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Inferring neuron-neuron communications
from single-cell transcriptomics through
NeuronChat

Wei Zhao 1, Kevin G. Johnston1, Honglei Ren1, Xiangmin Xu 2,3,4,5 &
Qing Nie 1,3,5,6

Neural communication networks form the fundamental basis for brain func-
tion. These communication networks are enabled by emitted ligands such as
neurotransmitters, which activate receptor complexes to facilitate commu-
nication. Thus, neural communication is fundamentally dependent on the
transcriptome. Here we develop NeuronChat, a method and package for the
inference, visualization and analysis of neural-specific communication net-
works among pre-defined cell groups using single-cell expression data. We
incorporate a manually curated molecular interaction database of neural sig-
naling for both human and mouse, and benchmark NeuronChat on several
published datasets to validate its ability in predicting neural connectivity.
Then, we apply NeuronChat to three different neural tissue datasets to illus-
trate its functionalities in identifying interneural communication networks,
revealing conserved or context-specific interactions across different biological
contexts, and predicting communication pattern changes in diseased brains
with autism spectrum disorder. Finally, we demonstrate NeuronChat can uti-
lize spatial transcriptomics data to infer and visualize neural-specific cell-cell
communication.

Brain function relies on signal transmission amongnumerous neuronal
and non-neuronal cells. The connectome—wiring organization of
neural connectivity—is subject to transcriptional regulation1,2. Recent
single-cell RNA-seq (scRNA-seq) datasets show heterogeneity for cell
transcriptomic states3, raising the possibility that differences in gene
expression profiles within and across regions reflect neural signal
processing states. The emergingmethods of spatial transcriptomics4,5,
which measure the spatial locations of neural cells in addition to gene
expressions in cells, also provide abundant resources for dissecting
neuron heterogeneity. While most current analysis approaches for
scRNA-seq and spatial data allow the classification of cell types, the
capability to probe the intercellular communications which determine

the underlying anatomical and functional connectivity is still limited.
Yet, these transcriptomics data inherently contain the expression of
genes required for neural signal transmission, making it possible to
infer such intercellular communications.

Recently, computational methods have been developed for
inferring cell-cell communication networks from coordinated expres-
sions of ligand-receptor interaction pairs6–12 such as CellChat9,
CellPhoneDB10 and NicheNet11. However, these methods are based on
short-range autocrine/paracrine signaling which only acts through
ligand diffusion or physical contact of cells6. Such approaches are not
suitable for characterization of neuron-neuron communications
because neurons can extend axons and dendrites over long distances
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to form synapses and communicate mainly through neurotransmitter
signaling13–15. Neurotransmitters, typically non-peptide small mole-
cules such as glutamate and gamma-aminobutyric acid (GABA), are
excluded from current protein-based ligand-receptor databases
ligand–receptor databases6–12,16. For example, Smith et al. predicted 37
neuropeptide networks among cortical neuron types by taking the
interaction score as the product of transcript levels of neuropeptide
precursor and the cognate G-protein-coupled receptor16–18, but did not
include neurotransmitter signaling. Additionally, as small-molecule
neurotransmitters are synthesized and transported into synaptic
vesicles for fast release from the presynaptic neuron in response to
stimulation, the abundance of small-molecule neurotransmitters used
for synaptic transmission depends on the coordination of multiple
genes such as synthesizing enzymes and vesicular transporters19.
Overall, there is a lack of methods considering neurotransmitter sig-
naling and system-level neural-specific cell-cell communications.

Here we present NeuronChat, a method that utilizes scRNA-seq
data and/or spatially resolved transcriptomics to infer, visualize and
analyze neural-specific cell-cell communication. Development of
NeuronChat required manual curation of a new neural-specific data-
base containing 373 entries of intercellular molecular interactions for
both human (190) and mouse (183). By incorporating this database to
model the coordinate expressions of cognate interacting molecules,
NeuronChat infers the neural-specific communication networks
among pre-defined cell groups from single-cell expression data.
Through benchmark and applications to neural tissue datasets, we
show NeuronChat’s capability in revealing neuron-neuron interactions
in several biological systems.

Results
Overview of NeuronChat
First, we curate a neural-specific database of intercellular molecular
interactions for both mouse and human, named NeuronChatDB
(Fig. 1a). Each interaction contains one ligand and a cognate target as
well as the protein-coding genes related to their synthesis and vesi-
cular transport. The ligands include small-molecule neurotransmitters,
neuropeptides, gap junction proteins, gasotransmitters20 and synaptic
adhesion molecules, while the targets are typically but not limited to
receptors. For example, the target proteins for neurotransmitters can
also be uptake transporters or deactivating enzymes; the target pro-
teins for gap junction proteins are other compatible gap junction
proteins. For non-peptide neurotransmitters, corresponding synthe-
sizing enzymes and/or vesicular transporters are included in the entry;
for heteromeric receptors that contain multiple different subunits,
corresponding subunits are curated into different entries with the
same ligand. Among a total of 373 entries of ligand-target interaction
pairs, there are 221, 73, 39, 16 and 24 entries related to small-molecule
neurotransmitters, neuropeptides, gap junction proteins, gaso-
transmitters and synaptic adhesion molecules, respectively.

Second, we construct a computational model to link the expres-
sion data to cell-cell communication probability, based on coordinate
expressions of interacting molecules of pre-defined cell groups
(Fig. 1b). The input data for NeuronChat is a normalized cell-by-gene
count matrix, with group annotations for cells. For each intercellular
interaction pair in NeuronChatDB,we first average the expression level
by cell group for all related genes, based on which we estimate the
abundance of the ligand and the target for each cell group. For the
non-peptide neurotransmitters, the genes contributing to ligand
emission are first categorized into different biological function groups
(e.g., synthesis and vesicular transport), and then the abundance is
modeledby applyingAND logic (i.e., geometricmean) amongdifferent
groups of genes while applying OR logic (i.e., arithmetic mean) among
redundant genes within the same group (see Methods); for other
ligands and for all targets, the abundance is calculated as the average
expression. Then, the cell-cell communication strength between two

groups is set to be the product of the ligand abundance of one cell
group and the target abundance of another cell group. Significant
communications can be determined by a permutation test where
group labels of cells are randomly permuted and the communica-
tions strength is recalculated (see Methods). Thus, for each interac-
tion, an intercellular communication network, i.e., a weighted
directed graph composed of significant links between interacting cell
groups, can be constructed. An aggregated communication network
can be further obtained by summarizing all communication networks
for individual interactions with four different aggregation methods
(see Methods).

Third, we provide different methods for visualization and analysis
of the inferred intercellular communication networks (Fig. 1c). Circle
plot, chord diagram and heatmap can be used to visualize the com-
munication strength among cell groups. NeuronChat can also perform
quantitative analysis of the inferred communication networks to
identify signaling patterns and categorize interactions. For multiple
datasets from different biological contexts, NeuronChat can make
systematic comparisons and identify conserved and context-specific
ligand-target interaction pairs. For spatial transcriptomics data, Neu-
ronChat can incorporate cellular spatial positioning into the inference
of cell-cell communication and provides multi-layered visualization of
spatial cell-cell communication.

Benchmarking of NeuronChat
To investigate the ability of NeuronChat to predict intercellular com-
munications,wefirst compare the predicted communication networks
with those experimentally identified for benchmarking. Two cases
were studied: (1) the projection network of the primary visual cortex
(VISp) in mouse brain, and (2) the projection network of the anterior
lateral motor cortex (ALM) in mouse brain. The connections from
excitatory neurons of VISp and ALM to their cortical target regions
were identified using monosynaptic retrograde labeling3, where the
viral tracers are injected into target regions and move towards the
presynaptic neurons via retrograde axonal transport without further
spreading to indirectly contacted cells, allowing the identification of
direct neural connections21–25. By grouping retrogradely labeled neu-
rons using their cell-type annotations, we obtain the coarse-grained
projection networks composed of directed links from excitatory neu-
ron types in VISp and ALM to their cortical target regions (Fig. 2a for
VISp and Fig. 2f for ALM), which are then used for subsequent
benchmarking. The single-cell RNA-seq data for VISp, ALM and their
target regions are collected from two published papers3,26. The data
used includes 6,785 glutamatergic cells of 7 subclasses (L2/3 IT, L4, L5
IT, L5 PT, L6CT, L6 IT, and L6b) for VISp, and 13,824 glutamatergic cells
from three cortical target regions (ACA, RSP and contralateral VISp);
3,883 glutamatergic cells of 5 subclasses (L2/3 IT, L5 IT, L5 PT, L6 CT,
and L6 IT) for ALM, and 17,576 glutamatergic cells from the six cortical
target regions (SSs, SSp, RSP, MOp, contralateral ALM and con-
tralateral ORB).

By using NeuronChat, we infer the communication networks
containing links fromcell types of VISp (or ALM) to their target regions
for all interaction pairs, and then aggregate them over all interaction
pairs (see Methods for details). Next, we test whether this aggregated
network predicts the projection network identified via retrograde
labeling. We binarize the aggregate network by setting a threshold for
the communication strength (Fig. 2b, g), to enable computation of the
sensitivity (the fraction of links predicted by NeuronChat from those
identified by retrograde labeling) and false-positive rate (the fraction
of links predicted by NeuronChat from those NOT identified by ret-
rograde labeling) for a given threshold. Repeating this process by
scanning a set of continuous thresholds, we obtain the Receiver
Operating Characteristic (ROC) curve. We then use the Area Under the
ROC curve (AUROC) to measure NeuronChat’s prediction perfor-
mance: the closer to 1 the value, thebetter thepredictionperformance;
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AUROC values for random classifiers are expected to be 0.5. The
AUROC values are 0.832 and 0.764 for VISp (Fig. 2c) and ALM (Fig. 2h),
respectively. Please note that a small portion of the communication
links predicted are incorrect for both of the two cases (e.g., 3/21 for
Fig. 2b and 7/30 for Fig. 2g). We also calculate another evaluation
metric – the Area Under the Precision-Recall curve (AUPRC), which
summarizes the trade-off between the recall (also known as sensitivity)
and theprecision (the fractionof links identifiedby retrograde labeling
from those predicted by NeuronChat) under different thresholds. The
projection networks predicted by NeuronChat show an AUPRC of

0.915 for VISp and an AUPRC of 0.768 for ALM, and are significantly
better than the random classifiers (Fig. 2d, i). To determine whether
the specific graph topology of ground truth labels (i.e., the projection
network identified by retrograde labeling) makes the prediction task
easy for NeuronChat, we perturb the ground truth labels by shuffling
cell-type labels of graphnodeswhile keeping the samegraph topology,
and then recalculate AUROC and AUPRC. We find that the AUROC for
the shuffled ground truth labels leads to a distribution with a mean of
around 0.5, indicating a poor prediction ability for those shuffled
labels even with the same topology (Supplementary Fig. 1a, c, e, g).

Fig. 1 | OverviewofNeuronChat. aOverviewofNeuronChat database. NeuronChat
database includes ligand-target pairs required for chemical synapse, electrical
synapse and synaptic adhesion (left panel). There are a total of 373 ligand-target
pairs for both human and mouse, curated into five categories based on the type of
the ligand (middle panel). The interaction pair list includes the ligand, target, and
genes contributing to them (right panel). Note that genes contributing to the ligand
are categorized into different groups (indicated by colors) based on their biological
functions such as synthesis or vesicular transport.b Schematic diagram to illustrate
the computational model of NeuronChat. The communication strength

characterizes the coordinated expression of genes required for ligand emission in
the sender cell group, and the expression of the target gene in the receiver cell
group. The statistical significance of a communication link is determined by the
permutation test (* and ns represent significant and not significant, respectively).
Only significant links are kept in the output communication strength matrix while
values for not significant links are set to be zeros. See Methods for details.
c Functionalities of NeuronChat: visualization and analysis of the intercellular
communication networks, making systemic comparisons across different biologi-
cal contexts, and multi-layered visualization for spatial transcriptomics.
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Furthermore, AUROC for the original ground truth labels is sig-
nificantly higher than those for shuffled labels (p-values are
0.010 ±0.0036 and 0.017 ± 0.0048 for VISp and ALM projection net-
works, respectively). Similar results are also obtained for the calcula-
tion of AUPRC (Supplementary Fig. 1b, d, f, h), suggesting

NeuronChat’s prediction ability does not directly reflect the specific
graph topology of ground truth labels.

In addition, the AUROC and AUPRC show little variations over
input data subsampling rates ranging from 10% to 90% (Supplemen-
tary Fig. 2). While the predicted communication networks may
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Fig. 2 | Benchmarking NeuronChat on projection networks of two mouse cor-
tex regions: VISp and ALM. a Projections from seven cell types of VISp to their
cortical target regions, identified by retrograde labeling3. b Aggregated and
binarized intercellular communication network for VISp. The false-positive links
represent those predictedbyNeuronChat but not identifiedby retrograde labeling.
The false-negative links are those identified by retrograde labeling but missed by
NeuronChat prediction. Threshold for binarization is 0.028 (normalized by the
maximum) in this plot. c ROC curve for the NeuonChat-inferred aggregated
intercellular communication network for VISp, with AUROC indicated on the top.

The gray dashed line represents the random classifier with an AUROC of 0.5. The
color bar indicates the binarization threshold. d PR curve for NeuonChat-inferred
aggregated intercellular communication network for VISp, with AUPRC indicated
on the top. The gray dashed line represents the random classifier with an AUPRC
equal to the fraction of links identified by retrograde labeling (i.e., 14/21). e AUROC
(left panel) and AUPRC (right panel) for the inferred VISp projection network of
each individual interaction pair. f–j Repeat analysis for ALM, analogous to (a–e).
Threshold for binarization is 0.165 for (g).
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fluctuate among different repeated simulations due to finite sampling
in the permutation test, the default number of permutations (100)
used in NeuronChat yields consistent p-values and most of the sig-
nificant links generated by 1000 permutations (Supplementary Fig. 3).
Taken together, NeuonChat is relatively robust to the subsampling of
input data and the number of permutations.

We also calculate the AUROC and AUPRC of the communication
network for individual interaction pairs (Fig. 2e, j, for VISp and ALM,
respectively). An interaction pair with a higher AUROC or AUPRC
implies a better prediction of connectivity. As expected, the rankings
of AUROC and AUPRC for individual interaction pairs are almost the
same (for VISp: Spearman’s rank correlation ρ = 0.97, p-value
<2:2 × 10�16; for ALM: Spearman’s rank correlation ρ = 0.95, p-value
<2:2 × 10�16), indicating that an interaction pair with high AUROC
usually shows high AUPRC. Out of top 10 interactions with highest
AUROCs, 7 for VISp and 9 for ALMaremediated by glutamate, which is
consistent with the fact that the projecting neurons are usually
glutamatergic27,28, and that glutamate is the major excitatory neuro-
transmitter in the brain. For example, the interaction between gluta-
mate and Grik5 (glutamate receptor, ionotropic kainate 5), and the
interaction between glutamate and Gria2 (one of the subunits of the
AMPA receptor), are ranked top 3 in AUROC for predicting both VISp
and ALM projections; the interactions between glutamate and other
receptors such as Gria1, Gria3, Grin1, Grin2b, Grm4, Grm7 and Grik4,
also show high AUROC’s for VISp or ALM. Additionally, the interaction
between synaptic adhesion molecules Neurexin 1 (Nrxn1) and Neuro-
ligin 1 (Nlgn1), which connect pre- and postsynaptic neurons respec-
tively and play a vital role in synapse formation and maturation29, is
ranked #10 in AUROC and #6 in AUPRC for predicting ALM projec-
tions. Interestingly, Nrxn2-Nlgn2 interaction shows moderate predic-
tion ability for VISp projections although neuroligin 2 is believed to
locate on the inhibitory synapses30. Surprisingly, the interaction
between neuropeptide Cck (cholecystokinin) and its cognate receptor
Cckbr shows the highest prediction ability for VISp projection, indi-
cating that the Cck-Cckbr interaction could be related to long-range
neuronal connectivity. The interaction between neuropeptide Penk
and its cognate receptor Oprm1 also shows high AUROC for both VISp
and ALM. Thus, when experimental connectivity data is available,
NeuonChat is able to uncover biologicallymeaningful interaction pairs
that are related to neural connectivity; when experimental con-
nectivity data is not available, the interaction pairs with high infor-
mation flow (defined as the sum of communication strength over all
detected significant links), can be potential candidates underlying
neural connectivity, asAUROC (or AUPRC) is found tohave amoderate
positive correlation with information flow (Supplementary Fig. 4).

Next we use examples to illustrate how NeuronChat utilizes var-
iations in the abundance profiles of ligands in sending cell groups and/
or targets in receiving cell groups to differentiate the communication
strength.While all types of glutamatergic neurons useglutamate as the
major neurotransmitter, the ligand abundance profiles show clear
differences among the sending cell groups in VISp (Supplementary
Fig. 5a, upper panel): L2/3 IT, L4, L5 IT, and L6 IT aremore abundant in
most of the ligands than L5 PT, L6 CT and L6b. Likewise, the target
abundance profiles show large diversity in the receiving cells of dif-
ferent target regions (Supplementary Fig. 5a, lower panel): the major
targets aremost abundant in contralateral VISpwhile least abundant in
ACA. These overall differences are consistent with the fact that L2/3 IT,
L4, L5 IT and L6 IT have more outgoing links than other sending cell
groups, and contralateral VISp and RSP havemore incoming links than
ACA (Fig. 2a, b). At the individual interaction level, for example, for the
Glu-Gria2 interaction pair, the relatively high expression of genes
related to glutamate synthesis and transportation in L2/3 IT, L4, L5 IT
and L6 IT makes these cell types the major senders of the inferred
communication network; contralateral VISp and RSP express higher
Gria2 than ACA, and are thus inferred as the major receivers

(Supplementary Fig. 5b). This pattern is even clearer for Cck-Cckbr
interaction pair (Supplementary Fig. 5c). The analysis for ALM pro-
jection networks is also carried out, showing similar results (Supple-
mentary Fig. 6). Taken together, variations in the abundance profiles of
ligands in sending cell groups and/or targets in receiving cell groups
allow NeuronChat to differentiate the communication strength.

Comparison with other cell–cell communication inference tools
and modeling settings
We further compare NeuronChat with two popular cell–cell commu-
nication inference (CCI) tools CellChat and CellPhoneDB in predicting
neuronal connectivity using the same ligand-target database (i.e.,
NeuronChatDB). We use the same computational workflow of Neu-
ronChat for the implementation of CellChat and CellPhoneDB except
for the calculation of ligand abundance and the formula for commu-
nication strength (see details in Methods for comparison). On the
inference of neuronal connectivity in both VISp and ALM projection
networks (see the section above), NeuronChat outperforms existing
CCI methods in two ways: (1) for the aggregated communication net-
work, NeuronChat has the highest AUROC and AUPRC among three
benchmarking methods (Fig. 3a, b for VISp and Fig. 3f, g for ALM); (2)
for individual communication networks, NeuronChat not only detects
more interaction pairs but also yields higher AUROC and AUPRC than
the other two methods (Fig. 3c–e for VISp and Fig. 3h–j for ALM).
Because both CellChat and CellPhoneDB use AND logic (geometric
mean or minimum) rather than OR logic for redundant genes for the
same function, the abundance of the small-molecule neurotransmitter
is dramatically underestimated, leading to fewer detected interaction
pairs than NeuronChat. These results demonstrate the advantage of
NeuronChat in predicting neural-specific cell-cell communications.

While NeuronChat uses expressions of synthesizing enzymes and
vesicular transporters to estimate the abundance of small molecular
neurotransmitters, we note that a recent method scFEA31 uses a graph
neural network model to estimate metabolic flux and balance from
scRNA-seq by incorporating stoichiometric effects of metabolism and
pathways dependency. To investigate the effects of different abun-
dance surrogates for small-molecule neurotransmitters in identifying
neural-specific communication networks, using glutamate as an
example, we compare NeuronChat’s ligand abundance and eight
scFEA-derived surrogates (including metabolite balance and seven
module fluxes) in predicting VISp and ALM projection networks. For
each of the nine glutamate surrogates, we calculated AUROC and
AUPRC values for the communication networks of 24 glutamate-
mediated interaction pairs, and found that NeuronChat’s ligand
abundance shows middle or above ranking in AUROC (or AUPRC)
median among the nine glutamate surrogates (Supplementary Fig. 7a,
c). For the communication network aggregated over 24 glutamate-
mediated interaction pairs, NeuronChat’s ligand abundance ranks #2
in both AUROC and AUPRC for predicting VISp and ALM projecting
networks among the nine glutamate surrogates (Supplementary
Fig. 7b, d). Nevertheless, the difference between NeuronChat’s ligand
abundance and the best scFEA-derived surrogate is very minimal.
These results indicate that NeuronChat’s ligand abundance works well
on the inference of neuronal connectivity despite its simplicity.

NeuronChat uses Tukey’s trimean (see Methods) rather than
arithmetic mean to calculate the average of the gene expression in all
cells of a group. According to their definitions, for a given gene and a
given cell group, the non-zero Tukey’s trimean only occurs if the
gene is expressed in at least 25% of cells while non-zero arithmetic
mean occurs if the gene is expressed in at least one cell. Because the
genes only expressed in a small proportion (less than 25%) of cells are
filtered out, Tukey’s trimean benefits to identify the cell-type enri-
ched ligand–target pairs. As expected, Tukey’s trimean leads to
fewer detected interaction pairs than arithmetic mean (Supplemen-
tary Fig. 8a, e); however, the interaction pairs produced by Tukey’s
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trimean show overall higher AUROC and AUPRC than those pro-
duced by arithmetic mean, suggesting Tukey’s trimean is able to
infer more reliable interaction pairs (Supplementary Fig. 8b–d
and 8f–h).

We also investigate the effects of four different aggregation
methods on inferring neuronal connectivity. For the “thresholded
weight”method, we choose the threshold for an interaction pair as the
80% quantile of all communication strength values for the interaction

pair (the default setting for benchmarking). This is because the 80%
quantile leads to overall higher AUROC/AUPRC than other threshold-
ing quantiles, except a slightly lower AUROC for ALM projection net-
work (Supplementary Fig. 9a, b and 9e, f). Among the four aggregation
methods, we find that the “thresholded weight”method produces the
highest AUROC/AUPRC values for the VISp projection network, and
the second highest AUROC/AUPRC values that are only slightly lower
than the best ones for the ALM projection network (Supplementary
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Fig. 3 | Comparison of NeuronChat, CellPhoneDB, and CellChat in predicting
VISp and ALM projection networks. a Typical ROC curves (left panel) and PR
curves for the three methods. b The boxplots of AUROC (left panel) and AUPRC
(right panel) values for 100 repeats of the aggregated VISp projection networks
inferred by the threemethods. Each boxplot represents 100 independent repeated
computations. Boxplot elements: center line, median; box limits, upper and lower
quartiles; whiskers, 1.5x interquartile range; points, outliers. Note that no variation
in each boxplot is observed because the aggregated method “thresholded_weight”
reduces the fluctuation caused by finite sampling in the permutation test (see also

Supplementary Fig. 9). c The number of detected interaction pairs for the three
methods. d, e The boxplots of AUROC (d) and AUPRC (e) values for the individual
VISp projection networks inferred by the three methods. Sample size (i.e., the
number of detected interaction pairs) for boxplot: n = 50, 28, and 28 for Neu-
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Sample size for boxplot: n = 47, 25, and 25 for NeuronChat, CellPhoneDB and
CellChat, respectively.

Article https://doi.org/10.1038/s41467-023-36800-w

Nature Communications |         (2023) 14:1128 6



Fig. 9c, d and 9g, h). Furthermore, “thresholded weight” leads to
smaller variations in AUROC/AUPRC than other aggregation methods
for repeated simulations, thus robustly minimizing the randomness
generated in the permutation test.

NeuronChat identifies intercellular communication patterns
and functional-related interactions in VISp
The basic function of NeuronChat is to infer and visualize the inter-
cellular communication networks, and then identify intercellular
communication patterns and categorize the functionally related
interaction pairs. We illustrate these functionalities of NeuronChat by
applying it to the single-cell RNA-seq data of mouse VISp3. The
15,469 single cells are well annotated by three cell classes (Glutama-
tergic, GABAergic, and Non-Neuronal) and 21 cell subclasses. By
applying NeuronChat to this dataset, we identify the communication
networks among the 21 cell subclasses, which can be visualized by the
circle plot, chord diagram and heatmap (Fig. 4a). Each of the gluta-
matergic subclasses sends signals tomost of the GABAergic subclasses
and all glutamatergic subclasses as well as astrocytes, while the com-
munication strength for these links may differ. Interestingly, there are
dense communications among glutamatergic subclasses. Compared
to glutamatergic subclasses, GABAergic subclasses show relatively
sparse outgoing communications to the three cell classes. Among
GABAergic subclasses, Lamp5, Sncg, and Vip are the major senders;
while Lamp5, Pvalb and Vip subclasses receive signals from both
GABAergic subclasses and glutamatergic subclasses, Sst and Meis2
subclasses show a preference for receiving signals from glutamatergic
neurons.

A total of 109 significant interaction pairs are detected along with
the number of links for all interaction pairs (Supplementary Fig. 10).
After computing the information flow for each interaction pair, the
interaction pairs Nrxn1-Nlgn1, Nrxn3-Nlgn1, Glu-Gria2, Glu-Grin2b,
GABA-Gabra1, Glu-Gria4, GABA-Gabrb1, Glu-Grm5, GABA-Gabrg2 and
Glu-Grik2 are ranked top 10 in the information flow,whileNO-Gucy1a2,
Glu-Gria2, Glu-Grin1, Glu-Grin2b, GABA-Gabbr1, GABA-Gabrb1, Nrxn1-
Nlgn1, GABA-Gabrb3, Glu-Gria1 and Nrxn3-Nlgn1 are ranked top 10 in
thenumber of links. The incomplete overlappingbetween the top 10 in
the information flow and the top 10 in the number of links, indicates
that some interactions (e.g., Glu-Gria4) are specific with strong indi-
vidual links, while some others (e.g., Glu-Grin1) show wide commu-
nications among cell subclasses but moderate strength of
individual links.

Using a pattern recognition method32,33 (see Methods), Neu-
ronChat detects the outgoing patterns of sending cells and the
incoming patterns of receiving cells, which can be visualized via
alluvial plots. This enables visualization of the correspondence
between sending/receiving cell types and latent patterns, and the
correspondence between latent patterns and individual interaction
pairs (Fig. 4b). As expected, all glutamatergic subclasses correspond
to the outgoing pattern #1, which is related to all glutamate signaling,
Nrxn1 signaling, and a few of neuropeptide interactions (e.g., Cck-
Cckbr and Adcyap1-Adcyap1r1). In line with the diversity of inhibitory
neurons34, GABAergic subclasses correspond to outgoing patterns
#2-3: Lamp5, Sst and Sst Chodl subclasses belong to pattern #2, which
is mainly related to the signaling of neuropeptides Sst, Npy and Cort;
Pvalb, Meis2, Sncg, and Vip subclasses belong to pattern #3, which
includes signals of GABA, glycine and Nrxn3 as well as some neuro-
peptides such as Vip and Pnoc. For non-neuronal subclasses, Endo,
Micro-PVM and SMC-Peri correspond to outgoing pattern #2, while
Astro and VLMC belong to pattern #4 that represents interactions of
gap junction proteins. Different from the outgoing patterns, the
incoming patterns #2 and #4 include both glutamate signals and
GABA signals, indicating that corresponding cell subclasses (e.g., L5
IT CTX and Lamp5) receive both excitatory and inhibitory inputs.
Nevertheless, glutamatergic subclasses and GABAergic subclasses

correspond to different incoming patterns (patterns #1 & #4, and
patterns #2-3, respectively).

Throughmanifold learning35 (see Methods), NeuronChat projects
the interaction pairs into a two-dimensionalmanifold andgroups them
into different clusters based on the functional similarity of the com-
munication networks. Functional similarity measures the degree to
which interaction pairs share similar senders and receivers. The 109
interactionpairs are classified into 5 separate groups (Fig. 4c, d). Group
#1, dominated by glutamate signals, represents the signaling from
glutamatergic subclasses, while Group #4 includes many GABA and
glycine signals and represents the signaling from GABAergic sub-
classes (see also the aggregated communication network for each
interaction group from Supplementary Fig. 11). Interactions between
neurexins and neuroligins dominate Group #3. Group #5 contains
signaling of neuropeptides such as Sst, Vip, Penk and Npy from
GABAergic subclasses, indicating that these interaction pairs share
similar communication patterns. Group #2 is dominated by gap junc-
tion proteins and some neuropeptide signals, largely representing the
signaling among non-neuronal subclasses. The results of manifold
learning demonstrate that NeuronChat is able to categorize the
detected ligand-target interaction pairs into biologically meaningful
groups.

NeuronChat reveals conserved and context-specific commu-
nication patterns between interlaminar excitatory networks for
ALM and VISp
Another application of NeuronChat is to make comparisons across
different biological contexts, to identify communication patterns
conservedor specific to contexts. Here, we illustrate such functionality
of NeuronChat by comparing the interlaminar excitatory commu-
nication networks betweenALMandVISp. The single-cell RNA-seqdata
are from the published paper26, and include 4,600 glutamatergic
neurons for ALM and 8,114 for VISp, both of which are grouped into
8 shared subclasses. While the overall communication patterns are
similar for both (Fig. 5a), some communication networks for individual
interaction pairs are different. For example, Glu-Grin3a communica-
tion networks for ALM and VISp show a dramatic difference (Fig. 5b):
L4/5 IT CTX is predicted to be one of the major target cell subclasses
for ALM but not for VISp.

To identify the difference in individual communication networks,
we compare the number of links and information flow for all individual
interactions between the two regions (Fig. 5c). We find that only a few
interaction pairs share the equal or near-equal information flow (or
number of links) between ALM and VISp, e.g., Glu-Grin1 and Glu-Grm5.
Other interaction pairs show significant differences between the two
regions, for example, Pdyn signaling (including Pdyn-Oprm1, Pdyn-
Oprk1, and Pdyn-Oprd1) is exclusively ON in ALM; Glu-Grik4 and Glu-
Gria1 communication networks are much denser in ALM than in VISp;
Glu-Grm3 and Glu-Grm7 communication networks as well as those
mediated by Nlgn1 show more links and higher information flow in
VISp than in ALM.

Another way to compare the individual communication networks
for ALM and VISp is based on their functional similarity. By projecting
the interaction pairs of VISp and ALM onto the same two-dimensional
manifold according to their functional similarity and then categorizing
them into clusters, we can further spot the interaction pairs that are
conserved or context-specific (Fig. 5d). If the communication patterns
for one interaction pair are conserved between ALM and VISp, then the
communication networks for such interaction pairs for ALM and VISp
should be grouped into the same cluster, and vice versa. The two-
dimensional manifold shows that all of the ligand-target interaction
pairs are categorized into five clusters, and the aggregated network for
each cluster is shown by heatmaps (Fig. 5e): cluster #1, related to neu-
ropeptide signaling (e.g., Sst, Trh, Nmb, Pdyn and Vip), represents a
sparse communication pattern dominated by the signal from L6 IT CTX
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to L6b CTX; cluster #2, including glutamate signaling and neurexin-
neuroligin interactions, shows the communication patternwhere L2/3 IT
CTX, L4/5 IT CTX and L5 PT CTX are the major receivers; cluster #3
represents the communication pattern, in which the signal mainly

comes from L2/3 IT CTX, L4/5 IT CTX and L5 PT CTX; cluster #4 shows a
clear pattern where the L4/5 IT CTX and L5/6 NP CTX receive the signals
from all subclasses; cluster #5 represents dense and strong commu-
nications among subclasses, which is dominated by glutamate signals.
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Fig. 4 | Visualization and analysis of intercellular communication networks for
mouse primary visual cortex. a Visualizations of the inferred communication
networks among multiple cell types of VISp. Circle plot, chord diagram and heat-
map are used to visualize the intercellular communication networks aggregated by
method “weight”. In the circle plot, the node size indicates the strength of the
outgoing signal from the cell, and the text labels are labeled by different colors to
indicate their cell classes (i.e., glutamatergic, GABAergic and non-neuronal); the
communication strength for each link is indicated by the width. In the chord dia-
gram, sectors for different cell classes are repelled by larger gaps; the width of each
link represents the communication strength, while the width of a sector (repre-
senting a cell group) reflects the strength of the total communications from or to
this cell group. The color bar in theheatmap indicates the communication strength.

b The outgoing signaling patterns of senders and incoming signaling patterns of
receivers visualized by alluvial plots, which show the correspondence between the
inferred latent patterns and cell groups, and the correspondence between the
inferred latent patterns and interaction pairs. The thickness of the flow indicates
the contribution of the cell group or interaction pair to each latent pattern. The
height of eachpattern is proportional to the number of its associated cell groups or
interaction pairs. The top 60 interaction pairs with the highest information flow are
used for analysis. c Projecting interactions onto a two-dimensional manifold
according to their functional similarity. Each interaction pair is represented by a
dot, whose color and size indicate the functional group and the total commu-
nication strength (normalized by the maximum), respectively. dMagnified view of
the two-dimensional manifold for each interaction group.
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Interestingly, for most of the ligand-target interaction pairs, the com-
munication networks for ALM and VISp are categorized into the same
clusters, indicating most ligand-target interaction pairs may be con-
served between the two regions. For example, communication networks
for Glu-Gria2 in the ALM and VISp are both grouped into cluster #5.

However, the communication networks of Glu-Grin3a for ALM and VISp
are grouped into cluster #4 and cluster #5, respectively, indicating that
Glu-Grin3a is context-specific for ALM and VISp (see also Fig. 5b); like-
wise, the communication networks of Nrxn1-Nlgn3 for ALM and VISp
belong to cluster #2 and cluster #5, respectively.
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NeuronChat predicts the changeof intercellular communication
patterns in patients with autism spectrum disorder
NeuronChatDB also includes the ligand-target interaction information
of humans.We investigate howNeuronChat can be used to predict the
change of intercellular communication patterns in patients with par-
ticular neurological diseases, by applying it to the published single-
nucleus RNA sequencing data of cortical tissue from patients with
autism spectrum disorder (ASD) and healthy controls36. The data were

collected frompostmortem tissue samples including prefrontal cortex
and anterior cingulate cortex from 15 ASD patients and 16 controls,
containing 52,003 single nuclei for ASD patients and 52,556 for con-
trols. To reduce the computational cost, a total of 20,000 cells are
sampled for analysis (10,000 for ASD and 10,000 for control).

We use NeuronChat to infer the communication networks among
17 cell types, including subtypes of excitatory neurons, interneurons
and astrocytes, for both ASD patients and controls. For the
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Fig. 6 | Comparisonanalysis of cell-cell communications in cortexbetweenASD
patients and controls. a Comparison of the number (left panel) and weight (right
panel) of all the links inferred between ASD and control. b Circle plots showing the
upregulated (upper panel) and downregulated (lower panel) intercellular com-
munications in ASD compared to control. The width of each link indicates the
absolute difference between ASD and control, in the sum of communication
strength values over all interaction pairs. c Heatmap showing the differential out-
going (upper panel) and incoming (lower panel) signal strength between ASD and
control. Given the cell group and interactionpair, the outgoing (or incoming) signal

strength is defined as the sum of communication strength over the links from (or
to) the cell group. The color bar indicates the difference in the outgoing (or
incoming) signal strength values between ASD and control.d Bar charts comparing
the number of links (left) and information flow (right) between ASD and control for
each interaction pair. e Projecting interactions onto a two-dimensional manifold
according to their functional similarity (upper panel) and magnified view of each
interaction group (lower panel). Each interaction pair is represented by a circle (for
ASD) or triangle (for control), whose color and size indicate the functional group
and total communication strength (normalized by the maximum), respectively.
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communication networks inferred by NeuronChat, ASD shows not
only more total links than control (Fig. 6a, upper panel) but also
increased link strength (Fig. 6a, lower panel), indicating an overall
enhancement of communications among cell types in ASD. Consistent
with this, by contrasting the aggregated intercellular communication
networks of ASD and controls, wefind that there aremore intercellular
communications upregulated (Fig. 6b, upper panel) than down-
regulated (Fig. 6b, lower panel) in ASD patients compared to controls.
This may support the hypothesis of local overconnectivity in
autism37–39. Furthermore, for each cell type and each interaction pair,
we calculate the differential outgoing and incoming communication
strength in ASD compared to control (Fig. 6c). From the differential
outgoing pattern (Fig. 6c, upper panel), we observe most of the glu-
tamate signals are enhanced for most excitatory neuron types; out-
going signals mediated by neuroligin 1 are enhanced for most cell
types, but impaired in some cell types such as PV interneuron, oligo-
dendrocyte or OPC (oligodendrocyte precursor cell). From the
incoming differential pattern (Fig. 6c, lower panel), we observe that
while glutamate signals tomost cell types are enhanced, the neuroligin
1 signaling to oligodendrocyte (NRXN1-NLGN1 andNRXN3-NLGN1) and
the neuroligin 3 signaling to OPC (NRXN1-NLGN3, NRXN2-NLGN3, and
NRXN3-NLGN3) is largely reduced. Interestingly, more than 10 mis-
sense mutations in NLGN3 gene locus have been identified to be
associatedwith ASD, and ASD-associated behavioral phenotypes (such
as abnormal social interaction, stereotyped behavior, and enhanced
spatial learning) arise in animal models with mutations in Nlgn340. Our
results suggest that downregulation of NLGN3 signaling may also
underlie dysfunction in ASD. In fact, ASD animal models show reduc-
tions in oligodendrocyte numbers and myelination41, while the

differentiation of OPC to oligodendrocyte is affected by NLGN342.
Consistent with this evidence, the specific downregulated NLGN3 sig-
naling to OPC in ASD, discovered in our analysis, suggests that the
defective NLGN3 signaling may cause ASD in a mechanism via the
dysfunction of OPC.

We next compare the number of communication links and the
information flow for each interaction pair between ASD and controls
(Fig. 6d). ASD and controls share similar numbers of links and similar
information flow for interaction pairs such as GABA-GABRG3 and
NRXN1-NLGN4Y, which may be not specific to ASD. Some interaction
pairs such as NRXN2-NLGN2, Glu-GRM3, and Glu-GRIN1, are upregu-
lated in ASD in both number of links and information flow. Many
interaction pairs show little difference in the number of links, but with
increased informationflow, such asNRXN2-NLGN1,Glu-GRIA2 andGlu-
GRIA4. Other interactions such as CCK-CCKBR, CRH-CRHR1, TAC1-
TACR1 and GABA-GABRA6 show decrease in ASD, in both number of
links and information flow.

We further identify the interaction pairs that are conserved or
context-specific, by projecting the interaction pairs of ASD and control
onto the same two-dimensional manifold and clustering according to
their functional similarity (Fig. 6e). All of the ligand-target interaction
pairs are categorized into four clusters: cluster 3 and cluster 4 are
dominated by GABA signaling and neurexin-neuroligin signaling,
respectively; both cluster 1 and cluster 2 are dominated by glutamate
signaling, while cluster 1 also includes neuropeptide signaling and gap
junction interaction as well as neuroligin 3 signaling. Surprisingly, for
most of the interactions, the communication networks for ASD and
control are grouped into the same clusters, indicating that most
communication patterns are conserved between ASD and control in
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communication network with the top 10 links shown (top). The width of a link
indicates the sum of communication strengths over all significant ligand-target
pairs. See Supplementary Fig. 12 for the full aggregated networks. The bottom
image in (b) is the brain anatomic reference (AllenMouse Brain Atlas, mouse.brain-
map.org56 and Allen Reference Atlas atlas.brain-map.org57). d Bar plot showing the
cell proximity enrichment scores for all pairwise interacting cell types. The cell
proximity enrichment scores are calculated based on all 64 MERFISH slices. The

score>0 (bars in red) and score<0 (bars in cyan) represent enriched and depleted
proximity between interacting cell types, respectively. e The inference of spatially
constrained communication network for GABAergic neurons. Left panel: the cell
proximity network. Links in red or gray represent enriched or depleted proximity
between interacting cell types, respectively; the width of a link indicates the
strength of enrichment or depletion. Middle panel: cell-cell communication net-
work without spatial constraint, calculated based on scRNA-seq data26 for the same
brain region and same cell types (2,044 single cells in total). The width of a link
indicates the sum of communication strengths over all significant ligand-target
pairs. Right panel: the spatially constrained cell–cell communication network,
obtained by removing links with depleted proximity from the original cell-cell
communication network. See also Supplementary Fig. 13.
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terms of functional similarity. For interaction pairs Glu-GRIK1, Glu-
GRIK3, Glu-GRIK4, Glu-GRIK5, and Glu-GRIN3A, the communication
networks for ASD and control are grouped into cluster 1 and cluster 2,
respectively. This means that the senders or receivers for these inter-
action pairs are different between ASD and control.

NeuronChat utilizes spatial transcriptomics to infer and visua-
lize neural-specific communication networks
NeuronChat can also be used for the inference and visualization of
neural-specific communication networks from spatial transcriptomics
(ST) data which measure gene expression in neural cells together with
their spatial locations. We illustrate such functionality of NeuronChat
by applying it to three mouse brain ST datasets based on three dif-
ferent sequencing techniques including seqFISH+5, MERFISH4, and
Visium43. The seqFISH+ dataset5 includesmRNA expressions of 10,000
genes in 913 cells in the mouse somatosensory cortex and sub-
ventricular zone, where there are 358 excitatory neurons of four types.
The MERFISH dataset4 includes mRNA expressions of 258 genes in
approximately 300,000 cells (including nine glutamatergic subclasses
and five GABAergic subclasses as well as non-neuronal subclasses) in
the mouse primary motor cortex and adjacent areas. The Visium
dataset43 includesmRNAexpressionprofiles in 2,702 spots of a coronal
slice of the mouse brain, and these spots are classified into seven
clusters.

For all three ST datasets, we compute the communication net-
works among cell types (or spot clusters) without imposing spatial
constraints. For seqFISH+ and Visium datasets, the communication
networks are directly calculated from the spatial transcriptomics; for
the MERFISH dataset, because the number of genes included in the
MERFISH dataset is too small to cover most of the ligand-target pairs,
we use the scRNA-seq data of mouse primary motor cortex26 to infer
the communication network among seven excitatory cell types that
are shared by the MERFISH dataset and the scRNA-seq dataset
(4,461 cells of seven glutamatergic subclasses). To visualize commu-
nications networks in space, we develop a multi-layered visualization
tool to illustrate together the spatial communications network, cell
type/spot cluster annotation, and tissue image/ anatomic reference
(Fig. 7a–c; Supplementary Fig. 12).

NeuronChat also provides an option for adding the spatial con-
straint to the communication network. We test this functionality by
applying it to communications among five GABAergic subclasses (i.e.,
Lamp5, Sncg, Vip, Sst, and Pvalb) of the MOp cortex, based on the
MERFISH4 (Supplementary Fig. 13) and scRNA-seq data26. While long-
range spatial communication occurs regularly for neural-specific sig-
nals, GABAergic neurons generally have localized axonal arbors and
the connection probability among them decreases with interneuronal
distance44. To study the potential spatial effect on communication
networks forGABAergicneurons,wecharacterize the spatial proximity
among GABAergic subclasses by calculating the spatial proximity
enrichment score similar to a previous study45 (Fig. 7d; see Methods).
We can then remove communication links with their spatial proximity
scores lower than a given threshold, leading to a spatially constrained
communication network (Fig. 7e). For example, while Pvalb subclass
has connections with each of the other four GABAergic subclasses in
the communication network without spatial constraint, this subclass
only shows enriched cell proximity with itself or Sst subclass. This
observation is consistent with the evidence that Pvalb cells preferably
connect to other Pvalb cells46.

Discussion
NeuronChat is designed specifically for inferring neural-specific
intercellular communications from single-cell expression data and
spatially resolved transcriptomics. We have constructed a ligand-
target interaction database of neural signaling, and presented a com-
putational model that incorporates the process of neural signal

transmission to infer intercellular communications, making Neu-
ronChat different from the existingmethods thathave beendeveloped
for inferring communications among cells for non-neuronal activities.
The benchmark and applications of NeuronChat to multiple datasets
has shown its ability to predict neural connectivity. Considering the
neuron heterogeneity identified from a growing number of single-cell
transcriptomic datasets and spatial transcriptomic datasets, novel
neural connections among diverse transcriptomic states may be pre-
dicted by NeuronChat. By contrasting available neural connectivity
data, such as retrograde labeling data and electrophysiological data,
with our predicted communication networks for particular ligand-
target interaction pairs (e.g., Fig. 2e, j), one can further identify the
signaling pathways and key genes that may provide insights into
uncharacterized mechanisms underlying neural connectivity.

The NeuronChat R package provides versatile and easy-to-use
visualization tools and network analysis approaches, to allow con-
venient exploration of neural-specific intercellular communication
patterns. Using such analysis tool in this study, NeuronChat was
shown to classify glutamatergic neuron subtypes and GABAergic
neuron subtypes into separate sender groups based on their out-
going signaling patterns; the interaction pairs mediated by glycine
are categorized into the interaction group that contains GABA signals
from GABAergic neurons; and the specific downregulation in NLGN3
signaling to OPC has been identified in ASD patients. Collectively,
NeuronChat is able to decipher convoluted interneuronal commu-
nications with biologically meaningful discoveries from scRNA-seq
data. To explore the signaling pathways and gene regulatory net-
works downstream from the predicted interneuronal communica-
tions, one may use the existing database, such as OmniPath47,
STRING48 and NicheNet11, to construct integrated cell-cell commu-
nication networks through connecting signaling as well as tran-
scriptional regulation.

There is a trade-off between accuracy and computation speed for
permutation-based p-value calculations, which are needed for all new
applications of NeuronChat. A high number of permutations can
produce a more accurate empirical p-value, but it suffers from long
computation time (the time complexity for the permutation-based p-
value calculations is OðnÞ where n is the number of permutations).
Nevertheless, we find a good consistency between p-values calculated
by 100 and 1000 permutations, and the links detected by 1,000 per-
mutations largely overlap with those detected by 100 permutations
with no more than 1.5% of links missed (Supplementary Fig. 3). These
results suggest that onemay reduce the number of permutations (e.g.,
default number 100 in NeuronChat) to save computation time while
maintaining the accuracy of p-value calculations.

While NeuronChat’s computational workflow has been optimized
to predict neuronal connectivity, the settings can be expanded to
incorporate more refined models, for example, for estimating the
abundance of small molecular neurotransmitters. For such cases, the
stoichiometric effects of metabolism and pathways dependency may
be included in addition to using expressions of only synthetic enzymes
and vesicular transporters. By comparing nine glutamate abundance
surrogates, we find that some of the scFEA-derived surrogates show
higher AUROC (or AUPRC) values than NeuronChat’s ligand abun-
dance (Supplementary Fig. 7). While the difference between Neu-
ronChat’s ligand abundance and the best scFEA-derived surrogate is
small, it suggests ways in improving the prediction accuracy of neu-
ronal connectivity.

Like other existing methods for inferring cell-cell communica-
tions, NeuonChat estimates the abundance of ligands and target pro-
teins from transcriptomics that could be inconsistent with protein or
metabolite levels. In principle, NeuronChat can be applied to pro-
teomics and metabolomics data to infer ligand-target interactions if
the data becomes available. With the single-cell proteomics and
metabolomics techniques lagging behind transcriptomics in coverage
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of molecules or throughput49,50, for now the transcriptomics data
remain as a main data source for cell-cell communication inference.

While NeuronChatDB includes major small-molecular neuro-
transmitters, most of the neuropeptides, some gasotransmitters, gap
junction proteins aswell as synaptic adhesionmolecules, theremay be
missing information in the curated interaction entries, leading to bias
in the inference. Nevertheless, NeuronChat allows easy updating of the
database with user-defined interactions that are not included in the
current version, to expand its applicability for more interactions.

In the current study, NeuronChat splits the multiple different
subunits of the heteromeric receptor into separate entries when
evaluating their abundance. In principle, the subunit stoichiometries
need to be taken into account to more accurately represent the het-
eromeric receptors. The heteromeric receptor can be assembled from
various combinations of subunits, with great diversity in subunit
compositions51, dramatically affecting its functional properties. For
example, the existence of the GluA2 subunit in AMPA receptors
determines the permeability to calcium ions52. While NeuronChatDB
does not contain the information of subunit stoichiometries that are
largely unknown for most heteromeric receptors, NeuronChat
includes the option tomodel the abundance of particular heteromeric
receptors with customer-provided subunit stoichiometries.We expect
that incorporating knowledge of auxiliary proteins and downstream
genes will improve the accuracy of the communication prediction.

Methods
Database construction for ligand-target interactions
NeuronChatDB is curated from existing databases (including KEGG53

and IUPHAR/BPS Guide to PHARMACOLOGY54) and literature (e.g.,
neuropeptide interactions are from the reference16), and contains
neural-specific intercellularmolecular interactions for bothmouse and
human. There are 373 entries in total. Each entry of NeuronChatDB
represents an interaction pair, including one ligand and a cognate
target as well as genes related to them. The ligands include small-
molecule neurotransmitters, neuropeptides, gap junction proteins,
gasotransmitters and synaptic adhesion molecules: small-molecule
neurotransmitters include glutamate (Glu), GABA, glycine (Gly), acet-
ylcholine (ACh), serotonin (5-HT), dopamine (DA), epinephrine (Epi)
and norepinephrine (NE); gasotransmitters include carbon monoxide
(CO) and Nitric oxide (NO); synaptic adhesion molecules refer to
neurexins (regarded as the ligand) and neuroligins (regarded as the
target). The targets are typically but not limited to receptors. For
example, the target proteins for neurotransmitters can also be uptake
transporters or deactivating enzymes; the target proteins for gap
junction proteins are other compatible gap junction proteins. For non-
peptide neurotransmitters, corresponding synthesizing enzymes and/
or vesicular transporters are included in the entry; for heteromeric
receptors that contain multiple different subunits, corresponding
subunits are split into different entries with the same ligand. To be
compatible with the inference model of NeuronChat, for the non-
peptide neurotransmitters, related genes including vesicular trans-
porters and synthesizing enzymes responsible for different catalyzing
steps are annotated into separate groups.

Inference of neural-specific cell-cell communications
For each ligand-target interaction pair, NeuronChat infers intercellular
communication in three steps as follows:
1. Calculation of ensemble average expression. For each gene

involved in the ligand-target interaction pair, the ensemble
average expression in a given cell group is calculated using
Tukey’s trimean:

TM =
1
2
Q2 +

1
4
ðQ1 +Q3Þ ð1Þ

where Q1, Q2, and Q3 are the first, second and third quartile of the
expression levels of the gene in the given cell group. Because the genes
expressed in less than 25% of cells are filtered out, Tukey’s trimean
benefits to identify the cell-type enriched ligand-target pairs (see also
Supplementary Fig. 8).
2. Calculation of cell-cell communication strength. NeuronChat

estimates the abundance of the ligand and the target for each
cell group, and computes cell-cell communication strength.When
the ligand is a peptide or protein that corresponds to a single
gene, the abundance of the ligand for a given cell group is set as
the ensemble average expression defined in step 1. For non-
peptide neurotransmitters, the abundance of the ligand depends
on expression levels of corresponding synthesizing enzymes and
vesicular transporters. Assume that the synthesis of the ligand
requires m1 catalyzing steps; for the s-th catalyzing step
(s = 1,2, . . . ,m1), let ps denote the number of isoenzymes that
catalyze the same chemical reaction (e.g., glutamate decarbox-
ylase 1 and 2 for the synthesis of GABA), and Ei,s,l ðl = 1,2, . . . ,psÞ
denote the ensemble average expressionof the l-th isoenzyme for
step s in cell group i. Likewise, let q denote the number of
vesicular transporters for the storage of the same ligand (e.g.,
vesicular glutamate transporter 1, 2, and 3 for the glutamate), and
let Vi,l ðl = 1,2, . . . ,qÞ denote the ensemble average expression of
the l-th vesicular transporter. Then, the abundance of ligand is
modeled by the 1 +m1 functional groups of genes including one
group for vesicular transporters andm1 groups for them1 steps of
synthesis. Because a high abundance of ligand requires high
expressions of all the 1 +m1 groups of genes, so theAND logic (i.e.,
geometric mean) is applied among different groups of genes;
since the genes within the samegroup are redundant for the same
function, the OR logic (i.e., arithmetic mean) is applied. Thus, the
abundance of ligand for the i-th cell group is modeled as

Li =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPq
l = 1 Vi,l

q
�
Pp1

l = 1 Ei,1,l

p1
� � �

Ppm1
l = 1 Ei,m1 ,l

pm1

1 +m1

vuut
: ð2Þ

When some of the redundant genes for a function group are missing
from the input data due to low gene coverage, NeuronChat will only
use the remaining genes. If the entire group of genes are missing, the
ligand abundance is set to be zero by default; in such case, NeuronChat
also provides a less-strict mode to allow the calculation by setting the
ensemble average expressions of these genes as ones, which will be
useful for the dataset with low gene coverage.

In the current study, all targets correspond to a single gene (for
heteromeric receptors that contain multiple different subunits,
we just split these subunits into different entries but with the
same ligand so that the target for each entry is represented by a
single subunit), so the target abundance Tj for the cell group j is
set as the ensemble average expression of the corresponding
gene defined in step 1). Nevertheless, NeuronChat is also com-
patible with heteromeric receptors given customer-provided
subunit stoichiometries, and the target abundance in cell group j
is defined as the weighted geometric mean of the ensemble
average expressions of subunit genes:

Tj =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tj,1

c1 � � �Tj,m2

cm2

Pm2
l = 1

cl

q
ð3Þ

where cl′s (l = 1,2, . . . ,m2) are the subunit stoichiometries andm2 is the
number of different subunits. Then the communication strength from
cell group i to cell group j is defined as

LTi,j = Li � Tj ð4Þ
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3. Determination of the significance of communication links. The
statistical significance of each communication is calculated
through the permutation test by randomly permutating group
labels of cells and then recalculating the communication strength
for each permutation. Then the p-value is calculated as

pi, j =
1
M

XM

m= 1

I
LT ðmÞ

i, j >LTi, j

n o ð5Þ

Where LT ðmÞ
i,j is the recalculated ligand-receptor interaction score for

the m-th permutation and M is the total number of permutations
(M = 100 by default); IfLT ðmÞ

i,j >LTi,j g is an indicator function of m, and

equals 1 if LT ðmÞ
i, j > LTi,j and 0 otherwise. The p-value is corrected for

multiple tests by using Benjamini–Hochberg procedure and commu-
nications with p-value < 0.05 are considered significant; for non-
significant communication links, the communication strength values
are set to be zeros.

By performing the steps 1−3 for each ligand-target interaction
pair, we obtain the communication strength for any interaction pair k
from any cell group i to cell group j, Pk

i, j ði= 1, . . . ,G, j = 1, . . . ,G,
k = 1, . . . ,KÞ, which can be written into a three-dimensional array
P ðG×G×KÞ, whereG is the number of cell groups and K is the number
of ligand-target interaction pairs.

Implementation of CellChat and CellPhoneDB
We use the same computational workflow of NeuronChat for the
implementation of CellChat and CellPhoneDB, except for the calcu-
lation of ligand abundance and the formula for the communication
strength: CellChat computes the ligand abundance as the geometric
mean of the average expressions of genes contributing to ligand
emission, and adopts a Hill function to transform the product of
ligand and target abundance to get the communication strength;
CellPhoneDB computes the ligand abundance as the minimum of the
average expressions of contributing genes, and takes themean of the
ligand and target abundance as the communication strength. It
should be noted that, for small-molecule neurotransmitters, both of
CellChat and CellPhoneDB are implemented without categorizing
the contributing genes into different functional groups and thus use
AND logic (geometric mean or minimum) for all contributing genes,
without applying OR logic for redundant genes for the same func-
tion; hence, the ligand abundance can be dramatically under-
estimated if some of the redundant genes are expressed at extremely
low levels (e.g., zeros).

Inference of neural-specific cell-cell communications from spa-
tial transcriptomics data
For spatial transcriptomics data, NeuronChat can calculate the com-
munication networks without imposing spatial constraints, by using
the cell-by-gene (or spot-by-gene) count matrix. To construct the
spatially constrained communication networks, we first use the spatial
locations of cells/spots to characterize the proximity among cell
groups/spot clusters by calculating spatial proximity enrichment score
similar to Giotto45, and then remove communication links (from the
communication network without spatial constraint) with their spatial
proximity scores lower than a given threshold. Specifically, for the
calculation of spatial proximity enrichment score, we first find all cell/
spot pairs within a given distant threshold (400 microns used for the
MERFISH dataset), and calculate the observed frequencies for all
combinations of cell group/spot cluster pairs. Then we randomly
permutate cell/spot labels to recalculate the frequencies for cell
group/spot cluster pairs, and the expected frequencies are obtainedby
averaging the figures over 1000 permutations by default. The spatial

proximity enrichment score for two cell groups/spot clusters is cal-
culated as the log2-transformed ratio of the observed frequency over
the expected frequency; a high spatial proximity enrichment score
means the two cell groups/spot clusters are preferentially located
close to eachother in space. The associated p-value is calculated as the
percentage of permutations that yield frequency values higher than
the observed one.

Methods used for aggregating the intercellular communication
networks over all interaction pairs
For each interaction pair k, denote PðkÞ = ðPk

i, jÞ the communication
strength matrix for the significant links among all cell groups (the
values for non-significant communication links are set to be zeros).
The aggregated cell-cell communication network can then beobtained
by summarizing all PðkÞ over all interaction pairs, using one of the four
aggregation methods:
1. C1 =

P
kP

ðkÞ. Given the sending and receiving cell group, this
aggregation method sums communication strength values over
all interaction pairs, denoted as “weight”.

2. C2 =
P

kI
ðkÞðakÞwhere I kð ÞðakÞ is amatrixwith the samedimensions

as PðkÞ and its element Iki, jðakÞ= 1 if Pk
i, j >ak and Iki, jðakÞ=0 other-

wise. If ak =0 for any k, then the element inC2 counts the number
of links with non-zero communication strength over all interac-
tion pairs, from one cell group to another; in such case, the
aggregation method is denoted as “count”.

3. C3 =
P

kwkI
kð ÞðakÞ, wherewk is the sumof elements inPðkÞ and also

known as the information flow for the interaction pair k. If ak =0
for any k, this aggregation method counts the number of links
withnon-zero communication strengthwhile assigning theweight
of the interaction pair as the information flow, denoted as
“weighted count”.

4. C4 = ∑k Ρ(k)⊙I(k)(ak), where ⊙ means Hadamard product, i.e.,
(A⊙B)i,j = Ai,jBi,j. The aggregation method, denoted as “thre-
sholded weight”, sums the communication strength values
over all interaction pairs with the communication strength
values filtered by a threshold for each interaction pair. This
method is the default setting for benchmarking NeuronChat,
with threshold ak defined as the 80% quantile of all the ele-
ments of P kð Þ.

Network analysis approaches
Network analysis approaches include pattern recognition32,33 and
manifold and classification learning35, the implementation of which is
based on CellChat functions9. For pattern recognition, the latent
patterns for the outgoing signaling of sending cells (or incoming
signaling of receiving cells) are calculated through the non-negative
matrix factorization of a two-dimensional matrix obtained by sum-
ming the three-dimensional array Ρ along the second (or first)
dimension. The two output matrices, cell loading matrix and signal-
ing loading matrix, which represent the correspondence between
cell groups and latent patterns and the correspondence latent pat-
terns between individual interaction pairs, respectively, can be
visualized by the alluvial plots. The manifold and classification
learning projects the communication networks for individual inter-
action pairs into a low-dimensional manifold and classifies them into
groups. The first step is the calculation of the functional similarity
matrix, of which each element is defined as the ratio of the number of
overlapped communication links to that of non-overlapped links for
two communication networks. Then k-nearest neighbors are found
for each interaction pair based on the functional similarity matrix
and used to smooth the functional similarity matrix. Finally, the
smoothed similarity matrix is used to perform uniform manifold
approximation and projection (UMAP) and the interaction pairs are
grouped based on the k-means clustering of the first two compo-
nents of the learned manifold.
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Data preprocessing
The single-cell RNA countmatrices were processed as follows, prior to
analysis with NeuronChat. The RNA counts for each cell were divided
by the total counts in the cell and multiplied by a scale factor (10,000
by default), and these values are added with a pseudocount of 1 and
then natural-log transformed. For the genes related to interacting
molecules in NeuronChatDB and used to calculate the communication
strength, the expression values are further normalized by the max-
imum, to guarantee the communication strength has the range
from 0 to 1.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
NeuronChatDB is included in the NeuronChat repository (https://
github.com/Wei-BioMath/NeuronChat), and can be also accessed in
table formats (https://github.com/Wei-BioMath/NeuronChatAnalysis
2022/tree/main/NeuronChatDB_table). KEGG pathway database is
available at https://www.genome.jp/kegg/pathway.html. IUPHAR/BPS
Guide to PHARMACOLOGY database is available at https://www.
guidetopharmacology.org. The mouse scRNA-seq datasets analyzed
in this study are available from the Gene Expression Omnibus (GEO)
repository under the following accession numbers: GSE115746 and
GSE185862. The human autism datasets analyzed in this study are
available at https://autism.cells.ucsc.edu. The processed seqFISH+
data are available at https://rubd.github.io/Giotto_site/articles/mouse_
seqFISH_cortex_200914.html. The MERFISH dataset is available at
https://doi.org/10.35077/g.21. The Visium dataset is available at
https://support.10xgenomics.com/spatial-gene-expression/datasets/1.
1.0/V1_Adult_Mouse_Brain. The code used to reproduce the figures and
results in this study are available at https://github.com/Wei-BioMath/
NeuronChatAnalysis2022.

Code availability
NeuronChat is an R package available at GitHub (https://github.com/
Wei-BioMath/NeuronChat) and Zenodo (https://doi.org/10.5281/
zenodo.7600421)55. The package dependencies include data.table
v1.14.2, dplyr v1.0.9, CellChat v1.1.3, NMF v0.23.0, Seurat v4.1.0, Seur-
atObject v4.1.0, circlize v0.4.14, ComplexHeatmap v2.8.0, igraph
v1.3.4, ggalluvial v0.12.3 and ggplot2 v3.3.6. The code used to repro-
duce the analysis in this study is available at https://github.com/Wei-
BioMath/NeuronChatAnalysis2022.
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