approach or approaches 

focusing on intra-prostatic tissue and needle-tissue interactions [35,36]. Our decision to 

focus on a deflection in extra-prostatic tissues grew out of our real clinical experience with 

MRI-guided biopsies where the retrospective analysis indicated that it is not intra-prostateic 

tissue, but extra-prostatic tissue that has the most impact on needle deflection [10].

This study has several limitations. First, it was a non-randomized observational study with 

a retrospective design. Therefore, there was a risk of inherent selection bias in the training 

and validation datasets. Second, our study was conducted using a single MRI machine at a 

single institution. Therefore, it has not been verified using images taken by other types of 

MRI equipment. In this study, the needle tip was displaced differently from the expected 

position in the prostate puncture by needle deflection. In actual, the needle penetrated 

the pelvic diaphragm muscle or bulb of the penis, and needle deflection occurred. The 

striated muscles related to urinary function and sexual function, such as transverse perineal 

muscle, bulbospongiosus muscle, pelvic diaphragm muscle, and ischiocavernosus muscle, 

have individual differences in mass and development, and there were several variations. 

The abundant variations in muscle tissue may be the factors that reduce the accuracy of 

segmentation using machine learning. Nevertheless, the pelvic muscles are tissues that 

constitute the urethra in front of the prostate and are likely to be penetrated by a needle 

that has inserted transperineally. Since these muscles can be factors that cause needle 

deflection, improving the accuracy of segmentation of these muscle tissues using the ASPE 

method may help identify the tissue that causes needle deflection. Furthermore, the label 

data of muscle tissue with improved Dice scores may contribute to the elucidation of 

tissue-needle interactions in percutaneous prostate needle interventions and to predict the 

needle deflection. Therefore, our results should be interpreted with caution.
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Despite these limitations, the ASPE method automatically reconstructed the prostate, 

rectum, bladder, bulb of the penis, crus of the penis, obturator internus muscle, and 

pubic bone, which were important for the needle to enter the target lesion. Our approach 

was suitable for segmenting the prostate, parenchymal structures, and complication-related 

structures and could help predict interference with these important structures by the needle.

Conclusions

In conclusion, the ASPE method builds machine-learned modules from MRIs, and these 

modules automatically segment the prostate and extracapsular structures. The validation 

results showed that the segmentation method was suitable for segmenting functional 

structures and structures involved in complications.
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Fig. 1. 
The overall framework of automatic segmentation for the prostate and extracapsular 

structures. Digital imaging and communications in medicine data were converted to the 

Neuroimaging Informatics Technology Initiative (NIfTI) images and manually segmented 12 

structures. The training module was constructed by inputting the image data and label data 

of each of the 12 structures into the 3D U-Net as training data. Inference learned the label 

data by inputting the NIfTI image into the module of 12 structures
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Fig. 2. 
Segmentation results by automatic segmentation of prostate and extracapsular structures 

(ASPE) method. Label data obtained by the ASPE method for individual prostate and 

extracapsular structures are presented in figures a–l

Kobayashi et al. Page 12

Int J Comput Assist Radiol Surg. Author manuscript; available in PMC 2024 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Analysis of variance in the Dice score of prostate and extracapsular structures. The Dice 

scores in the prostate, bulb of the penis, crus of the penis, obturator internus muscle, rectum, 

bladder, and pubic bone were significantly higher than in other extracapsular structures
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Fig. 4. 
Clinical case using automatic segmentation of the prostate and extracapsular structures 

method (case number 16, 61-year-old man, prostate specific antigen values 4.8 ng/dL). 

Figure in the top and bottom left, marked as a contained correct segmentation of the 

prostate, bladder, pubic bone, obturator internus muscle, rectum, bulb of the penis, and crus 

of the penis. Figure in the top and bottom right marked as b contained unsegmented areas 

of ischiocavernosus muscle, bulbospongiosus muscle, transverse perineal muscle, and pelvic 

diaphragm muscle (wavy line)
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Fig. 5. 
A 3D image with 0.80 or more Dice score (Case number 20, 79-year-old man, prostate 

specific antigen values 5.4 ng/dL). Label data obtained by automatic segmentation of the 

prostate and extracapsular structures were reconstructed three-dimensionally
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Fig. 6. 
A segmentation label was automatically created using the MRI of case no.4, and 

needle deflection was predicted. a Horizontal view: The light blue circle represented the 

preoperatively planned path, the light green circle represented the needle path including 

prediction of needle deflection, and the yellow circle represented the deflected path through 

which the actual needle passed. b Sagittal view: The deflected path deviated from the 

planned path. c Coronal view: The predicted path overlapped with the deflected path, and 

we were able to predict the needle deflection. d 3D view: We visualized three paths in a 

3D image: the blue structure was the prostate, the brown structure was the pelvic diaphragm 

muscle, the green structure was the bulb of the penis
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Table 1.

Training result of 3D U-Net using automatic segmentation of prostate and extracapsular structures method.

Data split; training / validation / test, n Loss coefficient Dice score

Prostate 58 / 10 / 5 0.10 0.83

Rectum 58 / 10 / 5 0.15 0.76

Bladder 58 / 10 / 5 0.22 0.81

Bulb of penis 58 / 10 / 5 0.14 0.82

Bulbospongiosus muscle 48 / 5 / 3 0.17 0.44

Crus of penis 58 / 10 / 5 0.10 0.84

Obturator internus muscle 58 / 10 / 5 0.10 0.84

Pelvic diaphragm muscle 58 / 10 / 5 0.10 0.60

Transverse perineal muscle 58 / 10 / 5 0.2 0.15

Ischiocavern muscle 58 / 10 / 5 0.17 0.55

Pubis bone 58 / 10 / 5 0.10 0.73

Seminal Vesicle 58 / 10 / 5 0.2 0.43
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Table 3.

Comparison the accuracy of the prostate between Slicer Tracker and MONAI segmentation.

Slice Tracker [19] (n=40) Median (IQR) ASPE (n=40) Median (IQR) p

Processing time, sec 840 (79–90) 5 (5–5) <0.001*

Dice score 0.79 (0.44–0.86) 0.82 (0.77–0.86) <0.001*

TP rate, % 71.1 (29.2–87.1) 78.9 (71.5–83.9) 0.002*

TN rate, % 90.1 (85.5–98.5) 94.2 (90.3–97.8) 0.064

FP rate, % 7.5 (0.73–14.4) 5.8 (90.3–97.8) 0.11

FN rate, % 27.3 (11.8–69.3) 21.1 (16.1–28.5) 0.001*

Accuracy 0.81 (0.63–0.87) 0.86 (0.82–0.89) <0.001*

Precision 0.89 (0.85–0.95) 0.94 (0.89–0.97) 0.29

95% HD, mm 5.1 (3.8–13) 4.9 (3.8–6.0) 0.023*

IQR; interquartile range, ASPE; automatic segmentation of prostate and extraprostatic structure, TP; true positive, TN; true negative, FP; false 
positive, FN; false negative, HD; Hausdorff distance,
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Table 4.

Comparison the accuracy between muscle tissue and parenchymal organ.

Median (IQR) Muscle tissue n=80 Parenchymal organ n=156 p

Dice score 0.32 (0.11–0.56) 0.68 (0.53–0.79) <0.001*

TP rate, % 22.1 (6.4–55.1) 58.8 (45.4–77.3) <0.001*

TN rate, % 99.4 (98.9) 98.3 (94.9–99.6) <0.001*

FP rate, % 0.6 (0.2–1.1) 1.7 (0.5–5.1) <0.001*

FN rate, % 72.9 (44.9–93.6) 41.2 (22.7–54.6) <0.001*

95% HD, mm 9.0 (5.8–13.4) 5.2 (4.0–8.0) <0.001*

IQR; interquartile range, TP; true positive, TN; true negative, FP; false positive, FN; false negative, HD; Hausdorff distance
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Table 5.

Comparison the accuracy between organs related to non-complications and complication.

Median (IQR) Non-complication n=156 Complications n=80 p

Dice score 0.45 (0.24–0.63) 0.78 (0.68–0.84) <0.001*

TP rate, % 40.3 (18.7–58.8) 73.8 (53.9–83.3) <0.001*

TN rate, % 99.1 (97.4–99.6) 98.9 (96.7–99.6) 0.11

FP rate, % 0.9 (0.4–2.6) 1.1 (0.4–3.3) 0.11

FN rate, % 59.7 (41.2–81.3) 26.2 (16.7–46.1) <0.001*

95% HD, mm 7.2 (4.6–11.0) 4.9 (4.0–7.8) 0.18

IQR; interquartile range, TP; true positive, TN; true negative, FP; false positive, FN; false negative, HD; Hausdorff distance
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Table 6

Predict the needle deflection.

Case No. Type of penetrating tissue Distance between the predicted path and the deflected path, [mm]

1 Pelvic diaphragm muscle 1.7

2 Bulb of the penis 4.9

3 Pelvic diaphragm muscle 3.8

4 Pelvic diaphragm muscle 0.9
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