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Abstract

The use of deep machine learning (ML) in protein structure prediction has made it possible to 

easily access a large number of annotated conformations that can potentially compensate for 

missing experimental structures in structure-based drug discovery (SBDD). However, it is still 

unclear whether the accuracy of these predicted conformations is sufficient for screening chemical 

compounds that will effectively interact with a protein target for pharmacological purposes. In this 

opinion, we examine the potential benefits and limitations of using state-annotated conformations 

for ultra-large library screening (ULLS) in light of the growing size of ultra-large libraries (ULL). 

We believe that targeting different conformational states of common drug targets like G-protein-

coupled receptors (GPCRs), which can regulate human physiology by switching between different 

conformations, can offer multiple advantages.
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Ultra-large libraries for drug discovery: limits and opportunities

It has been estimated that there are up to 1060 potential molecules with drug-like properties 

[1]. The extraction of promising drug scaffolds from this gigantic chemical space has 

been a long-sought goal in drug discovery. Compared to classical libraries that have been 

historically limited to 1 million compounds, DNA-encoded libraries (DELs) significantly 

expanded the number of experimentally assessable molecules at a reasonable cost and 

resulted in some successful hit discovery campaigns [2–6]. Complementary to DELs, 

the advent of make-on-demand ultra-large libraries (ULLs) made available hundreds 

of millions to several billions of REadily AccessibLe (REAL) molecules that can be 

visualized in silico and are chemically diverse, affordable and rapidly synthesized [12–14]. 

The availability of ULLs such as ZINC15, ZINC20 and Enamine triggered the development 

of structure-based drug discovery (SBDD) technologies aiming to identify high-affinity 

molecules that can be purchased at one of the corresponding website [7–11]. Ultra-large 
library screening (ULLS) methods need to conjugate speed of sampling with an accuracy 

high enough to enrich the selection of compounds that will be confirmed active against a 

protein target (Box1).

Due to their ability to respond to a variety of extracellular signaling molecules, G-protein-
coupled receptors (GPCRs) are an ideal drug target class [15,16]. Different ligands can 

trigger distinct conformations linked to specific signaling cascades and physiological effects. 

While the number of REAL molecules will soon reach astonishing numbers, the number 

of experimental structures with detailed functional annotation will struggle to keep pace 

(Figure 1) [17]. Therefore, ULLS for hit discovery is in urgent need of alternative workflows 

that can serve as a surrogate for missing experimental structural models.

Here, we first summarize recent successful efforts in hit discovery of GPCR modulators. 

Then, we discuss features, benefits and limitations of modern computational methods 

developed for sampling multiple conformational states, with a focus on the breakthrough 

technology AlphaFold2 (AF2). We envision that soon machine learning will make the 

prediction of distinct GPCR conformations fast, easy, broadly accessible, and with an 

accuracy rivaling experimental structures. This will have a profound impact on GPCR hit 

discovery.

Ultra-large library screens targeting G-protein-coupled receptors

In the last few years, ULLS campaigns targeting GPCRs have been applied to identify 

compounds with high potency and target selectivity [18,19]. Furthermore, the identification 

of binders with chemical scaffolds different from known ligands captured interest for their 

potential therapeutic utility as selective modulators [20,21]. A new chemical scaffold can 

make peculiar interactions, thereby improving potency and selectivity against other receptor 

subtypes. However, the identification of subtype-specific structural features is not always 

apparent. In a ULLS against the MT1 co-crystal structure [19], Stein R.M. and colleagues 

were able to extract only a few active ligands selective for MT1 over MT2 from the first 

docking screen of hundreds of million compounds. To improve potency while retaining 

selectivity, they searched for analogs of the active chemotypes in the full library by using 

Sala et al. Page 2

Trends Pharmacol Sci. Author manuscript; available in PMC 2024 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the Tanimoto coefficient. Alternatively, a structure-activity relationship (SAR) search can 

be used to identify compounds with similar chemical properties. SAR was chosen by 

Sadybekov and colleagues in their search for potent compounds that are selective for CB2 

over CB1 [21]. Out of a billion compounds, three hits were found with CB2 submicromolar 

affinity and were used to extract low-nM molecules with higher CB2 selectivity from the 

whole library.

Besides being useful to discriminate among receptor subtypes, novel chemotypes can 

translate into functional selectivity through biased recruitment of a subset of signaling 

proteins (Figure 2). Fink and colleagues targeted the α2BA GPCR crystal structure to extract 

molecules able to selectively engage a subset of G proteins [22]. Functional selectivity 

resulted in pain relief without sedation, thereby providing the intended therapeutic effects 

while reducing unwanted symptoms. With a similar scope, Kaplan and colleagues created 

a library of 75 million tetrahydropyridines (THPs) to target the 5-HT2A receptor [23]. 

Interestingly, no crystal structure was available at the time of the work, forcing them to 

build homology models using the 5-HT2B X-ray structure bound to LSD as a template. The 

models were then ranked for their ability to enrich known 5-HT2A ligands versus inactive 

molecules. ULLS against the selected computational model identified four molecules 

with agonistic or antagonistic activity. The subsequent SAR search in the full 4.3-billion-

compound ULL was instrumental to identify new agonists recruiting a G protein instead 

of β-arrestin associated with psychedelic effects. Functional selectivity paved the way for 

the development of new therapeutics against depression, anxiety and post-traumatic stress 

disorder.

Computational methods for predicting physiological GPCR conformations

Given that high-accuracy structures are a crucial component of successful ULLS campaigns, 

there is a strong interest in developing computational methods able to detect one or more 

GPCR conformational states that can complement missing experimental structures.

AlphaFold-based prediction of multiple functional states

Recent advances in machine learning (ML) methods for protein-structure prediction 

have had an impressive impact on the number of high-quality protein models available 

[24,25], that now cover the full human proteome and beyond [26,27]. In particular, AF2 

demonstrated the ability to model difficult protein targets with comparable accuracy to 

experimental structures [28]. However, models in either the AlphaFold protein structure 

database or out of the AF2 algorithm represent a single conformational ground state. In the 

last year, a number of AF2 workflows have been developed and validated in their ability to 

predict alternative functional states of GPCRs that differ from the AF2 ground state (Figure 

3).

Del Alamo and colleagues implemented the first AF2 pipeline aiming to sample alternative 

conformations with high accuracy [29]. In the proposed workflow, the removal of 

templates used in combination with a shallower multiple sequence alignment (MSA) was 

instrumental to extract an ensemble of dissimilar models. The rationale behind a shallow 

MSA relies on randomly subsampling a subset of sequences that can potentially shift the 
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prediction toward alternative conformations, a process that can also be fine-tuned through 

sequence similarity clustering or by using templates in a uniform activation state [30,31]. 

On different GPCR class targets, AF2 was able to sample conformations corresponding to 

either active or inactive functional states. This workflow has been already widely used to 

validate experimental data and expand the portion of conformational space known [32–34]. 

The prediction of alternative conformations with AF2 can also be achieved through in silico 
mutagenesis of a subset of MSA positions [35]. By mutating a portion of the MSA to 

alanine, AF2 looks for alternative structures that can potentially match the remaining MSA 

information content. This approach successfully sampled multiple functional conformations 

for GPCRs at high accuracy. Without prior knowledge of the positions to mutate for 

predicting alternative structures, an iterative sliding window must be used. Interestingly, 

Heo and coworkers managed to use AF2 as a comparative modeling method [36]. To bias 

the prediction toward the intended conformational state, the MSA of a target protein was 

removed and a local state-annotated GPCR structure database was used as a unique source 

of templates in a uniform functional state. Highly accurate models for both active and 

inactive state structures were generated, although some active targets were missed. Models 

were further validated in reproducing correct ligand poses with protein-ligand docking, 

showing that in targeting either active or inactive conformations models were more accurate 

than those predicted with either an alternative template-based approach or the default AF2 

implementation.

The described methods usually sample an ensemble of models made of either a highly 

homogeneous conformational state or multiple conformational states. Different approaches 

have been successfully applied for minimizing noise and picking representative models. 

Models that are misfolded or predicted with low confidence can be discharged by ranking 

them based on predicted confidence scores and Molprobity score [35,37,38]. The resulting 

ensemble usually has a smaller structural variance than physics-based ensembles, allowing 

to pick representative conformations through simple analyses such as Principal Component 

Analysis or visual inspection [29]. Inspecting known microswitches can also help estimate 

the accuracy of specific functional states in greater detail [39,40].

Molecular dynamics to detect intermediate states

While AF2 has shown impressive performances in the prediction of active or inactive GPCR 

conformations, intermediate metastable states typically escape experimental detection and 

are also hard to predict using ML due to their transient nature. However, intermediate 

states may have unique structural features and functional purposes making them potentially 

useful as targets for ULLS. In this regard, molecular dynamics (MD) can complement 

experimental and ML methods to provide unique insights into intermediate protein-specific 

physiological states. Progress in computational tools and resources has enabled the 

implementation of microseconds to milliseconds MD simulations at atomic resolution. 

Starting from experimental structures, MD has been exploited to investigate structural 

perturbations of GPCRs upon binding/unbinding of various ligands [40,41]. The generated 

trajectories can be analyzed to detect multiple energetically accessible conformations along 

the activation pathway or to elucidate allostery and cooperativity of GPCR ligands (Figure 

4) [42]. For instance, Suomivuori and colleagues investigated the molecular mechanism of 
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prototypical GPCR AT1R binding to design ligands with desired biased signaling profiles 

[43]. They proposed two conformations induced by extracellular agonists which favor either 

G protein or arrestin signaling. Their results offer a detailed mechanism for biased signaling 

of AT1R, providing signal-specific conformations that can be used for ULLS. In another 

work, Lu et al. collected 300 μs of MD trajectories to study the activation mechanism of 

the angiotensin II type 1 receptor (AT1) [44]. They identified and validated with site-direct 

mutagenesis an intracellular cryptic pocket of an apo conformational intermediate that can 

potentially be used as a target for allosteric drug discovery. By mutating residues in the 

allosteric site, the endogenous agonist was incapable of stabilizing the active conformation 

and promoting the binding of transducers.

Despite some successful stories, one of the main restrictions in applying MD is represented 

by simulation time scales that often are shorter than those of the investigated events, 

preventing their visualization. Li et al. developed a new enhanced sampling approach 

that was assessed in the exploration of the full activation mechanism of A1R, including 

endogenous ligand–receptor recognition, receptor pre-activation, and receptor–G protein 

recognition [45]. They observed the G protein binding to the intracellular side of A1R 

propagating a reduction in the volume of the orthosteric site that stabilizes the receptor-

ligand binding. Starting from both active and inactive conformations they have identified a 

number of metastable intermediate states through a new MD technique, thereby providing a 

further tool that can play a role in SBDD.

Modeling GPCRs complexity

Structural modeling and functional annotations of GPCRs can be far more complex than the 

simple separation between active, intermediate and inactive states. As signal transducers, 

GPCRs interact with multiple effectors, can be activated by extracellular proteins like 

proteases or transactivated by receptor tyrosine kinases (RTKRs), and can form hetero- 

or homodimers [46–48]. In the field of interactome modeling, recent technologies like 

AlphaFold-multimer have shown promising accuracy [49–51]. However, higher resolution is 

needed to capture either atomic interactions or the subtle structural changes that characterize 

the binding of different signaling effectors. Additionally, GPCRs are highly dynamic, 

can contain disordered regions and can be modulated by multiple external factors like 

membrane composition, cofactors and post-translational modifications (PTMs) [52,53]. To 

properly investigate these factors, a combination of ML and physics-based methods, along 

with experimental data from sources such as nuclear magnetic resonance (NMR), electron 

paramagnetic resonance (EPR), mass spectrometry (MS) and others is needed [54–57]. 

However, using multiple software programs to model these challenging structural features 

can be time-consuming and laborious. In the future, a modular platform that can easily 

incorporate various types of input data and integrate ML and physics-based methods with 

experimental data will make the process more accessible. Eventually, models of GPCRs 

that include molecular partners, cofactors, and PTMs at high resolution, along with detailed 

annotations of their functional and biological states, would be crucial for fully understanding 

the behavior of these receptors and advancing the field of SBDD.
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Benefits and limitations of high-accuracy computational models for hit 

discovery

The size of ultra-large libraries of chemicals is constantly increasing, as a result, the number 

of detectable drug-like molecules follows the same trend. ULLS technologies able to explore 

significant portions of those chemical spaces already exist and are more and more used 

[58]. One of the main restrictions of applying ULLS on GPCRs is currently represented by 

the limited conformational portfolio of structures experimentally solved at high accuracy. 

We propose that modern ML methods like AF2 and its customizations can bridge this gap. 

Because such predicted structures rival experimentally determined structures in accuracy and 

can be generated in a high-throughput manner at low-cost, researchers will be able to predict 

multiple conformational states for a large number of proteins.

Discovery of conformation-selective hit compounds

As a result of being able to predict one or multiple protein conformational states at high 

accuracy, researchers can now merge computational technologies for the discovery of 

conformation-selective hit compounds. ML-based workflows will be a crucial component 

for ensemble state sampling coupled with ULLS to build fully computational workflows that 

go from a protein sequence directly to hit discovery, without the need for a predetermined 

experimental structure. As such, access to enriched portfolios of predicted structural targets 

and diversified chemical scaffolds represents exciting prospects for hit discovery.

Targeting multiple orthosteric pocket configurations can increase both the number and 

chemical diversity of compounds active on a specific protein target or on multiple 

members of the same protein family. An obvious benefit is a relatively higher chance of 

identifying new chemotypes able to increase potency and/or selectivity. In addition, new 

chemotypes making previously unobserved pocket interactions can expand the number of 

lead compounds with distinct pharmacology with respect to known ligands, thus leading to 

new therapeutics [22,23]. In this regard, there is a strong interest in the identification of 

agonists or partial agonists able to bias GPCR signaling cascades by recruiting a subset of 

effectors [59]. The availability of predicted specific biased signaling conformational states 

can potentially enrich a screening with such molecules.

Another important aspect of applying ULLS for hit discovery concerns the identification of 

chemical scaffolds more likely to become inverse agonists or antagonists [60]. While in the 

first case they must induce a conformational change interrupting or biasing the downstream 

signaling cascade, a condition difficult to predict a priori, in the latter case they can act as 

structural stabilizers. To do so, predicted full or partial inactive conformations can provide a 

pocket configuration better suited to host an antagonist.

In addition of the orthosteric pocket, GPCRs have a number of druggable allosteric sites. 

Those pockets are usually less conserved in sequence space but are well localized in 3D 

space and made of residues with similar physiochemical properties that make conserved 

interactions linked to a specific activation state, at least for class A and B1 [61]. These 

features suggest that specific pocket configurations can be better suited to be screened with 

Sala et al. Page 6

Trends Pharmacol Sci. Author manuscript; available in PMC 2024 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the aim of identifying positive or negative allosteric modulators with fine-tuned specificity. 

The availability of a broad range of pocket configurations would help to increase the change 

of either collecting a physiological state or picking a configuration of interest to bias ULLS 

toward the identification of a specific type of allosteric modulators.

In general, the virtual generation of protein conformations at high accuracy can promote the 

identification of protein binders that in turn may aid experimental structures determination. 

Experimental structures will iteratively improve hits identification and will inform SBDD 

and design.

As a last perspective, the generation of GPCR complexes at high accuracy can also have a 

deep impact on hit identification of compounds targeting protein-protein interactions, one of 

the most challenging drug discovery tasks [62].

Limitations

Experimental information is still a crucial component to drive modeling toward a higher 

resolution structure or to validate the accuracy of structures, eventually being determinant 

for successful hit discovery campaigns (Box 2). The main limitation of predicted 

structures is the expected relatively lower resolution with respect to experimental structures. 

GPCRs present very complex multifaceted activation mechanisms characterized by diverse 

conformations that differ to various extents protein by protein, upon binding of various 

ligands and can be stabilized by external factors [63]. High-resolution structural details 

are in general harder to predict, as well as protein-specific intermediate states. Modeling 

methods able to predict large portions of protein-specific conformational space under 

different conditions are still missing. Given that ULLS is usually carried out with rigid 

side chains, even small errors in their orientation can lead to misleading results. Despite 

predicted GPCR models exhibited a significant accuracy in reproducing protein-ligand 

docking poses [36], an additional benchmark on 28 common drug targets showed that a 

refining step with physics-based approaches is often helpful in enriching the selection of 

active compounds, reducing the gap from co-crystal structures hit rates [64]. Indeed, hit 

discovery campaigns are usually carried out on protein co-crystal structures, co-crystallized 

with other ligands to detect residue rotamers more favorable to ligand binding. However, 

predicted conformations correspond to apo structures and thereby often miss all the induced 

fit effects upon ligand binding. If the induced fit effects mainly involve side chains and small 

backbone rearrangements, the availability of a number of known ligands to perform physics-

based refinement can potentially recover them [65]. On the contrary, large conformational 

induced-fit changes are hard to capture and may be retrieved only with the assistance of 

experimentally-supported data or enhanced sampling techniques [66].

Concluding remarks and future perspectives

In this Opinion, we have discussed how recent breakthroughs in protein structure prediction 

can contribute to hit discovery (see Outstanding Questions). While MD methods are usually 

elaborate and time-consuming thereby preventing their application to a large number of 

proteins, ML and docking are usually faster and more user-friendly. However, all the 

ML-based methods presented here that are able to sample multiple conformational states 
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of GPCRs can be seen as a sort of AF2 “hacks” rather than neural networks specifically 

trained to explore the conformational space or to get all the global energetic minima 

structures of a protein of interest. Both goals share the problem of assigning subsets of 

evolutionary, physical and geometric constraints to separate conformations representing one 

of multiple physiological states. The separation of evolutionary couplings representative 

of distinct global energetic minima or functional states should be easier to tackle than 

retrieving less representative evolutionary information, like transient contacts corresponding 

to higher-energy metastable structures. As a result, ML methods specifically developed to 

sample functional conformations at experimental accuracy will probably emerge sooner than 

methods able to explore a large portion of conformational space for proteins. In addition, 

none of the actual released ML algorithms can predict any ligand-protein induced-fit effect. 

This will be a very intensive research area in the near future.

Ultimately, advances in ML technologies will make conformational modeling fast, accurate, 

broadly accessible and bespoke thereby fueling ULLS campaigns. A higher number or more 

functionally tailored active molecules will translate in a higher chance to develop drugs with 

improved potency, specificity and/or fine-tuned spectrum of activity. For pharmacological 

targets like GPCRs that exhibit a wide variety of different conformational states with state-

specific ligand binding affinities and signaling properties [67], identifying small molecules 

that specifically signal through a particular pathway, so-called biased ligands, will result 

in modulators with lower side effects. In this regard, structure-prediction methods able 

to capture the subtle conformational differences that lead a receptor to recruit specific 

molecular partners will have a huge impact.
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Glossary

AlphaFold2 (AF2):
AlphaFold2 is a deep machine learning algorithm designed to predict the 3D structure of 

proteins. It has been widely hailed as a major breakthrough technology in the field

Chemical libraries:
in drug discovery, collections of molecules representing a fraction of the chemical space that 

can be synthesized and can potentially have drug-like properties

Chemotypes:
chemical structure moieties that are common to a group of molecules

DNA-encoded libraries (DELs):
collections of molecules covalently bound to distinct DNA fragments acting as amplifiable 

identification barcodes

Evolutionary couplings:
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protein residue pairs carrying a relevant structural or functional role. They occur when a 

random mutation is followed by a mutation in a different residue that compensates the loss 

of function. Analysis of mutational covariance can provide information on residue-residue 

interactions occurring in a protein structure and dynamics

G-protein-coupled receptors (GPCRs):
are the largest and most diverse group of membrane receptors in eukaryotes. They 

convert extracellular signals into intracellular responses. Their ability to regulate biological 

processes upon binding of small molecules has made them a common drug target

Hit compounds:
molecules that upon screening result active against a drug target, where active means having 

a high-enough binding affinity to cause the expected effect in biochemical or cellular assays

Metastable:
that has a longer lifetime than higher energy states but shorter than global energetic minima 

states

Microswitches:
specific amino acid residues within the receptor that are thought to play a role in controlling 

its activity by switching between different conformations in response to the binding of a 

ligand

Molecular dynamics (MD):
a computational method able to provide an atomistic view of protein dynamics by simulating 

the evolution of a system over time based on its forces expressed as force fields

Multiple sequence alignment (MSA):
a number of evolutionarily related protein sequences aligned according to their similarities 

in amino acid composition to achieve maximal matching

Pan-assay interference compounds (PAINS):
molecules that often interfere with drug screening assays by returning false positives hits in 
vitro whereas they have no biological activity in vivo

REadily AccessibLe (REAL) molecules:
molecules that can be synthesized through prevalidated chemical reactions of reactants 

acting as building blocks

Structure-based drug discovery (SBDD):
is a process for designing, searching and developing new drugs based on the detailed 

three-dimensional structure of target proteins

Tanimoto coefficient:
a metric to measure the similarity of two sets of elements in a range from 0 to 1. Often used 

for measuring chemical compounds similarity

Ultra-large libraries (ULLs):
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virtual collections of chemicals spanning the range from hundreds of millions to billions of 

molecules and beyond

Ultra-large library screening (ULLS):
computational screening of virtual ultra-large libraries
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Box 1.

Ultra-large library screening technologies

ULLS technologies aim to retain scoring accuracy while speeding up sampling. To do 

so, three methods with different features have been developed (Figure I). DOCK3.7 

exploits a simple physics-based scoring function composed of the sum of Van der Waals, 

electrostatic, and desolvation energy terms [68]. Because DOCK3.7 is a fully rigid 

docking method, a 3D conformer library representing different ligand conformations 

and orientations needs to be precalculated. Recently, a practical guide to HTS has been 

published [69], providing a convenient receipt that users can follow to perform ULLS. 

While DOCK3.7 has been used to explore chemical spaces in the order of several million 

compounds, standard ULLs reached a scale of billions and expanded so rapidly that 

they will likely reach trillion molecules in the next future. In this scenario, VirtualFlow 

exploits a sophisticated parallelization mechanism compatible with widely-used cluster 

systems and can potentially be used with multiple docking programs [70]. VirtualFlow 

has been tested on the exploration of more than one billion molecules. Alternatively, 

V-SYNTHES was developed to keep the size of the docked library equal to the number 

of building blocks composing the REAL space of the combinatorial library [21]. The key 

step is the creation of a library in which building blocks have only one of the two reactive 

groups free to react, whereas the other one remains capped. Then, the resulting fragments 

are docked to score and select an ensemble of promising fragments that are redocked 

upon the substitution of the capped reactive group with all the remaining building blocks 

in the library. This modular fragment-based approach has been tested in the exploration 

of an 11 billion ULL.
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Box 2.

Impact of experimental information on Modeling and ULLS

This Box presents four scenarios ordered by decreasing amount of experimental data 

available. Each scenario explores how modeling can support ULLS and identifies areas 

that still pose challenges and require further advancement in computational modeling 

techniques.

1. A lot of information is available: there is a vast amount of data available 

about different experimental protein structures and their functional states, as 

well as ligands interactions and their corresponding pharmacological effects. 

Using modeling techniques, it is possible to analyze local structural flexibility 

and identify alternative conformations that maintain important structural 

elements while also offering potential targets for ligand binding. This can be 

done by using ML to generate a set of state-specific conformations which are 

then used as starting points for MD simulations to determine the likelihood 

of a particular state or configuration. By determining the probability and the 

structural features of each state or configuration, it becomes possible to bias 

the screen more accurately. Data derived from known ligands will help to 

make informed decisions about which ligands to focus on.

2. A significant amount of information is available: one state-annotated 

protein structure is available with a ligand linked to the receptor activity. As in 

the previous scenario, ML and MD can expand the number of configurations 

visible. However, more advanced modeling methods are needed to accurately 

capture high-resolution structural details for new or different functional states. 

In addition, a single known ligand offers limited data to refine and pick a 

meaningful model for ULLS as well as to select promising hits.

3. Little information is available: only one structure is available without 

ligands bound. In this scenario, computational modeling can still sample 

both an ensemble of conformations of the same activation state or alternative 

to that. However, missing information on alternative functional states and 

induce-fit effects may prevent the sampling of pocket configurations able to 

enrich ULLS of active compounds.

4. No information available: no structures are available and the receptor 

is orphan. Despite AF2 can still be used to capture an apo backbone 

conformation with high accuracy, small inaccuracies can result in a very low 

or absent hit rate. In the future, with methods able to capture induced-fit 

effects and to detect key pocket interactions that propagate the signal to the 

intracellular region, also this scenario can be tackled.
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Outstanding questions

• Can modern computational methods predict multiple conformational states at 

high accuracy?

• Can predicted structures enrich ultra-large library screening of active 

compounds or experimental information is still needed to refine the binding 

pocket?

• Can state-annotated conformations enrich a hit discovery campaign of 

molecules with the desired pharmacological properties?

• How far are we from an automatic pipeline going from a protein sequence 

directly to the identification of active compounds?
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Highlights

The availability of ultra-large virtual libraries in combination with efficient docking 

algorithms has improved hit discovery in a way that is now possible to detect a 

significant number of active molecules dissimilar to known binding ligands, opening 

new therapeutic opportunities.

GPCRs are highly desirable drug targets due to their ability of regulating cellular 

response. The limited availability of experimentally determined GPCR conformations 

prevents the extensive use of structure-based virtual screenings for hit discovery.

The recent development of computational workflows able to predict multiple or user-

defined GPCR conformations at high accuracy opens the door to virtual screening against 

predicted functional states, with multiple potential prospects for drug discovery.
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Figure 1. 
Number of virtual small molecules and unique GPCR structures available over time. 

A) Number of unique GPCR structures available in the GPCRdb (most recent structure 

deposited: July 27, 2022) with different annotation details. The sum of unique protein 

activation states is shown in blue. The sum of unique GPCR members invariant to any 

annotation is shown in green. The sum of proteins solved with either a G protein or Arrestin 

bound is shown in orange. B) Number of Enamine REadily AccessibLe (REAL) molecules.
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Figure 2. 
Schematic representation of an ultra-large library screening targeting a GPCR structure for 

detecting compounds carrying functional selectivity. a) An ultra-large library with million 

to billion molecules is prepared. b) Ligands are docked in a pocket of the target structure 

to sample optimal interactions with protein residues. c) Ligand-Protein poses are ranked in 

accord to a scoring function. d) Thousand compounds are selected in accord to multiple 

criteria such as top-ranked scores, and Tanimoto distance from ligands already known to 

bind the receptor or deposited in CHEMBL [71]. Pan-assay interference compounds 
(PAINS) and low drug-likeness molecules are discharged. e) The selected subset of 

molecules is clustered with a structure similarity metric, usually the ECFP4-based Tanimoto 

coefficient. f) Top-ranked clusters and representative compounds are visually inspected to 

pick diverse chemical scaffolds making new or key interactions in the pocket. g) A small 

subset (usually < 100) of compounds is synthesized. h) Compounds successfully synthesized 

are assessed for binding affinity to the target receptor. i) Ligands below low-micromolar 

affinity are assessed for their ability to modulate receptor activity. In looking for functional 

selectivity, diverse agonists or partial agonists can potentially recruit specific signaling 

proteins. j) Out of binding and functional assays, molecules are ranked for their ability to 

tightly bind the receptor and to activate the intended signaling cascade. If these criteria 

are only partially satisfied, k1) compounds can be optimized with medicinal chemistry 

approaches or k2) searching for analogs (SAR or Tanimoto similarity) of the most promising 

molecules in the whole library.
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Figure 3. 
Main features of the AF2 workflows developed to sample GPCR conformational states. The 

default AF2 implementation takes three inputs: 1. the protein sequence, 2. the protein MSA 

and 3. template structures of protein homologs. All three workflows in the plot tackle the 

input MSA and templates to expand or drive AF2 sampling. A) Templates are removed and 

a small subset of MSA sequences is randomly selected to sample different conformations. 

B) Templates are removed and a sliding window is used to mask a portion of the MSA 

for each prediction. The masked window may hide the region that biases the prediction 

toward a unique conformational state, thereby increasing the chance of detecting alternative 

conformations. C) The MSA is removed and a local database of structures is used to feed 

AF2 with conformational homogenous templates of homologous proteins that can drive the 

prediction toward a specific conformational state.
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Figure 4. 
One dimensional energy landscape of class A GPCRs. Along the activation pathway 

different holo and apo inactive (R), intermediate (R’) and active (R*) receptor conformations 

exist. Each receptor state features specific ligand binding properties, indicated here with 

different geometries. Active receptors transmit the extracellular signal to downstream 

signaling proteins with ligand-dependent efficiencies, as indicated here with different size of 

the intracellular binding pocket.
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Figure I. 
Ultra-large screening technologies. A. The ligand-pocket interactions of one or more known 

ligands are mapped to restrict the space of solutions during docking. B. An efficient 

parallelization mechanism allows multiple ligands to be screened simultaneously. C. Only 

one of the two reactive groups is replaced, and the resulting compound docked. Most 

promising fragments are then redocked upon substitution of the second reactive group.
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