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Abstract

Automatic fetal brain tissue segmentation can enhance the quantitative assessment of brain 

development at this critical stage. Deep learning methods represent the state of the art in medical 

image segmentation and have also achieved impressive results in brain segmentation. However, 

effective training of a deep learning model to perform this task requires a large number of training 

images to represent the rapid development of the transient fetal brain structures. On the other 

hand, manual multi-label segmentation of a large number of 3D images is prohibitive. To address 

this challenge, we segmented 272 training images, covering 19–39 gestational weeks, using an 

automatic multi-atlas segmentation strategy based on deformable registration and probabilistic 

atlas fusion, and manually corrected large errors in those segmentations. Since this process 

generated a large training dataset with noisy segmentations, we developed a novel label smoothing 

procedure and a loss function to train a deep learning model with smoothed noisy segmentations. 

Our proposed methods properly account for the uncertainty in tissue boundaries. We evaluated 

our method on 23 manually-segmented test images of a separate set of fetuses. Results show that 

our method achieves an average Dice similarity coefficient of 0.893 and 0.916 for the transient 

structures of younger and older fetuses, respectively. Our method generated results that were 

significantly more accurate than several state-of-the-art methods including nnU-Net that achieved 

the closest results to our method. Our trained model can serve as a valuable tool to enhance the 

accuracy and reproducibility of fetal brain analysis in MRI.
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1. Introduction

1.1. Background and motivation

Fetal magnetic resonance imaging (MRI) has emerged as an important and viable tool 

for assessing the development of brain in utero. It has enabled assessment of normal and 

abnormal brain growth trajectories in utero (Corbett-Detig et al., 2011). Moreover, fetal 

MRI may offer more accurate assessment and quantification of fetal brain development 

and degeneration when ultrasound images are inadequate (Hosny and Elghawabi, 2010; 

Weisstanner et al., 2015). Faster image acquisition methods (Yamashita et al., 1997) and 

superior super-resolution algorithms (Ebner et al., 2020; Kainz et al., 2015; Kuklisova-

Murgasova et al., 2012; Gholipour et al., 2010) can now reconstruct high-quality 3D fetal 

brain images from stacks of 2D slices. These technical advancements have significantly 

improved the quality of fetal brain MRI. As a result, a growing number of works have 

successfully used fetal MRI to study various congenital brain disorders (Egaña-Ugrinovic et 

al., 2013; Mlczoch et al., 2013). As the use of fetal MRI in clinical and research studies 

grows, quantitative image analysis methods become an urgent requirement. Automatic 

analysis methods can increase the speed, accuracy and reproducibility of quantification 

of fetal brain development. Accurate segmentation of the fetal brain into relevant tissue 

compartments is especially critical because many congenital brain disorders manifest 

themselves as changes in the size or shape of these tissues. Whereas manual segmentation 

is time-consuming and prone to high intra/inter-observer variability (Gousias et al., 2012), 

automatic segmentation promises high speed and reproducibility. As a result, in recent years 

there have been multiple efforts to segment different tissue compartments in the fetal brain.

Makropoulos et al. (2018) have reviewed automatic fetal and neonatal brain segmentation 

techniques in MRI. Here, we focus primarily on deep learning (DL) methods. Deep 

learning-based segmentation of adult brain into different tissue compartments has been 

successfully attempted by several studies in recent years (Dolz et al., 2018; Sun et al., 

2019). Overall, they show that DL methods are capable of accurately segmenting brain into 

relevant tissue compartments. Comparatively, much fewer studies have targeted the fetal 

brain tissue segmentation. For fetal cortical gray matter segmentation, one study proposed 

obtaining cheap annotations using an automatic segmentation method originally designed 

for neonatal brains (Fetit et al., 2020). They used a human-in-the-loop method to refined 

those segmentations on selected 2D slices. A fully convolutional network (FCN) was trained 

using these annotations. Their method achieved an average Dice Similarity Score (DSC) 

of 0.76. Segmentation of cortical gray matter has been addressed by several other works. 

One work used a deep attentive FCN and reported a mean DSC of 0.87 (Dou et al., 2020), 

whereas another study proposed integrating a topological constraint into the training loss 

function and achieved a mean DSC of 0.70 (Dumast et al., 2021). Another study used the 

nnU-Net framework to segment the white matter, ventricles, and cerebellum in fetal brain 

MRI, achieving DSC values in the range 0.78–0.94 (Fidon et al., 2021). To reduce the 

impacts of motion artifacts and partial volume effects, Li et al. (2021) proposed a unified 

deep learning framework to jointly estimate a conditional atlas and predict a segmentation. 

The rationale for this approach is that the prior knowledge provided by the atlas can guide 

the segmentation where image quality is low. The idea of leveraging atlases to improve 

Karimi et al. Page 2

Med Image Anal. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



deep learning-based segmentation has been explored in several other works (Oguz et al., 

2018; Diniz et al., 2020; Karimi et al., 2018; Zeng et al., 2018; Karimi et al., 2019). A 

succession of two FCNs was proposed by Khalili et al. (2019), the first to extract the 

intracranial volume and the second to segment the brain tissue into seven compartments. 

This method achieved a mean DSC of 0.88. For segmenting the fetal brain into seven tissue 

compartments, another study used a single 2D UNet and achieved a mean DSC of 0.86 

(Payette et al., 2020). Payette et al. (2021) compared a multi-atlas segmentation method with 

several DL methods for segmentation of fetal brain into seven tissue types and found that 

overall DL methods can achieve more accurate results.

1.2. Segmentation with noisy labels

Deep learning segmentation models, which represent the state of the art, require large 

accurately-labeled training datasets. Such datasets are especially difficult to come by in fetal 

MRI because the image quality is low and accurate multi-label segmentation of 3D images 

is very time-consuming. Despite recent progress in super-resolution reconstruction methods, 

3D fetal MR images can suffer from residual motion and partial volume effects, making 

accurate delineation of tissue boundaries challenging and uncertain. Moreover, the fetal 

brain undergoes rapid and significant changes during the second and the third trimesters. 

Therefore, to develop an accurate DL model, training data should include a sufficiently large 

number of subjects at different gestational ages (GA) in order to fully capture the variability 

in the transient fetal brain structures.

Because detailed manual segmentation of a large number of 3D fetal brain images is 

impossible or prohibitive, an alternative strategy would be to use less accurate annotations. 

Scenarios with weak, partial, or noisy labels are very common in medical image analysis. 

Hence, training of DL models with imperfect labels has been the subject of intense research 

in recent years (Cheplygina et al., 2019; Tajbakhsh et al., 2019; Rajchl et al., 2016). Such 

labels can often be obtained at low cost using automatic or semi-automatic methods. Song 

et al. (2020) have reviewed the state of the art methods for handling the label noise in 

DL. Karimi et al. (2020) present a survey that is more focused on medical image analysis 

applications, where the authors have identified six classes of methods for training DL 

models under strong label noise. Below, we describe two of the techniques that are more 

relevant to this work.

Loss function.—There have been many efforts to devise loss functions that are tolerant 

to label noise (Zhang and Sabuncu, 2018; Rusiecki, 2019). These loss functions typically 

tend to down-weight the penalty on data samples that incur very high loss values, under 

the assumption that those data samples are likely to have wrong labels. Another group of 

loss functions and training procedures are based on estimating and incorporating a label 

transition matrix (Patrini et al., 2017; Sukhbaatar et al., 2014). Label transition matrix 

T ∈ ℝL × L where L is the number of labels, is meant to describe how the correct labels are 

flipped into incorrect labels. If we denote the clean and noisy class probability vectors with, 

respectively, pc ∈ ℝL and pn ∈ ℝL, then we have pn = T pc. Hence, Ti, j is the probability that 

the correct label j is flipped to label i. Different approaches to estimating T and using it in 

Karimi et al. Page 3

Med Image Anal. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



training DL classification models have been proposed in prior works (Thekumparampil et 

al., 2018; Bekker and Goldberger, 2016).

Label smoothing.—Label smoothing has been extensively used in image classification 

(Pereyra et al., 2017) as well as in natural language processing applications (Chorowski 

and Jaitly, 2016). However, very few studies have used label smoothing for segmentation 

applications. In fact, the standard label smoothing approach is unlikely to be suitable for 

segmentation applications. This is because, unlike classification where the whole image is 

represented with one probability vector, in segmentation a probability vector belongs to a 

single pixel/voxel and there are strong spatial correlations between the labels of nearby 

voxels. Standard label smoothing ignores those spatial correlations and essentially assumes 

that the probability that label k is flipped to label l ≠ k is the same for all l, which is an 

unrealistic assumption. One study suggested smoothing the object boundaries in training 

data in order to improve the uncertainty calibration of the trained model (Islam and Glocker, 

2021). However, although they used the term “spatially-varying” to describe their method, 

they applied a fixed operation to all voxels. Another study proposed a label smoothing 

approach to improve the model uncertainty calibration for scene segmentation (Liu et al., 

2021). In the context of image colorization, one study used label smoothing to achieve more 

accurate scene segmentation (Nguyen-Quynh et al., 2020). However, none of these studies 

have properly addressed the spatially-varying nature of boundary uncertainty in semantic 

segmentation.

Another challenge in fetal brain tissue segmentation is that it involves a large number of 

compartments that vary significantly in size. In this work, we aim to segment the fetal brain 

into more than 30 classes, where the volume of the smallest class is typically 104 times 

smaller than the volume of the largest class. This can present a significant challenge for 

some of the loss functions that are commonly used to train DL segmentation models.

The goal of this work is to develop methods for accurate fetal brain tissue segmentation in 

MRI. Most prior works have segmented only a single tissue (e.g., Dou et al. (2020); Fetit et 

al. (2020)) or have divided the fetal brain into a small number of tissue compartments (e.g., 

Payette et al. (2020); Fidon et al. (2021)). In this work, we consider more than 30 relevant 

and important tissue compartments. To capture the rapid brain growth in utero and the 

complex developmental trajectories of these tissues, we use a training dataset of 272 images 

covering the gestational age between 19 and 39 weeks. Instead of manually annotating this 

dataset, which would have been prohibitive, we use a combination of automatic atlas-based 

segmentation and manual correction of gross errors. Using the expert-estimated boundary 

uncertainty for different tissues, we develop novel methods for label smoothing and for 

training a DL model with the smoothed labels. We evaluate our trained model and compare 

it with several alternative methods on a set of manually-segmented test images. We show 

that our method achieves high segmentation accuracy and outperforms several state of the art 

methods.
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2. Materials and methods

2.1. Data and annotation procedures

Data from 294 fetuses with GA between 19.6 and 38.9 weeks (mean 30.6; standard 

deviation 5.3) were used in this study. These data were collected in studies approved by the 

institutional review board committee. Written informed consent was obtained from pregnant 

women volunteers who participated in research MRI scans for fetal MRI. All images were 

collected with 3-Tesla Siemens Skyra, Trio, or Prisma scanners using 18 or 30-channel 

body matrix coils via repeated T2-weighted half-Fourier acquisition single shot fast spin 

echo (T2wSSFSE) scans in the orthogonal planes of the fetal brain. The slice thickness 

was 2mm with no inter-slice gap, in-plane resolution was between 0.9mm and 1.1mm, 

and acquisition matrix size was 256 × 204, 256 × 256, or 320 × 320. Volumetric images 

were reconstructed using an iterative slice-to-volume reconstruction algorithm (Kainz et al., 

2015), brain extracted and registered to a standard atlas space in a procedure described in 

(Gholipour et al., 2017). The resulting 3D images had isotropic voxels of size 0.8mm. We 

selected 22 of these fetuses and set them aside as “test subjects” for final evaluation. The test 

subjects had GA between 23.3 and 38 weeks (mean 32.9; standard deviation 4.14). We used 

the remaining, completely independent, 272 subjects as “training subjects” to develop/train 

our methods and also to train the competing techniques.

We manually segmented the test images in detail. To speed up the process, we first generated 

automatic segmentation for each subject with a multi-atlas segmentation method using 

a publicly available atlas (Gholipour et al., 2017). This is a four-dimensional (i.e., spatio-

temporal) atlas that covers the GA range between 19 and 39 weeks at one-week intervals. 

For each test fetus, we registered atlases that were within one week GA of the fetus 

using a diffeomorphic deformable registration algorithm. We then used the probabilistic 

Simultaneous Truth and Performance Level Estimation (STAPLE) algorithm (Akhondi-Asl 

and Warfield, 2013) to fuse the segmentations. Then, experienced annotators carefully 

refined all labels in several rounds until the segmentations were consistent and free of 

any non-trivial errors. This was a laborious effort, which required 4–10 days of work for 

each scan. We used these manual segmentations as “ground truth” to test our method and 

competing techniques.

We then segmented the 272 training scans using a similar two-step approach, but with one 

major difference. Specifically, in the manual refinement step the annotators only corrected 

major errors, which on average required approximately two hours of work for each scan that 

had major errors. This was done because manually segmenting all 272 images with the same 

level of detail as done for the test images would have been impossible given the annotators’ 

time. Furthermore, in order to account for the potential errors and uncertainties in these 

segmentations, we asked the annotators to specify the degree of uncertainty in the boundary 

of each tissue type. Given that all images had the same spatial resolution, this uncertainty 

was expressed in terms of the number of voxels. The boundary uncertainty specified by the 

annotators varied considerably for different tissues. For example, for lateral ventricle the 

boundary uncertainty was 0 voxels, meaning that the boundary was generally unambiguous, 

while for the caudate nuclei it was 2 voxels.
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Labels considered in this study included the following: hippocampus (HP)†, amygdala 

(AM)†, caudate nuclei (CD)†, lentiform nuclei (LN)†, thalami (TH)†, corpus callosum 

(CC), lateral ventricles (LV)†, brainstem (ST), cerebellum (CR)†, subthalamic nuclei (SN)
†, hippocampal commissure (HC), fornix (FN), cortical plate (CP)†, subplate zone (SP)†, 

intermediate zone (IZ)†, ventricular zone (VZ)†, white matter (WM)†, internal capsule (IC)†, 

CSF, and ganglionic eminence (GE)†. A † next to a label in this list indicates that separate 

components in the left and the right brain hemispheres were considered for that tissue type. 

In the rest of this paper, we use the acronyms defined above to refer to these tissues and 

structures. Following the construction of the atlas (Gholipour et al., 2017), there is one 

age-dependent difference in tissue labels. Specifically, fetuses that are younger than 32 

weeks GA have separate SP and IZ labels, whereas for fetuses that are 32 weeks GA and 

older these two tissue types are merged as a single label: WM. As a result, younger fetuses 

have 33 tissue labels, whereas older fetuses have 31 labels (in addition to the background 

label). Therefore, for our method and also for all competing methods, we trained two 

separate models for the two fetal age groups.

2.2. Development of a DL-based segmentation method

2.2.1. Label smoothing.—In order to account for the inherent and unavoidable 

uncertainty in the tissue boundaries, we propose a spatially-varying label smoothing method. 

Our label smoothing method is presented in Algorithm 1. It is based on the fact that label 

uncertainty is limited to tissue boundaries and depends on the tissues that meet at the 

boundary. Specifically, our label smoothing strategy is based on the observation that, as 

confirmed by our annotators, the boundary uncertainty is dictated by the more certain tissue. 

For example, consider a boundary where one of the adjoining tissues has an uncertainty of 

two voxels (less certain) but the other has an uncertainty of zero voxels (more certain). The 

boundary will have an uncertainty of zero because the tissue with more certain boundary 

resolves the ambiguity.

Let us denote the expert-provided semi-automatic segmentation with Y ∈ ℝN × L, where 

N is the number of voxels and L is the number of labels. Note that we can also write 

Y ∈ 0, 1 N × L because Y is a hard (0 or 1) label. For each voxel, Y is a one-hot probability 

vector ek (which equals 1 at location k and 0 elsewhere), where k is the indicated 

tissue label for that voxel. We define Y ∗ ∈ ℝN as Y ∗ = argmaxl ∈ 1, L Y ; in other words 

Y (i) = ek Y ∗ i = k. We denote with U ∈ ℝN the tissue boundary uncertainty map. U is 

obtained from Y by simply setting U(i) to the boundary uncertainty of the tissue label for 

Y(i). If, for example, tissue label for Y(i) is caudate nuclei (CD), then U(i) = 2 because the 

boundary uncertainty for CD is two voxels. We use ir to denote all voxels that are within 

a distance r from voxel i; in other words ir = k, k − i ≤ r . Throughout this paper, ǁ.ǁ 
denotes the ℓ2-norm. Also note that all voxel indices are in fact 3D indices (i.e., they have 

xyz elements) and, hence, ǁk − iǁ is a distance in ℝ3. However, we use single letters for 

indices in order to simplify the notation. Finally, we use Y(ir) to denote the “patch” of Y 
centered on voxel i with a radius r.
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Now, given manual segmentation labels, Y ∈ ℝN × L, we would like to compute smoothed 

labels, Y S ∈ ℝN × L, that account for uncertain tissue boundaries. To do this for voxel i, 

we first consider iR, where R = 4 is the upper bound of boundary uncertainty reported 

by our annotators for all tissues. If Y(iR) is homogeneous, that is, std[Y∗(iR)] = 0, it 

means that voxel i is far from tissue boundaries since all voxels in iR have the same 

label. Otherwise, voxel i is close to a boundary. In that case, we compute the boundary 

uncertainty as ru = min U iR , i.e., the minimum of the uncertainty of the tissues in iR. 

This is done following the justification provided above since the tissue with the lower 

uncertainty determines the uncertainty of the boundary. We then use a weighted average of 

tissue probabilities in iru to compute the smoothed class probability vector for this voxel. 

Specifically, we use a weight matrix W k ∝ exp( − k − i /τ) ∀k ∈ iru, which gives higher 

weights to voxels that are closer to voxel i. We have found that the kernel width, τ, should 

depend on the patch size, which is in turn related to the boundary uncertainty. This also 

makes intuitive sense because for more uncertain boundaries (larger ru) a larger kernel width 

should be used to achieve a higher degree of smoothing. In the experiments reported in this 

paper we simply set τ = ru, which we found empirically to work well. In order to ensure that 

the class probability vector for each voxel sums to one, Wk is normalized to sum to one. For 

each class label l, the smoothed probability at voxel i is then computed as:

Y S i l = ∑W ⊙ P Y iru = l , (1)

where ☉ denotes element-wise (Hadamard) product and the summation is carried out over 

all voxels in the patch iru. Figure 1 shows example label smoothing results generated with 

our proposed method. These examples show that our method smooths the boundary of 

each tissue/label based not only on the boundary uncertainty of that tissue but also on the 

boundary uncertainty of the adjoining tissues. For example, at the locations where a tissue 

shares a boundary with the lateral ventricles (which have a boundary uncertainty of zero 

voxels), the boundary becomes unambiguous and no smoothing is performed.

2.2.2. Loss function.—We use a loss function that treats certain and uncertain regions 

differently. We use M to denote a binary mask that shows voxels with uncertain (smoothed) 

labels. M is easily obtained as voxels where the maximum class probability in Ys is not 

equal to one, or equivalently, as voxels whose labels are altered in the process of label 

smoothing. In other words:
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Y s[i] ≠ Y [i] M[i] = 1. (2)

Then, our loss function is:

Loss Y , Y S = ∑
M = 0

L Y , Y S + ∑
M = 1

∑
l

T −TL Y , Y S , (3)

where T−T is the inverse of transpose of T, Y  is the segmentation map predicted by our DL 

model, and L is the base loss function, which we choose to be the cross-entropy. It has 

been shown that multiplication with T−T, for the uncertain boundary voxels in the second 

loss term above, leads to an unbiased minimizer (Patrini et al., 2017). In other words, the 

minimizer of the corrected loss function is the same as the minimizer obtained with clean 

(true) labels. Even though in this work TT was non-singular, instead of T−T we used (TT 

+ λI)−1 with λ = 1 as suggested in prior works (Patrini et al., 2017) because it resulted in 

faster and more stable training.

We computed the label transition matrix T empirically from our training data. Specifically, 

after applying Algorithm 1 on the training labels, we computed T from 50 of the training 

images as Ti, j = Σ Y = j ∪ M = 1 P Y s = i , where summation is performed over all images. 

This empirical estimation is based on the standard definition of the label transition matrix. 

We normalized each column of T to sum to unity because it should be a left stochastic 

matrix. Figure 2 shows our estimated T for younger and older fetuses.

2.2.3. Implementation and experiments.—As the baseline for implementation and 

comparison of different methods (described below) we used the nnU-Net framework 

(Isensee et al., 2021). nnU-Net is considered to be the state of the art in medical image 

segmentation. In particular, on 53 different segmentation tasks, nnU-Net has shown that with 

proper selection of the training pipeline settings, standard 3D U-Net architectures (Çiçek et 

al., 2016) can match or outperform more elaborate network architectures. Hence, we adopt 

nnU-Net’s network architecture (i.e., a 3D U-Net) and follow its training and inference 

strategies. We assess the effectiveness of our proposed methods by comparing against the 

methods below.

• nnU-Net. We followed the methods and settings in Isensee et al. (2021). In 

particular, we used the default loss function, which is the sum of cross-entropy 

and Dice.

• We tried three alternative loss functions. These included 1) Generalized Dice 
(Sudre et al., 2017) which has been proposed to improve the segmentation 

accuracy when the target objects are small or suffer from severe class imbalance, 

2) Focal loss (Lin et al., 2017), which has been devised to address the extreme 

class imbalance by down-weighting the impact of structures that are easier to 

segment, and 3) improved Mean Absolute Error (iMAE) (Wang et al., 2019), 

which has been proposed for training DL models under strong label noise.
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• Training on clean labels. In this approach, instead of training on the 272 images 

with noisy segmentations, we used leave-one-out cross-validation to train and 

test using the 22 images with highly accurate labels, which we have called “test 

subjects” so far. Of those 22 subjects, 8 were younger fetuses (GA < 32) and 

14 were older fetuses (GA ≥ 32). Therefore, for younger fetuses each time we 

trained the model on 7 images and tested on the remaining image, and for older 

fetuses each time we trained on 13 of the images and tested on the remaining 

image. In this approach, each of the 22 images was used as a test image in 

exactly one of the experiments. Therefore, the test set for this experiment was 

the same as for the other methods. Since the number of training images in this 

approach is small, we performed this experiment both without and with transfer 

learning, which is a common method for dealing with limited training data 

(Cheplygina et al., 2019; Karimi et al., 2021). For transfer learning, we used 

400 subjects from the Developing Human Connectome Project dataset (DHCP) 

(Hughes et al., 2017; Cordero-Grande et al., 2016) for pre-training. To the best 

of our knowledge, this is the most similar public dataset for the application 

considered in this work. It includes T2 images and tissue segmentation maps 

with 87 labels for newborns with GA in the range 29–45 weeks. For transfer 

learning, we pre-trained the network using this dataset. We then replaced the last 

network layer (i.e., the segmentation head) with a new head to match the number 

of labels considered in this work (34 for the younger fetuses and 32 for the 

older fetuses). We fine-tuned the pre-trained network on our data following the 

same leave-one-out cross-validation approach described above. We performed 

this separately for younger and older fetuses. Moreover, as in all experiments 

except for UNet++ and DeepLab mentioned below, the network architecture was 

the same 3D U-Net from the nnU-Net framework.

• Standard label smoothing. Following the standard label smoothing approach 

(Szegedy et al., 2016; Pereyra et al., 2017; Müller et al., 2019), we set Ys[i] = (1 

− α)Y[i] + α/L for every voxel, except for the background voxels. We use α = 

0.1, which previous studies have shown to be a good setting (Pereyra et al., 2017; 

Müller et al., 2019).

• SVLS (Islam and Glocker, 2021). SVLS is a label smoothing method, recently 

proposed for medical image segmentation.

• UNet++. In order to also investigate the potential impact of network architecture, 

we compared with UNet++ (Zhou et al., 2018). This is a more elaborate 

nested U-Net architecture that has been proposed specifically for medical image 

segmentation, which claims to be better than the standard U-Net.

• DeepLab. DeepLab is a popular deep learning model for semantic segmentation 

(Chen et al., 2017). The novelty of the network architecture is the use of atrous 

convolutions. Furthermore, a Conditional Random Field is used to improve the 

resolution of the segmentation predictions.

Note that in all of the above approaches, except for UNet++ and DeepLab, we followed the 

same nnU-Net framework for the choice of network architecture and training settings. We 
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refer to Isensee et al. (2021) for the details of this framework. For UNet++, we followed 

the settings of the original paper (Zhou et al., 2018). Furthermore, as mentioned above, for 

all methods except for “Training on clean labels”, we had 272 training images. For each 

method, we first selected a good initial learning rate using a subset of 100 images. We 

then trained the model using the selected initial learning rate on all 272 images. We used 

the “poly” learning rate decay as in Isensee et al. (2021). All training and test runs were 

performed using TensorFlow 1.14 under Python 3.7 on a Linux computer with an NVIDIA 

GeForce GTX 1080 GPU. The source code, trained model, and sample image data and 

segmentation labels for this work have been made publicly available at https://github.com/

bchimagine/fetal_tissue_segmentation.

3. Results and Discussion

Table 1 shows the summary of the segmentation accuracy results in terms of Dice Similarity 

Coefficient (DSC), 95 percentile of the Hausdorff Distance (HD95), and Average Symmetric 

Surface Distance (ASSD). Our method has achieved the best results in terms of all three 

criteria. To determine the statistical significance of the differences, we performed paired 

t-tests to compare our method with every competing method in terms of these three 

criteria. These tests showed that, with a p-value threshold of 0.001, our method achieved 

significantly higher DSC and significantly lower HD95 and ASSD than all other methods, 

both for younger and older age groups.

In terms of all metrics, nnU-Net was the second best method after our proposed method. 

As we mentioned above, we used the default loss function, which is the sum of Dice and 

cross-entropy. Compared with this default loss function, Generalized Dice and Focal Loss 

performed poorly because they systematically missed one or two of the structures. That is, 

with Generalized Dice and Focal Loss, the network output for one or two of the labels was 

empty. The missed structure(s) changed with network weight initialization, but they were 

usually the smaller structures such as amygdala, caudate, or subthalamic nuclei. Overall, in 

this application with more than 30 labels we have found that loss functions based on Dice 

do not perform well. This may be due to the fact that the overall loss is the sum of the loss 

on individual labels and as the number of labels increases the relative contribution of each of 

the labels to the total loss becomes smaller. Since the Dice is limited to the range [0,1], the 

worst-case effect of a label on the total loss is (1/L), where L is the number of labels. In our 

application with L ≈ 33, the effect of completely missing one of the labels is only 3%. As a 

result, training is prone to ignoring one the labels entirely and proceed to reduce the overall 

loss by improving the segmentation of the other labels.

Compared with the Generalized Dice and the Focal Loss, the iMAE loss performed 

comparatively better and always segmented all the labels. However, it did not perform 

as well as nnU-Net’s default loss. The iMAE loss has been proposed to strike a balance 

between the Mean Absolute Error (MAE) and cross-entropy. Although some studies in 

image classification have shown improved accuracy with MAE and iMAE when label noise 

is high, our results show that in the application considered in this study they do not lead 

to the highest segmentation accuracy. Another limitation of the iMAE loss is much longer 

training time, as we discuss further below.
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Training on clean labels was not effective, evidently because of the much reduced number 

of training images. Although this approach used more accurate manual labels for training, it 

was limited to far fewer training images (7 or 13 training in leave-one-out cross-validation 

experiments, compared with 272 training images for the other methods in Table 1). 

Although in some applications 7–13 training images may be adequate to achieve high 

segmentation accuracy (Karimi et al., 2021), the application considered in this work is 

especially challenging due to the rapid fetal brain development and significant changes in 

the brain size and shape. Because of the rapid developments in the shape and complexity 

of structures such as the cortical gray matter, much larger numbers of training images 

are needed to allow the network to effectively learn these structures across the gestational 

age. As mentioned in the Methods section above, this experiment was performed both 

without and with transfer learning. As shown in Table 1, there was a consistent but small 

improvement in segmentation accuracy due to transfer learning. We used paired t-tests 

to assess the statistical significance of these differences. The tests showed a significant 

reduction in HD95 (p < 0.001) for both younger and older fetuses, although no significant 

differences (p ≈ 0.16 − 0.35) in DSC or ASSD were found for either younger or older 

fetuses. The results presented for transfer learning in Table 1 were obtained by fine-

tuning all layers of the pre-trained network. We experimented with other transfer learning 

approaches such as shallow fine-tuning (Tajbakhsh et al., 2016; Karimi et al., 2021) but did 

not achieve better results. The results of these experiments suggest that, in the application 

considered in this work, training with a small number of manually labeled images cannot 

achieve the same level of segmentation accuracy as training with a much larger number of 

training images with less accurate labels.

Standard label smoothing and SVLS did not work well and achieved worse accuracy metrics 

than nnU-Net. Standard label smoothing treats all voxels, including voxels that are far 

from any tissue boundary, in the same way. The SVLS method only smooths the boundary 

voxels, but it uses a label smoothing approach that does not take into account the actual 

tissue-dependent boundary uncertainties. The results obtained with these two methods shows 

that un-informed or spatially uniform label smoothing is not useful for segmentation with 

noisy labels. Finally, UNet++ and DeepLab did not perform as well as nnU-Net, confirming 

the arguments presented by Isensee et al. (2021) that more elaborate network architectures 

and post-processing operations do not necessarily lead to better results.

Figure 3 shows more detailed label-specific DSC comparison of our method with nnU-Net, 

which was better than the other competing methods in terms of the overall segmentation 

accuracy, as shown in Table 1. For structures that have separate left and right labels, we have 

combined the two labels into one label in order to produce a less cluttered plot. On younger 

fetuses, our method achieved significantly higher DSC than nnU-Net on all structures (p 
< 0.001), except for CC, where the difference was not significant. For older fetuses, our 

method achieved significantly higher DSC on 14 of the structures (p < 0.001), while on the 

remaining four structures (LN, TH, WM, and CSF) although the mean DSC for our method 

was higher, the differences were not significant. Figure 4 shows similar plots for HD95 and 

ASSD. For HD95, paired t-tests showed that our proposed method achieved significantly (p 
< 0.001) lower errors than nnU-Net on all structures except for LN and CR on older fetuses. 
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For ASSD, our method achieved significantly (p < 0.001) lower errors on all structures 

except for CR on older fetuses.

Figure 5 shows two example segmentation maps, for one younger fetus and one older fetus, 

predicted by our method and nnU-Net. Both our proposed method and nnU-Net succeed 

in segmenting different structures with good accuracy. Nonetheless, the segmentations 

produced by the proposed method were consistently superior. The segmentation results 

produced by nnU-Net often included clearly visible errors that were not present in the 

segmentations produced with the proposed method.

Figure 6 shows example segmentations for specific structures, which allow us to 

better visualize the segmentations errors and highlight under-segmentations and over-

segmentations separately. Both our proposed method and nnU-Net segment most structures 

with good accuracy. Our method produces visibly superior segmentations on almost all 

structures and has less under-segmentation and less over-segmentation. Some of these 

structures, such as the cortical plate, have complex 3D geometries that are very difficult 

to segment manually. Although the additional errors in nnU-Net’s output compared with our 

propsoed method may seem small, errors of this magnitude can make analyses which rely 

on consistent topology impossible and may necessitate long hours of manual correction. Our 

method produces better segmentations that can reduce the required manual corrections and 

enhance the accuracy and reproducibility of automatic analysis pipelines.

All methods considered for comparison above are based on fully convolutional networks. 

Further comparison with a non-DL method can be instructive and useful. To this end, we 

compared our proposed method with atlas-based segmentation, which is a popular classical 

method (Cabezas et al., 2011; Aljabar et al., 2009). We used a multi-atlas segmentation 

(MAS) method similar to that described in Section 2.1, without the manual refinement, to 

segment the 22 test images. MAS approach segmented a target image via diffeomorphic 

deformable registration of at least 3 atlases to the target image, followed by label fusion 

using probabilistic STAPLE (Akhondi-Asl and Warfield, 2013). The mean DSC of MAS 

segmentations on younger and older fetuses were, respectively, 0.875 ± 0.102 and 0.874 

± 0.114. These values were significantly (p < 0.001) lower than those achieved by the 

proposed method presented in Table 1. The only structure that MAS segmented slightly 

more accurately than the proposed method was the cerebellum on the younger fetuses (mean 

DSC of 0.924 for MAS versus 0.921 for the proposed method that was statistically not 

significant, p = 0.30). For all other structures, the proposed method achieved more accurate 

segmentation that were mostly statistically significant.

The difference between the proposed method and MAS were largest for more convoluted 

structures such as cortical plate (CP), subplate zone (SP), intermediate zone (IZ), ventricular 

zone (VZ), and white matter (WM). We show examples of the segmentations produced 

with the proposed method and MAS in Figure 7. For complex structures such as CP the 

segmentations produced by MAS show large errors. There are at least two causes for these 

errors. First, the registration between the atlas and the target images is never perfect, and 

the registration error is especially larger at the locations of thin and complex structures 

such as CP. Registration is difficult in fetal MRI due to stronger partial volume effects 
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and reduced spatial resolution. Second, there is significant inter-subject variability in the 

local shape of these structures, and atlases cannot fully represent this variability. Therefore, 

regardless of the registration error, the segmentation accuracy of atlas-based methods is 

limited by the fact that an atlas can only represent the “average shape” and fails to capture 

the inter-subject variability. Deep learning methods avoid these pitfalls because they learn 

the complex relationship between the image intensity maps and the target segmentation map 

directly from the subject training data, rather than inferring it from an atlas.

The training time for our proposed method and all other deep learning methods was 30 

hours. The only exception was training with the iMAE loss that required 100 hours. The 

inference time for a test image was approximately 4–6 seconds, depending on the brain 

size with larger brains taking closer to 6 seconds. For MAS, non-rigid registration of the 

atlas images to the target image took approximately 12 minutes and the label fusion with 

the probabilistic STAPLE took approximately 13 minutes, for a total of approximately 25 

minutes.

4. Conclusions

As the diagnostic quality of fetal MRI improves and its applications grow, accurate 

quantitative analysis methods are increasingly needed to take full advantage of this imaging 

technique. Training DL models to address the needs of this application is challenged 

by the typically low image quality and by difficulty of obtaining large labeled datasets. 

Our study is a step forward in improving the accuracy and reproducibility of fetal MRI 

analysis as it enables accurate segmentation of the brain into more than 30 relevant and 

important tissue compartments. To address the main challenges outlined above, we used a 

semi-automatic method to obtain segmentation labels on our training images. This enabled 

us to segment a large number of training images with reasonable annotator time. We 

developed a novel training method based on a label smoothing strategy that accounted for 

tissue boundary uncertainties. This enabled us to account for the label noise in a systematic 

and principled manner in our model training. Our evaluations showed that our method 

produced significantly more accurate segmentations than the state of the art. The improved 

segmentation accuracy offered by our proposed method can translate into more accurate 

and more reproducible quantitative assessment of fetal brain development. It can also lead 

to substantial reductions in the annotator time because manual segmentations are very 

time-consuming. Finally, our methods may be useful in many similar setting in medical 

image segmentation where boundary uncertainties are important.
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Our aim is automatic fetal brain tissue segmentation in MRI.

We generate noisy labels on a larger number of images using an atlas-based method.

We develop methods for training a deep learning model with these noisy labels.

On manually labeled images, our method achieves superior segmentation accuracy.
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Fig. 1. 
Examples of label smoothing performed by our proposed method (Algorithm 1). Note that 

for each image our algorithm performs the smoothing simultaneously on all labels, but here 

we show a single label in each example for better visualization. In each of the examples 

presented here, the top image shows the original label obtained via multi-atlas segmentation 

followed by manual correction of large errors, super-imposed on the T2 image. The lower 

images show the smoothed label.
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Fig. 2. 
Label transition matrices, T, for the younger (left) and older (right) age groups. We have 

used a log transformation, log(T + 0.001), to display these matrices in order to better 

highlight the smaller off-diagonal elements. Label numbers have been shown on the rows 

and columns of the matrices. For younger fetuses the label names are as follows (acronyms 

have been defined in the text in Section 2.1). 1: background, 2: HP left, 3: HP right, 4: AM 

left, 5: AM right, 6: CD left, 7: CD right, 8: LN left, 9: LN right, 10: TH left, 11: TH right, 

12: CC, 13: LV left, 14: LV right, 15: ST, 16: CR left, 17: CR right, 18: SN left, 19: SN 

right, 20: HC, 21: FN, 22: CP left, 23: CP right, 24: SP left, 25: SP right, 26: IZ left, 27: 

IZ right, 28: VZ left, 29: VZ right, 30: IC left, 31: IC right, 32: CSF, 33: GE left, 34: GE 

right. For older fetuses, the first 23 labels are the same as those for younger fetuses, and the 

remaining labels are as follows. 24: VZ left, 25: VZ right, 26: WM left, 27: WM right, 28: 

IC left, 29: IC right, 30: CSF, 31: GE left, 32: GE right.
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Fig. 3. 
Comparison of our method and nnU-Net in terms of DSC for different structures on younger 

(top) and older (bottom) fetuses.
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Fig. 4. 
Comparison of our method and nnU-Net in terms of HD95 (the top two plots) and ASSD 

(the bottom two plots) on younger and older fetuses. The GA group for each plot is shown 

on the right of that plot.
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Fig. 5. 
Two example segmentation maps predicted by our proposed method and nnU-Net. Red 

arrows point to some of nnU-Net’s segmentation errors. The top example is for a younger 

fetus (GA= 26.7 weeks), whereas the bottom example is for an older fetus (GA= 38 weeks).

Karimi et al. Page 22

Med Image Anal. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 
Example segmentations predicted by our proposed method and nnU-Net. Each of the 

ten examples shows one isolated structure and highlights correct segmentations, over-

segmentations and under-segmentations.
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Fig. 7. 
Example segmentations predicted by our proposed method and multi-atlas segmentation 

(MAS). Each of the four examples in this figure shows one isolated structure and highlights 

correct segmentations, over-segmentations and under-segmentations.
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Table 1.
Segmentation accuracy metrics presented separately for younger and older fetuses. The 
metrics were computed separately for each label; this table presents mean ± standard 
deviation over all labels. Best results for each metric are in bold. We used paired t-tests 
to compare our proposed method with every other method. Asterisks in this table denote 
significantly better results for the proposed method than all other methods

(at a significant threshold of p < 0.001). In the Method column in this table, T.L. stands for transfer learning.

Dataset Method DSC HD95 (mm) ASSD (mm)

Younger fetuses

nnU-Net 0.872 ± 0.063 0.99 ± 0.11 0.26 ± 0.14

Generalized Dice 0.845 ± 0.087 1.09 ± 0.12 0.32 ± 0.26

Focal loss 0.839 ± 0.080 1.15 ± 1.20 0.30 ± 0.19

iMAE 0.865 ± 0.075 1.06 ± 0.15 0.26 ± 0.17

Training on clean labels (without T.L.) 0.863 ± 0.068 1.09 ± 0.14 0.28 ± 0.16

Training on clean labels (with T.L.) 0.866 ± 0.062 1.03 ± 0.13 0.27 ± 0.17

Standard label smoothing 0.833 ± 0.084 1.08 ± 0.17 0.34 ± 0.21

SVLS 0.843 ± 0.074 1.07 ± 0.17 0.30 ± 0.18

DeepLab 0.851 ± 0.072 1.11 ± 0.15 0.30 ± 0.15

UNet++ 0.866 ± 0.060 1.02 ± 0.14 0.27 ± 0.15

Proposed method 0.893 ± 0.066∗ 0.94 ± 0.13∗ 0.23 ± 0.13∗

Older fetuses

nnU-Net 0.896 ± 0.066 0.98 ± 0.11 0.36 ± 0.12

Generalized Dice 0.866 ± 0.070 1.16 ± 0.11 0.46 ± 0.15

Focal loss 0.861 ± 0.068 1.16 ± 0.16 0.42 ± 0.16

iMAE 0.880 ± 0.064 1.09 ± 0.17 0.41 ± 0.20

Training on clean labels (without T.L.) 0.877 ± 0.073 1.12 ± 0.14 0.40 ± 0.18

Training on clean labels (with T.L.) 0.880 ± 0.070 1.04 ± 0.15 0.40 ± 0.20

Standard label smoothing 0.853 ± 0.071 1.16 ± 0.12 0.39 ± 0.23

SVLS 0.856 ± 0.077 1.10 ± 0.13 0.37 ± 0.27

DeepLab 0.865 ± 0.074 1.21 ± 0.19 0.43 ± 0.26

UNet++ 0.885 ± 0.070 1.08 ± 0.16 0.38 ± 0.23

Proposed method 0.916 ± 0.059∗ 0.94 ± 0.13∗ 0.25 ± 0.09∗
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