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Abstract

Two-step tests for gene-environment (G × E) interactions exploit marginal SNP effects to improve 

the power of a genome-wide interaction scan (GWIS). They combine a screening step based on 

marginal effects used to ‘bin’ SNPs for weighted hypothesis testing in the second step to deliver 

greater power over single-step tests while preserving the genome-wide type I error. However, 

the presence of many SNPs with detectable marginal effects on the trait of interest can reduce 

power by ‘displacing’ true interactions with weaker marginal effects and by adding to the number 

of tests that need to be corrected for multiple testing. We introduce a new significance-based 

allocation into bins for step 2 G × E testing that overcomes the displacement issue and propose a 

computationally efficient approach to account for multiple testing within bins. Simulation results 

demonstrate that these simple improvements can provide substantially greater power than current 

methods under several scenarios. An application to a multi-study collaboration for understanding 

colorectal cancer (CRC) reveals a G×Sex interaction located near the SMAD7 gene.
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1 | INTRODUCTION

Identifying gene-environment interactions (G × E) is critical for understanding how health 

is affected by both an individual’s genetic background (G) and exposure to environmental 

factors (E). Genome-wide interaction scans (GWIS) test G × E interactions one-SNP-at-

a-time by modeling the genotype, an environmental exposure, and the corresponding 

interaction term. Testing of the G × E is based on the significance of the interaction term, 

typically from a logistic (for a binary/disease trait), linear (for a quantitative trait), or Cox 

(1972) (for a survival trait) regression model. A standard one-step GWIS proceeds by testing 

each G × E interaction at significance level of α* = 5 × 10−8, common in genome-wide 

association studies (GWAS) or GWIS studies (Dudbridge & Gusnanto 2008). However, the 
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statistical power to detect an interaction in a one-step GWIS is generally much lower than 

the power for detecting a genetic marginal effect in a GWAS.

Two-step tests for GWIS have been proposed to improve the power of a G × E analysis 

while controlling the FWER for disease (Gauderman, Zhang, Morrison, & Lewinger 

2013; Hsu et al. 2012; Kooperberg & LeBlanc 2008; Murcray, Lewinger, Conti, Thomas, 

& Gauderman 2011; Murcray, Lewinger, & Gauderman 2009; Wang, Patel, Wason, & 

Newcombe 2021), quantitative (Paré, Cook, Ridker, & Chasman 2010; Zhang, Lewinger, 

Conti, Morrison, & Gauderman 2016), and time-to-event traits (Kawaguchi, Li, Lewinger, 

& Gauderman 2022). In all of these two-step procedures, independent information on G × 

E not captured by the standard G × E test is used to perform an initial screening (Step 1) 

to prioritize SNPs that are more likely to be involved in an interaction. These SNPs are 

formally tested for an interaction (Step 2) under a modified significance threshold α*, thus 

reducing the multiple testing burden (Kooperberg & LeBlanc 2008; Murcray et al. 2009).

The marginal outcome-gene association statistic derived from modeling the outcome on 

each gene individually is a commonly-used screening statistic for quantitative (Zhang et 

al. 2016), binary/disease (Kooperberg & LeBlanc 2008), and time-to-event (Kawaguchi et 

al. 2022) traits. For case-control studies the exposure-gene association statistic, modeling 

the relationship between each gene on the exposure, can also be informative (Murcray 

et al. 2009). Methods that utilize both outcome-gene and exposure-gene associations in 

a case-control study have also been developed (Gauderman et al. 2013; Hsu et al. 2012; 

Murcray et al. 2011). A key requirement for validity of any two-step procedure is that 

the statistics used in Step 1 and Step 2 are asymptotically independent (Dai, Kooperberg, 

Leblanc, & Prentice 2012; Kawaguchi et al. 2022).

There are two widely-used procedures for prioritizing SNPs in Step-2 G×E testing after the 

Step-1 screening: subset (Kooperberg & LeBlanc 2008; Murcray et al. 2009) and weighted 

hypothesis testing (Ionita-Laza, McQueen, Laird, & Lange 2007). In subset testing, of the 

M total SNPs that are being scanned, only the m << M SNPs that pass a significance 

threshold based on the screening statistic are tested in Step 2 using a standard G × E test. 

The significance threshold in step 2 for G × E discovery is calculated using a Bonferroni 

correction that is based on the number of SNPs that pass the screening α∗ = α/m , which 

is much less stringent than the threshold used in a single step approach. A trade - off for a 

relaxed threshold is that SNPs that do not pass the step 1 screening will not be tested. An 

alternative approach that does not rely on a pass/no pass hard rule is weighted hypothesis 

testing. Here, SNPs are allocated into bins based on the magnitude of the screening statistic. 

Each bin has a corresponding bin-wise error rate (BWER) such that the sum across all bins 

does not exceed α. Top (higher priority) bins are allocated a larger fraction of α (see Section 

2.1 for more detail), so that SNPs in those bins are tested at a more liberal significance 

threshold. Conversely, SNPs that are placed in lower-priority bins are tested at a much 

more stringent BWER. Unlike subset testing, every SNP is tested in Step 2 of the weighed 

approach; yet SNPs that are more likely to have an interaction based on the screening 

statistic will have a higher chance of being discovered. Although weighted hypothesis 

testing is often more powerful than subset testing (Gauderman et al. 2013; Ionita-Laza et al. 

2007), there is no universally most powerful approach.
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The motivation behind two-step hypothesis testing is that in the presence of a true G × E 
interaction effect, one can typically expect there to be marginal G effect on the outcome, 

which makes the marginal outcome-gene statistic useful for screening/ranking SNPs in Step 

1 (e.g being placed in bin 1, the bin with the largest BWER). However, this only proves 

useful if not too many SNPs have sizeable marginal effects but no G × E interaction. This 

is often not the case in a GWIS where known “hits” from a prior GWAS provides a set 

of SNPs for which there is a strong marginal outcome-gene effect. For example, more than 

140 GWAS-significant (marginal-effect) loci have been previously identified for colorectal 

cancer (Huyghe et al. 2019) and the majority of these likely do not exhibit a G × E 
interaction. This will result in a phenomena we refer to as “bin overcrowding”, where these 

SNPs will overcrowd the top bins in the weighted testing approach due to having non-zero 

marginal effects. Thus, even if a true G × E effect induces a non-zero marginal effect, it is 

competing against other known (or previously unknown) non-zero marginal effects which 

can force the true G × E effect to not be optimally tested (e.g. being placed/tested in a 

later bin with a stricter BWER). To avoid this loss of power, one can filter out these loci in 

advance. However, this approach is not ideal since it requires prior knowledge of loci with 

marginal effects and, more importantly, removes these SNPs from consideration for G × E 
testing.

The contribution of this paper is the improvement of two-step GWIS testing in two ways. 

First, we propose a simple yet effective approach to prioritize tests in the screening step 

that minimizes the potential power loss due to the presence of SNPs with a marginal effect 

but no interaction effect. Second, we show how additional accounting for correlation among 

SNPs in linkage disequilibrium (LD) in the testing step can further increase power. We 

demonstrate via simulation that this new two-step testing method yields greater power than 

its predecessors. We apply the approach to identify G × E interactions for colorectal cancer.

We describe current methods for testing G×E interactions using the two-step hypothesis 

testing framework and our proposed approach in Section 2. Simulation studies that compare 

the performance of two-step hypothesis testing procedures are given in Section 3 and an 

application to a GWIS for colorectal cancer is provided in Section 4. Lastly, in Section 5, we 

provide concluding remarks, limitations, and areas of future research.

2 | METHODS

Consider a gene-environment interaction study with a (continuous, binary, or time-to-event) 

trait/outcome Y , an environmental exposure of interest E, and M SNPs (Gj , j = 1, … , M) 

measured or imputed for each of the N subjects. To perform a GWIS, we assume M tests 

of G × E interaction with test statistics Tj j = 1
M  and corresponding p-values pj j = 1

M  are 

computed. If for example the trait Y is quantitative, a standard one-step GWIS models the 

G×E interaction one-at-a-time by using the following:

E Y ∣ Gj, E = β0j + βGjGj + βEE + βGj × E Gj × E (1)

for each of the M SNPs. For ease of exposition, we did not include subject-level covariates 

in the model, but in practice adjustment covariates like sex, age, and principal components 

Kawaguchi et al. Page 3

Genet Epidemiol. Author manuscript; available in PMC 2024 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



capturing genetic ancestry should be considered . Each Tj corresponds to the test statistic 

for testing the null hypothesis H0:βGj × E = 0. An adjustment for multiple comparisons is 

applied to preserve the family-wise Type I error rate (FWER) at a prespecifijed significance 

level α (e.g., α* = 5 × 10−8 or α∗ = α/M). However, this correction will lead to low power in 

detecting a G × E interaction.

2.1 | Two-step tests

Two-step methods have been developed to improve the power of GWIS(Kawaguchi et al. 

2022; Kooperberg & LeBlanc 2008; Zhang et al. 2016). For a quantitative trait, the marginal 

outcome-gene association can be modeled using

E Y ∣ Gj = μ0j + μGjGj, (2)

and Sj is the test statistic corresponding to H0:μGj = 0. Model 2 has the form typically used 

to identify SNPs associated with the outcome in a standard GWAS. As with the onej-step 

GWIS, covariates should be carefully considered for inclusion in this model.

Two approaches to two-step testing are being widely used: subset testing (Kooperberg & 

LeBlanc 2008) and weighted hypothesis testing (Ionita-Laza et al. 2007). Subset testing: In 

subset testing, each of the M screening statistics is compared to a prespecified significance 

threshold α0. Let A be the collection (subset) of indices of SNPs that pass the Step 1 

screen (i.e. SNPs for which Sj is statistically significant at the α0 level) with A = m, where 

A  represents the cardinality of set A. Then, for each k ∈ A, the test statistic p-value pk 

is compared against the Bonferroni-corrected significance level α∗ = α/m, which is a less 

stringent significance level than in the standard single-step GWIS. Note that tests where 

k ∉ A will never be tested – or equivalently tested against a significance level of α* = 0. 

This ensures that the overall Type I error rate is retained at α. Weighted testing: Instead of 

only testing a subset of hypotheses based on some dichotomous screening procedure, one 

can test all M test statistics in Step 2 using a weighted hypothesis test (Ionita-Laza et al. 

2007) where the significance level assigned to each Step 2 SNP is based on the ordered 

(largest to smallest) absolute values of Sj j = 1
M  from Step 1. The rationale behind the 

weighted screening approach is that more promising SNPs - as measured by the screening 

statistic – are being tested at a less stringent Step-2 significance level . SNPs are assigned 

into B bins according to their M screening statistics. To control the FWER at level α, we 

derive bin-wise error rates (BWER) such that α1 + α2 + … + αB ≤ α. A common choice is 

αb = α/2b; then, for sufficiently large B,

α1 + α2 + … + αB =
b = 1

B α
2b ≈ α .

By partitioning α in such a way, the overall Type I error rate is controlled at α while 

allocating a greater fraction of α to the op bins (i.e. those with the most promising SNPs). 

A Bonferroni-like correction can be used to preserve BWER by dividing αb by Ab = mb
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(size of the bin), where Ab is the set of indices for tests in bin b. We are now left with 

the non-trivial task of deciding how many SNPs should be allocated to each bin. Using a 

predetermined initial bin size, B0, Ionita-Laza et al. (2007) suggested binning tests such that 

mb = 2b − 1B0. For example, the SNPs with the B0 largest values of Sj  are placed in A1 and 

tested against a significance threshold of α1/B0, the next 2B0 SNPs are tested in bin 2 A2
at level α2/ 2B0  and so forth. Ionita-Laza et al. (2007) suggested setting B0 = 5 so that m1 

= 5, m2 = 10, m3 = 20, m4 = 40 … We refer to this Ionita-Laza et al. (2007) approach as 

rank-based (RB) binning to contrast with significance-based binning that we propose below. 

Two-step RB-weighted tests are generally more powerful than subset testing (Gauderman et 

al. 2013).

2.2 | Proposal # 1: Significance-based (SB) allocation of SNPs to bins in Step 1

Note that subset testing can be seen as a particular case of bin-based testing with only two 

bins with α1 = α, A1 = A, α2 = 0 and A2 = Ac where A is the subset of indices of SNPs 

that have a Step 1 p-value < α0. Unlike RB-weighted testing, where the size of bin 1 is set 

a priori, here the size of the bin is determined by the number of p-values in Step 1 that fall 

within the interval (0, α0). Rather than creating two bins based on one p-value (e.g. α0), one 

can allocate tests into B bins using a series of significance-level cutoffs. More specifically, 

defining τ = τ1, τ2, …, τB + 1  as the set of significance level cutoffs, the collection of tests in 

bin b is Ab = j: pSj ∈ τb, τb + 1 . We refer to this type of screening as significance-based 

(SB) weighted testing, since SNP prioritization is based on the significance levels of the 

p-values corresponding to each screening statistic pSj . Thus, SB-weighted testing can be 

viewed as a hybrid between both subset and RB-weighted testing. While τ can be defined 

arbitrarily, we propose to set τ = 0, B0/M, 3B0/M, 7B0/M, …, 1  which, in expectation, 

corresponds to binnings that are identical to RB-weighted testing. However, bin sizes are 

not capped since p-values are used to determine bin allocation.

Assuming that the null hypothesis of no marginal association holds for all M SNPs, each pSj
is uniformly distributed in the interval [0, 1]. In expectation, B0 of the marginal outcome-

gene screening statistics should have a p-value less than B0/M, 2B0 of them should be 

in the interval B0/M, 3B0/M , and so forth. However, this relationship only holds under 

the null hypothesis of no outcome-gene associations. In practice, this assumption may not 

hold and will lead to a more-than-expected number of p-values to lie in the top bins. This 

overcrowding of the top bins (e.g., A1,A2) will reduce the power of the RB-weighted testing 

approach since bin sizes are capped and SNPs with true G × E effects may be pushed to 

a bin in which the interaction will be tested using a stricter threshold. As we will show in 

our numerical studies, the performance of RB-weighted testing is dependent on both the 

strength and number of non-null outcome-gene associations, which typically is unknown a 

priori. While overcrowding is still an issue with SB-weighted testing, we will show that the 

downstream effect on the testing step is reduced compared to RB-weighted testing.
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2.3 | Proposal #2: Accounting for correlation among tests in Step 2

While two-step hypothesis testing generally provides increased power over the standard 

one-step GWIS, a Bonferroni-type correction is still used to control the FWER in Step 2. 

This adjustment tends to be overly conservative in situations where correlation is present 

as it is the case in association studies due to linkage disequilibrium (LD). Accounting for 

genetic correlation can provide additional power gains.

Permutation tests are seen as the gold standard by permuting the data in a way that simulates 

the null hypothesis while simultaneously maintaining the original correlation structure. 

However, in large association studies, permutation-based approaches are computationally 

prohibitive. Furthermore, it is not obvious how to extend permutation tests in the G × 

E setting due to the hierarchical structure of the model. Several more efficient methods 

to account for correlation between tests have been proposed. For example, Conneely and 

Boehnke (2007) developed a method pACT  that attains the accuracy of permutation or 

simulation-based tests in much less computation time. Their approach, however, requires 

valid estimation of the covariance matrix, which is computationally prohibitive if applied 

genome wide. Another alternative is to replace the denominator of the Bonferroni correction, 

the total number of tests within a bin, with an estimate of the effective number of 

independent tests. Cheverud, Rutledge, and Atchley (1983), among others, have shown 

that the overall correlation among variables in a set can be captured by the variance 

of the eigenvalues derived from their correlation matrix (i.e. higher correlation among 

variables will lead to higher eigenvalue variance). Applying this correction genome wide is 

infeasible as it requires, first, the calculation of an M × M correlation matrix and, second, 

an eigendecomposition (e.g. principal components analysis) to derive the eigenvalues. We 

instead propose to apply the correction to the set of SNPs within each bin.

Let G be the N × M matrix of SNP genotypes (or imputed dosages) for N subjects and 

define GAb to be the sub-matrix of G that corresponds to the indices in Ab b = 1, …, B . Let 

λk
b

k = 1
K

 be the set of eigenvalues obtained by a principal component analysis (PCA) from 

the pair-wise SNP correlation matrix (i.e.. LD. matrix) of GAb, arranged in decreasing order. 

Gao, Starmer, and Martin (2008) proposed a simple and fast correction (simpleM) that well 

approximates permutation-based corrections in both simulated and real data based on these 

eigenvalues

Mb
∗ = min

x
i = 1
x λi

b

k = 1
K λj

b > C , (3)

where C determines the percentage cutoff of explained variation. Gao et al. (2008) suggest 

setting C = 0.995 so that Mb
∗ corresponds to the minimum number of components needed to 

explain at least 99.5% of the variation in the data. Note that by design Ab grows larger in 

expectation as b increases. Thus the calculation of Mb
∗ for the lower-priority bins may still be 

computationally demanding. In practice, as shown in Section 3, we restrict the computation 
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of Mb
∗ for the first seven bins and set the significance threshold for the later bins to be 0 

since the threshold to be declared statistically significant in those upper bins is extremely 

stringent.

3 | SIMULATION STUDIES

We compare the performance of our two-step significance-based (SB) weighted testing 

procedure to 1) the standard one-step GWIS, and 2) the two-step rank-based (RB) 

weighted testing procedure. For both two-step RB and SB-testing, we compare the standard 

Bonferroni correction to the LD-adjusted Bonferroni correction using the simpleM approach 

(Gao et al. 2008) to account for LD within bins. As recommended by Gao et al. (2008), we 

set the tuning parameter C = 0.995.

Let G be an N × M genotype matrix for N individuals and M SNPs. In all of our simulations, 

we assume M = 25, 000. e partition the M = 25, 000 SNPs into blocks of 50 SNPs such that 

G = G1, G2, …, G500 , where Gj is the jth block N × 50 SNPs. Each Gj is simulated based on 

sampled minor allele frequencies (MAFs) and LD-matrices from the 1000 Genomes Project. 

For clarity, we denote Gj as the jth SNP and Gj as the jth block. Quantitative traits are 

simulated according to the following linear model:

Y = βG25G25 + βEE + βG25 × E G25 × E +
j ∈ G

βGjGj + ϵ,

where ϵ ∼ N 0, σϵ2I  for some σϵ2 > 0, E is the exposure variable (assumed to be binary) with 

Pr(E = 1) = 0.3 and G corresponds to the set of SNPs that are only marginally associated 

with the outcome but have no G × E effect (G-only loci). By construction, the 25th SNP 

within block 1 (G1) has a true G × E effect on the outcome (i.e. the G × E locus). We refer 

readers to the Appendix for more information on the construction of G and the simulation 

setup.

The value of the parameters βG25, βE, and βG25 × E were set to achieve a predetermined R2 

for each term: RG25
2 = 0.01, RE

2 = 0.005 and RG25 × E
2 = 0.01. Given a minor allele frequency 

of 0.231 for the G × E locus and setting V ar(Y ) = 1, these R2 values correspond to 

βG25 ≈ 0.06, βE ≈ − 0.01 and βG25 × E ≈ 0.37. Each G-only locus was placed in a different 

block (i.e. 25th SNP in G2 25th SNP in G3, etc.) so that these SNPs, and SNPs in LD, are 

expected to be prioritized in Step 1 and thus potentially affect power in identifying the true 

G × E effect due to bin overcrowding. For simplicity, we set the expected R2 RG
2  for each of 

the G-only effects to be the same and vary the number of G-only effects (i.e. G = nG).

The testing statistics, Tj, are based on the hypotheses H0:βGj × E = 0 for j = 1, …, M, where 

βGj × E is estimated based on the following one-SNP-at-a-time model

Y = βjGj + βEE + βGj × E Gj × E + ϵ,
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where Gj denotes the jth SNP (j = 1, … , M). For both two-step procedures (RB and 

SB-weighted), the screening statistics used in Step 1 are based on the test statistics 

corresponding to the marginal outcome-gene association model:

Y = μ0 + μGjGj + ϵ j = 1, …M .

The initial bin size B0 was set to 5 SNPs for the RB-weighted approach and to an 

expectation of 5 SNPs assuming no genetic effects for the SB-weighted approach. For the 

latter, this corresponds to τ = (0, 5∕25000, 15∕25000, 35∕25000, … , 1). Under this scheme, 

we expect both RB and SB-weighted hypothesis testing to have comparable performance 

for detecting G × E loci when G-only effects are weak or absent. The FWER was set to 

α = 0.05. As aforementioned, calculation of the effective number of independent tests for 

both two-step approaches will be computationally demanding for bins with larger number 

of SNPs. To avoid this, we restrict computation of M* to the first seven bins and set the 

significance threshold in the later bins to 0.

Since SNPs in G1, the block with the causal G × E locus, are correlated, power is 

calculated as the number of times we reject the null hypothesis for any of the SNPs in 

G1 at the corresponding significance level. FWER is defined as rejecting the null hypothesis 

H0:βGj × E = 0 for j = 51, … , 25000 at the corresponding significance level. Furthermore, 

we recorded the ranking of the G × E locus in terms of its Step 1 statistic as well as the 

smallest ranking of any loci in G1 in terms of its Step 1 statistic. Results are averaged over 

5,000 Monte Carlo replications.

In our first set of simulations, we set N = 2, 000 and RG
2 = RG25

2 = 0.01 so that the marginal 

effects of the G × E locus and G-only loci are comparable. Power to detect the true G × 

E effect βGj × E with the standard one-step GWIS is approximately 45% (Figure 1 Panel 

A). When no G-only effects are present (nG = 0), both approaches (RB and SB) have 

comparable power substantially higher than the standard one-step GWIS. The comparability 

of RB and SB-weighted testing in this scenario is expected since the binning of tests for 

both approaches should be nearly identical with no additional G-only effects. This is further 

supported by Figure 2 Panel A, which shows the distribution of the bin placement of the 

G × E locus. However, power for RB-weighted testing is sensitive to the number of G-only 

effects, dropping from ≈ 85% when only nG = 10 G-only effects are present to ≈ 64% when 

nG = 80 are present (Figure 1 ). This decrease in power is expected since the G-only loci, 

and their LD-regions, are being ranked higher than the G × E loci, and hence pushing the 

G × E loci into bins with more stringent significance thresholds in the testing step (Figure 

2 Panel B). The loss in power for SB-weighted testing is less dramatic, which suggests that 

it is more robust to bin overcrowding than RB-weighted testing. Furthermore, adjusting for 

LD-based correlations in Step 2 provides a consistent increase in power across all scenarios 

(Figure 1).

In a second set of simulations (Figure 1 Panel B) we doubled the sample size N to 4,000 

and halve the expected R2 for each factor (i.e.RG25
2 = 0.005, RE

2 = 0.0025, RG25 × E
2 = 0.005, 
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and RG
2 = 0.005). Our results are consistent to what we have seen above which suggests 

that the power benefit of SB-weighted testing, coupled with the simpleM procedure, can 

be achieved under more realistic effect sizes to what is commonly detected in GWAS and 

GWIS studies. As shown in Figure S1, the overall FWER is preserved at < 5% for the RB 

and SB approaches in all of the above simulation scenarios.

In addition to increasing the number of marginal effects, we also evaluate both weighted 

testing methods when we vary both the size and magnitude of the G-only SNPs (Table 1 ). In 

this set of experiments, we fixed the percent of explained variation explained by the G-only 

SNPs to 40% and vary nG from 10, 20, 40 to 80 such that the expected R2 for each G-only 

SNP is RG
2 = 0.04, 0.02, 0.01 and 0.005, respectively. We keep RG25

2 = 0.01 for the causal 

G×E locus so that we capture scenarios where the ‘competition’ in prioritizing the causal 

locus ranges from weak to strong. When RG
2  is large relative to RG25

2 , the screening test for 

the G × E locus has little-to-no chance of being in the top bins and and thus the Step-2 G × 

E hypothesis will always be tested at a more stringent significance threshold. Power for the 

standard one-step GWIS is unaffected by the magnitude and number of the G-only SNPs. 

The difference in power is largest between the SB and RB-weighted testing methods when 

a few number of ‘strong’ G-only SNPs (nG = 10,RG
2 = 0.04) are present. Here the median 

rank of the Step 1 statistic for the G × E locus = 61. In this scenario, RB-weighted testing 

has around 70% power of detecting the G × E locus whereas SB-weighted testing has power 

closer to 80%. On the other hand, power between both RB and SB-weighted testing are 

comparable when more but weaker G-only SNPs are present (around 80% power when nG 

= 80 and RG
2 = 0.005). Thus, both magnitude of effect and the number of G-only loci can 

greatly affect power for RB-weighted hypothesis testing. Conversely, SB-weighted screening 

is more robust to the size and magnitude of the G-only SNPs, with power hovering around 

80 − 81% in all four scenarios. This is also reflected in the bin placement of the simulated 

true G × E loci (Figure S2). The overall FWER is also preserved at < 5% for the RB and SB 

approaches across these additional scenarios (Table S1).

It has been shown that the choice of B0 affects power for weighted testing (Ionita-Laza et al. 

2007; Lewinger et al. 2013). We investigate the performance of both RB and SB-weighted 

hypothesis testing under various initial bin sizes (Figure 3 ). For this simulation, we assume 

80 G-only SNPs with RG
2 = 0.01 are present (RG25

2 = 0.01, RE
2 = 0.005 and RG25 × E

2 = 0.01) 

with N = 2, 000 and M = 25, 000. We see that RB-weighted screening is sensitive to B0, 

with an increase in power as B0 increases. The increase in power can be explained by the 

fact that we allow more tests to be included in each bin. Thus, even when comparably-sized 

G-only effects are competing with the causal G × E locus for bin placement, the probability 

of being in a smaller bin, and thus tested against a less stringent BWER, is higher. However, 

as others have explored, power can be sensitive to the choice of B0, and larger values of B0 

can correspond to lower power when no G-only effects are present(Gauderman et al. 2013; 

Lewinger et al. 2013). In contrast, SB-weighted screening is relatively robust to the choice 

of B0 used in creating the significance thresholds.
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4 | APPLICATION TO COLORECTAL CANCER

We applied our proposed two-step approach to a genome-wide scan of gene-by-sex (G×Sex) 

interaction on the risk of colorectal cancer (CRC). The FIGI (Functionally Informed Gene-

Environment Interaction) study is a multi-institutional collaborative effort to identify novel 

G × E interactions for CRC. Details of the FIGI study have been previously published 

(Huyghe et al. 2019; Schmit et al. 2019; Schumacher et al. 2015). In brief, epidemiological 

and genotype data were pooled from 61 cohort and case-control CRC studies from 3 large 

consortia - the Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO), the 

Colorectal Transdisciplinary Study (CORECT), and Colon Cancer Family Registry (CCFR). 

Analyses include only individuals with complete exposure and covariate information, and 

were limited to individuals of European ancestry as determined by self-reported race and 

clustering of principal components with 1000 Genomes EUR sample. Details on genotyping, 

quality control, data collection and harmonization have been described previously (Hutter et 

al. 2012; Huyghe et al. 2019). Our analysis included N = 89, 304 individuals (40,647 cases 

and 48,657 controls) and M = 7, 809, 725 imputed SNPs. Autosomal SNPs were imputed 

to the Haplotype Reference Consortium r1.1 reference panel via the Michigan Imputation 

Server (Das et al. 2016). Imputed SNPs were filtered based on a pooled MAF ≥ 1% and 

imputation accuracy of R2 > 0.80.

Logistic regression models were used to model case/control status (Y) on each SNP 

allelic dosage (G), sex (E), and their interaction genomewide . The marginal outcome-gene 

associations, regressing Y on G genome-wide, were used as the screening statistics in Step 

1. All models included the following set of adjustment covariates - age, study, and ancestry 

as defined by the first three principal components. Analyses using similar adjustment 

covariates were used in a recent investigation of G×Alcohol interaction in these data Jordahl 

et al. (2022).

Similar to the simulation study, bin significance threshold cutoffs for SB-weighted testing 

were based on cutoffs τ = (0, 5∕M, 15∕M, 35∕M, … , 1). Bin flooding is apparent as bin 1 

contains 3,795 SNPs (Figure 4 ) with a direct G-CRC association p-value < 5∕7, 809, 725. 

Under the RB-weighted testing approach with B0 = 5, these 3,759 SNPs fill the first 8 bins. 

For the SB approach, the estimated effective number of independent tests among the 3,759 

SNPs is M* = 423 based on the simpleM approach. Thus, each of the 3,795 G × E tests in 

bin 1 are tested against a significance threshold of 0.025∕423. One SNP (18:46458950:G:A) 

surpassed the threshold in bin 1. This SNP is located near the SMAD7 gene, which has 

been previously shown as a potential marker of colorectal cancer (Alidoust et al. 2022; 

Jiang et al. 2013; Stolfi et al. 2014; Thompson et al. 2009). This locus would not have 

been identified if the Bonferroni correction was used to correct for the number of tests in 

bin 1 (i.e. using significance threshold = 0.025 / 3,759). This result further supports the 

need to account for LD in the testing step. No statistically significant G × E effects were 

discovered using either the standard GWIS or the RB-weighted two-step approach. As a 

post-hoc analysis, we decided to run SB-weighted testing with τ = (0, 15∕M, 45∕M, … , 

1). Under this specification of τ, bin 1 would contain SNPs that had a G-CRC association 

p-value < 15∕7, 809, 725. From Figure 4 , we know that bin 1 would contain 3,795 (bin 1) + 

895 (bin 2) = 4,690 SNPs. Figure S3 shows the results from the G-by-sex interaction scan, 
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which still identifies SNP 18:46458950:G:A in bin 1 as a significant finding even under a 

more stringent significant threshold (0.025∕490). Modifying the initial bin size to B0 = 15 for 

the RB-weighted approach did not yield any statistically significant interactions.

5 | DISCUSSION

Two-step tests generally provide greater power than standard one-step approaches for 

genome-wide G × E discovery (Gauderman et al. 2017). We propose a novel approach, 

significance-based (SB) weighted hypothesis testing, that aims to address the shortcomings 

of its predecessors. In Step 1, we allocate SNPs into bins based on the significance of the 

screening statistics rather than on their rankings. Then, in step 2, to account for SNP-SNP 

correlations due to LD we control the bin-wise error rate based on an estimate of the 

effective number of independent tests. We show that SB-weighted testing is comparable 

to RB-weighted hypothesis testing when 1) no marginal G-only effects are present or 2) 

weak marginal G-only effect are present (i.e. little-to-no skew in the p-value distribution) 

and outperforms RB-weighted hypothesis testing when G-only loci flooding of the top 

bins exists. In addition, using an estimate of the effective number tests (simpleM) to 

account for LD-based correlation among SNPs provides additional power for either of the 

two-step methods. We demonstrated our SB-weighted approach to identify a novel gene-sex 

interaction for colorectal cancer using data provided by the FIGI consortium.

In our simulation study, we also show that power for the RB-weighted hypothesis test 

is sensitive to both the number and magnitude of the step 1 screening statistics as well 

as the initial bin size. This corresponds to the number of marginal genetic effects that 

are associated with the outcome if the outcome-gene association statistic proposed by 

Kooperberg and LeBlanc (2008) is used in Step 1. These factors, among others, will 

negatively affect the prioritization of the causal (G × E) loci in the testing step since the 

number of tests per bin are capped a priori. Alternatively, the use of significance cutoffs 

in the SB-weighted approach is robust to both the number and magnitude of the step 1 

statistics and has greater power over RB-weighted testing when there is competition in bin 

prioritization. Adjusting for the effective number of tests using the simpleM method of Gao 

et al. (2008) yields additional improvements in power while preserving the FWER.

Our two-step hypothesis testing procedure identified a new locus near SMAD7 that interacts 

with biological sex to modulate CRC risk. Further studies should examine the potential 

mechanisms through which this newly discovered locus impacts CRC risk. We note that 

G×Sex interaction for this locus would not have been found using either the standard 

one-step GWIS or the RB-weighted testing approach.

We envision several directions to further explore SB-weighted testing. First, the marginal 

outcome-gene association was used as the screening statistic in Step 1. However, SB-

weighted testing should be valid using any screening statistic in Step 1 as long as it is 

independent of the testing statistic in Step 2 (Dai et al. 2012). Further investigation into 

the performance of SB-weighted testing is warranted under different phenotypes, sampling 

designs, and screening statistics. The binning of tests was performed by developing 

significance-level based cutoffs of the p-values in Step 1. Our rationale for this approach 
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was to, in expectation, develop bins that were similar to the rank-based binnings proposed 

by Ionita-Laza et al. (2007). However, one can bin tests arbitrarily based on the p-value 

distribution of the Step 1 screening statistics or on the distribution of the screening statistics 

themselves. Alternative approaches for both screening and test binning warrant future 

investigation.

LD was taken into account through estimating the effective number of independent tests. 

While we explored the performance of the simpleM procedure proposed by Gao et al. 

(2008), several other estimators have been suggested (Cheverud 2001; Galwey 2009; 

J. Li & Ji 2005; M.-X. Li, Yeung, Cherny, & Sham 2012; Nyholt 2004). Alternative 

approaches to adjust p-values within bins (or the testing subset) can be adopted (Conneely 

& Boehnke 2007). While genetic correlation within bins have been considered, between bin 

LD can be present as well. Methods to account for both within- and between-bin genetic 

correlation may further improve power and should be investigated further. Alternatively, one 

may instead control the false discovery rate (Benjamini & Hochberg 1995), the expected 

proportion of discoveries that are false, rather than the FWER. Future research is needed into 

developing FDR-based two-step hypothesis tests.

We have demonstrated that the current two-step G ×E testing framework can be greatly 

improved by 1) incorporating a more robust binning procedure for the screening step (Step 

1) and 2) taking SNP LD into account when setting the Step-2 significance thresholds. 

We have demonstrated, by simulation and application to a colorectal cancer study, that 

significance-based binning of Step-1 tests and LD-correction of thresholds in Step 2 have the 

potential to discover novel G × E interactions for a complex trait. Additional examinations 

of the binning approach and the method to account for LD to further improve 2-step GWIS 

power are warranted.
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Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Estimated power when nG G-only effects are present (nG ∈ {10, 20, 40, 80}) that 

each explain RG
2 × 100% of the variation. RB-Weighted: Rank-based weighted hypothesis 

testing using with initial bin size B0 in Step 1; SB-Weighted: Significance-based 

weighted hypothesis testing using τ = 0, B0/25000, 3B0/25000, …, 1  as the p-value cutoffs 

in Step 1. Bonferroni: Standard Bonferroni correction within bin; simpleM: The simpleM 

procedure proposed by Gao et al. (2008) with C = 0.995. Results are averaged over 

5,000 simulations. Panel A:RG25
2 = RG25 × E

2 = RG
2 = 0.01, RE

2 = 0.005, N = 2, 000; Panel 

B:RG25
2 = RG25 × E

2 = RG
2 = 0.005, RE

2 = 0.0025,N = 4, 000.
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FIGURE 2. 
Bar chart of bin placement for the 25th SNP (i.e. G × E locus) in Step 1 over 5,000 

simulations. RB-Weighted: Rank-based weighted hypothesis testing using with initial bin 

size B0 in Step 1; SB-Weighted: Significance-based weighted hypothesis testing using 

τ = 0, B0/25000, 3B0/25000, …, 1  as the p-value cutoffs in Step 1. Simulation parameters:

RG25
2 = RG25 × E

2 , RE
2 = 0.005, N = 2, 000, M = 25, 000. Panel A) nG = 0 G-only SNPs; Panel 

B: nG = 80 G-only SNPs with RG
2 = 0.01.
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FIGURE 3. 
Estimated power and FWER as a function of the initial bin size B0. 80 G-only effects are 

present with RG
2 = 0.01. RB-Weighted: Rank-based weighted hypothesis testing using with 

initial bin size B0 in Step 1; SB-Weighted: Significance-based weighted hypothesis testing 

using τ = 0, B0/25000, 3B0/25000, …, 1  as the p-value cutoffs in Step 1. Bonferroni: Standard 

Bonferroni correction within bin or subset; simpleM: The simpleM procedure proposed by 

Gao et al. (2008) with C = 0.995. Results are averaged over 5000 simulations.

Kawaguchi et al. Page 18

Genet Epidemiol. Author manuscript; available in PMC 2024 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 4. 
Results from the G-by-sex interaction scan using the SB-weighted testing approach applied 

to the FIGI consortium data (N = 89, 304, M = 7, 809, 725). x-axis: Bins are based on the 

marginal outcome-gene association statistic (e.g. SNPs that have a Step 1 statistic < 5∕M are 

included in bin 1). y-axis: p-value of the G×E association provided by the GWIS (on the − 

log10 scale). Number of SNPs in each bin as well as the effective number of independent 

SNPs (Meff) using the simpleM approach are included. Horizontal line indicates the 

threshold the Step 2 p-value must cross to be statistically significant, maintaining the overall 

FWER=0.05. Only SNPs in the first 7 bins are shown in this figure.
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TABLE 1

Estimated power when nG G-only effects are present (nG ∈ {10, 20, 40, 80}) and the total amount of variation 

explained is fixed at 40% RG
2 = 0.4/nG . One-step GWIS: The standard one-step GWIS. RB-Weighted: Rank-

based weighted hypothesis testing proposed by Ionita-Laza et al. (2007) with B0 = 5; SB-Weighted: Our 

proposed significance-based weighted hypothesis testing with τ = (0, 5∕25000, 15∕25000, … , 1) as the p-value 

cutoffs. Bonferroni: Standard Bonferroni correction within bin; simpleM: The simpleM procedure proposed by 

Gao et al. (2008) with C = 0.995. Results are averaged over 5000 simulations.

nG = 10 20 40 80

RG
2 = 0.04 0.02 0.01 0.005

One-step GWIS 0.439 0.437 0.443 0.442

RB-Weighted

Bonferroni 0.694 0.670 0.726 0.801

simpleM 0.713 0.688 0.736 0.812

SB-Weighted

Bonferroni 0.814 0.797 0.796 0.812

simpleM 0.829 0.811 0.812 0.826
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