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Abstract 

Objectives  This study compared the accuracy of predicting transarterial chemoembolization (TACE) outcomes for 
hepatocellular carcinoma (HCC) patients in the four different classifiers, and comprehensive models were constructed 
to improve predictive performance.

Methods  The subjects recruited for this study were HCC patients who had received TACE treatment from April 2016 
to June 2021. All participants underwent enhanced MRI scans before and after intervention, and pertinent clinical 
information was collected. Registry data for the 144 patients were randomly assigned to training and test datasets. 
The robustness of the trained models was verified by another independent external validation set of 28 HCC patients. 
The following classifiers were employed in the radiomics experiment: machine learning classifiers k-nearest neighbor 
(KNN), support vector machine (SVM), the least absolute shrinkage and selection operator (Lasso), and deep learning 
classifier deep neural network (DNN).

Results  DNN and Lasso models were comparable in the training set, while DNN performed better in the test set and 
the external validation set. The CD model (Clinical & DNN merged model) achieved an AUC of 0.974 (95% CI: 0.951–
0.998) in the training set, superior to other models whose AUCs varied from 0.637 to 0.943 (p < 0.05). The CD model 
generalized well on the test set (AUC = 0.831) and external validation set (AUC = 0.735).

Conclusions  DNN model performs better than other classifiers in predicting TACE response. Integrating with clini-
cally significant factors, the CD model may be valuable in pre-treatment counseling of HCC patients who may benefit 
the most from TACE intervention.

Key points 

•	 DNN and LASSO models performed better than other classifiers in TACE response prediction.
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•	 CD model achieved an AUC of 0.974 in the training set, superior to other comprehensive models.
•	 CD model may serve as a potential tool for the selection of suitable TACE candidates.

Keywords  Hepatocellular carcinoma, Transarterial chemoembolization, Deep learning, Radiomics

Introduction
Hepatocellular carcinoma (HCC) is the sixth most com-
mon malignant tumor and the third leading cause of can-
cer-related death worldwide [1]. HCC is characterized 
by insidious onset, high malignancy, and rapid progres-
sion. Hence, up to 70% of the patients are in the interme-
diate to advanced stages when clinically diagnosed, and 
less than 20% have surgical indications [2, 3]. For these 
patients with advanced HCC, transarterial chemoem-
bolization (TACE) has become the first-line primary or 
adjuvant clinical treatment strategy. Several randomized 
controlled trial (RCT) studies have demonstrated that 
TACE can delay tumor progression to varying degrees, 
thereby providing a potential surgical resection oppor-
tunity for patients with initially unresectable HCC 
[4–6]. However, the tumor response to TACE varies 
from patient to patient due to the highly heterogeneous 
tumor biological behavior, such as differences in gene 
expression, vascular invasion status, and tumor size  [7]. 
Effective TACE can benefit patients, while unproductive 
treatment would increase the burden on patients and 
cause waste of medical resources. Therefore, it is crucial 
to preoperatively select appropriate patients for TACE 
treatment, and a precise model for predicting response to 
TACE therapy is desirable.

Clinically, magnetic resonance imaging (MRI) as a 
routinely used technique in cancer diagnosis provides 
a non-invasive way to analyze HCC [8]. Radiomics is a 
promising and easy-to-use modality that involves quan-
titative features from radiology images [9, 10]. Recent 
studies have shown that features extracted from liver 
MR images were related to microvascular invasion 
(MVI) [11] and showed predictive power on TACE 
response [12–14] for HCC patients. Typically, radiom-
ics research includes a four-step workflow, with the 
construction and assessment of a single mathemati-
cal model considered as the last step in the procedures 
[15, 16]. However, sometimes the proposed model 
is not good enough, for the highest area under the 
curve (AUC) of most trained models did not reach 0.9 
[13, 14]. Hence, some researchers turn to more advan-
tageous algorithms, such as machine learning and deep 
learning, to achieve the optimization and improvement 
of models in the field of oncology [17–19]. Specifically, 
artificial intelligence (AI) techniques are assumed to be 
a potential tool for precise clinical management and 

decision-making in HCC patients treated with TACE 
[20–22]. The continuous collection of medical data and 
improvement in AI technology are offering researchers 
the ability to construct models that take various predic-
tors of HCC treatment evaluation into account.

However, it remains unknown which algorithm is the 
most efficient and optimal, and there are scarce stud-
ies that have compared multiple classifiers. Thus, the 
primary aim of this study was to compare four fore-
casting models in terms of their accuracy in predicting 
TACE response before intervention for HCC patients. 
The four forecasting models include machine learn-
ing classifiers k-nearest neighbor (KNN), support vec-
tor machine (SVM), the least absolute shrinkage and 
selection operator (Lasso), and deep learning classifier 
deep neural network (DNN). The secondary aim was to 
integrate these classifiers separately with clinical prog-
nostic factors and produce the most powerful compre-
hensive model.

Materials and methods
Study sample
The study has been approved by the Institutional Review 
Board. Due to the retrospective nature of this study, 
informed consent was not required. We retrospectively 
identified all consecutive patients who underwent TACE 
for HCC from April 2016 to June 2021 in one center. 
Our inclusion criteria included patients with HCC who 
underwent initial TACE and had contrast-enhanced 
MR(CE-MR) before and after TACE, and with com-
plete clinical information (i.e. demographics, preopera-
tive hepatitis, serum alpha-fetoprotein (AFP) levels, and 
liver function tests). Exclusion criteria included underage 
patients; synchronous therapies during follow-up time, 
such as resection, and systemic chemotherapy; other 
concurrent malignancies and follow-up for less than 
3 months post-procedure. HCC was diagnosed histologi-
cally or by MR image evaluation. In total, 144 treatment-
naïve HCC patients (Median follow-up time, 13.8 weeks) 
met the inclusion criteria. To further validate the general-
ization capability of the founded models, we collected 28 
HCC patients treated with TACE between August 2021 
to October 2022 as an independent external validation 
set. The inclusion and exclusion criteria of these patients 
were consonant with the preceding dataset.
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TACE procedure and reference standard of TACE response
All patients included were treated with TACE, includ-
ing conventional TACE (cTACE) and drug-eluting bead 
TACE (DEB-TACE). Interventional physicians choose 
cTACE or DEB-TACE based on tumor burden and 
patient characteristics. The basic treatment process 
of DEB-TACE resembles that of cTACE except for the 
embolic agents. cTACE uses lipiodol (Guerbet), gelatin 
sponge particles, and polyvinyl alcohol as embolic agents. 
Selective or super-selective embolization of tumor-
supplying vessels is performed whenever technically 
justified [23]. For DEB-TACE, 100–300 μm diameter Cal-
liSpheres® Beads (CB; Jiangsu Hengrui Pharmaceutical 
Co., Ltd.) were used as carriers, loaded with 60–80  mg 
epirubicin, pirarubicin, or doxorubicin. All procedures 
were administered by interventional physicians with at 
least 10  years of experience. All patients were admitted 
for postoperative supportive care after TACE procedure 
and were managed routinely.

Study cohort judgment of TACE response was per-
formed according to the modified Response Evaluation 
Criteria in Solid Tumors (mRECIST) [24] criterion. In 
brief, the therapeutic response of TACE was stratified 
into four grades: (a) complete response (CR): complete 
disappearance of the lesion; (b) partial response (PR): a 
minimum 30% reduction in the sum of diameters of via-
ble target lesions (enhancement in the arterial phase); (c) 
progressive disease (PD): at least 20% extension in the 
sum of the diameters of viable (enhancing) target lesions; 
and (d) stable disease (SD): neither PR nor PD. Based on 
mRECIST, CR and PR patients were categorized as objec-
tive response (OR) cohort, and PD and SD patients as 
non-objective response (NOR) group. This assessment 
was determined by two professional abdominal radi-
ologists based upon the follow-up MR images. Among 
the 144 patients enrolled, 75 were assigned to the NOR 
group and 69 to the OR group. In the independent exter-
nal validation set, 14 patients were in the NOR group and 
14 in the OR group.

MRI image acquisition
Before and after TACE, all recruited patients under-
went Gadolinium injection meglumine-enhanced 
MR imaging using 1.5-T and 3.0-T MR scanners. For 
the Philips ENGENIA 3.0-T MR scanner (Philips 
Medical Systems), imaging sequences included axial 
T2-weighted sequence with spectral presaturation with 
inversion recovery, breath-hold precontrast and post-
contrast (after injection 0.1 mmol/kg of Gadopentetate 
dimeglumine (Gd-DTPA)) mDIXON-T1-weighted 
(water) sequence and breath-hold diffusion-weighted 
echo-planar sequence. The main image acquisition 

parameters were as follows: T2-weighted sequence, 
repetition time (TR) 3000 ms, echo time (TE) 200 ms, 
matrix: 200 × 195, thickness 7  mm, gap 1  mm; 
T1-weighted with breath-hold, TR 3.6  ms, TE1/TE2: 
2.38/4.76  ms, matrix: 224 × 166, thickness 5  mm, 
gap   2.5  mm, field of view (FOV): 400  mm × 314  mm, 
and 4 dynamic phases were scanned, which were the 
hepatic arterial phase (AP) (25–30  s), portal venous 
phase (PVP) (60–70 s), delayed phase (DP) (180 s), and 
hepatobiliary phase (HBP) (20 min); diffusion-weighted 
echo-planar sequence, TR 2500  ms, TE 64  ms, thick-
ness 7  mm, gap 1  mm, FOV: 400 × 343  mm, matrix: 
116 × 97, b value 0, and 800 s/mm2.

For the German MAGNETOM Area 1.5 T MR scanner, 
the MRI scan sequences included: T2-weighted sequence: 
TR 3500 ms, TE 90 ms, FOV 380 mm × 380 mm, matrix 
320 × 320; CE-MR scans were performed with three-
dimensional volume interpolation (3D-VIBE): TR 4.1 ms, 
TE 1.8 ms, FOV: 380 mm × 380 mm, matrix: 320 × 320, 
thickness 5 mm, gap1 mm. After injecting contrast agent 
Gd-DTPA (dose 0.1  mmol/kg, flow rate 2  ml/s), the 
images of AP, PVP, and DP were collected at 25  s, 60  s, 
and 180 s, respectively.

Image segmentation and radiomic features
The flowchart of the study is depicted in Fig.  1. The 
volumes of interest (VOIs) of tumors were delineated 
manually using 3D Slicer version 4.10 (www.​slicer.​org) 
by reader 1 (radiologist with 3 years of abdominal imag-
ing experience) and reader 2 (radiologist with 10  years 
of abdominal neoplasms). The VOIs were drawn on 
T2-weighted images and 3 dynamic enhanced phase 
images (namely AP, PVP, and DP). The radiologists 
involved in the segmentation were unaware of all clini-
cal and prognostic information. To standardize the voxel 
spacing and control image noise, all images were resam-
pled to a 1 × 1 × 1 mm3 voxels with a fixed bin width of 
25. Radiomics features were extracted automatically for 
the T2-weighted images and 3 enhanced phase images by 
using the PyRadiomics toolkit [25]. For each sequence, 
110 radiomic features were extracted automatically. 
Hence, a total of 440 quantitative features were extracted 
in this procedure.

To assess the variability of extracted features, 25% of all 
the involved cases were randomly picked and were again 
delineated independently by reader 1 (test–retest varia-
bility) and reader 2 (interobserver variability). The second 
lesion segmentations were conducted 2 months after the 
first segmentations. The intraclass correlation coefficient 
(ICC) was used to elaborate test–retest and interobserver 
repeatability, an ICC greater than 0.75 indicated good 
reproducibility.

http://www.slicer.org
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Four forecasting models
This experiment compared the forecasting capability 
in four models, including machine learning classifiers 
KNN, SVM, Lasso, and deep learning classifier DNN. 
The schematic diagram of each algorithm is shown in 
Figure  1. All previously mentioned radiomics features 
were standardized using Z-score before model training. 
To reduce redundant features and prevent reduce bias 
or over-fitting, the minimum redundancy maximum 
correlation (mRMR) method was used for dimensional-
ity reduction in KNN and SVM models. Finally, 10 fea-
tures were retained for constructing the models. Since 
Lasso and DNN can reduce the dimension of features in 
an automatic and non-prioritized manner during model 
training, no additional feature selection methodology 
was needed.

The first prediction model applied in this study was 
the KNN algorithm, an instance-based learning method 
that uses the k-nearest to categorize unknown data of 
the new sample [26]. In the experiment, the number of 
neighbors of KNN is 4. The second predictive model used 
in this study was SVM, which is a supervised algorithm 
that separates the feature space into hyperplanes based 
on the object classes [27]. SVM also uses a kernel func-
tion to distinguish nonlinearly separable classes. The 
kernel function of SVM is Radial Basis Function, and the 

gamma is 0.2. Hence, the SVM algorithm supports both 
linear and nonlinear classification.

The third forecasting model used in this study was 
Lasso [28], which can achieve both data dimensional-
ity reduction and feature selection. Based on the linear 
equations of the respective coefficients of the selected 
features, Lasso  model was established and the Lasso 
score associated with each patient was obtained. The 
fourth forecasting model was DNN [29], which is an arti-
ficial neural network with multiple layers between the 
input features and output predictions. Each linear layer 
in DNN model is connected by nonlinear activation func-
tions to learn complex nonlinear relationships. In this 
research, we utilized the neural network with BatchNorm 
and Dropout modules for better performance. Batch-
Norm [30] is a mini-batch normalization function that 
can prevent network over-fitting and accelerated train-
ing. Dropout [31] is a regularizing tool that randomly 
drops neurons from the neural network during training. 
The number of network layers is three and the number 
of nodes is 440-220-2 per layer. Each layer of the network 
is connected by a Rectified Linear Unit (ReLU) activation 
function, and the dropout rate is 0.5. The final activation 
of the output uses a softmax function to produce scores 
between 0 and 1. In the DNN experiment, the cosine 
annealing learning rate is used, and the learning rate is 

Fig. 1  Flowchart of the study procedure. Abbreviation: KNN, k-nearest neighbor; SVM, support vector machine; Lasso, the least absolute shrinkage 
and selection operator; DNN, deep neural network
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set to 0.01. All the trainable parameters are optimized 
by Adam algorithm, batch size is 32, and the network is 
trained for 200 epochs.

Construction and validation of comprehensive models
For the clinical factors, univariate and multivariate logis-
tic regression analyses were applied to determine the 
independent predictors of TACE response in the train-
ing set. Multimodal features including forementioned 
classifier outputs (corresponding output values) and 
clinicopathological variables were incorporated into 
comprehensive model using the multivariate logistic 
regression analysis.

The discriminative ability of the predictive model was 
tested by ROC curve based on the AUC, sensitivity, and 
specificity. Calibration curves were drawn to compare 
the probability of TACE response between the predicted 
and actual rates. Comparisons of the AUCs of the ROC 
curves were performed using the Delong test. To deter-
mine the clinical value of the model, decision curve 
analysis (DCA) was performed to reckon the net benefits 
under different threshold probabilities.

Statistical analyses
Statistical analyses were performed using SPSS v25.0, R 
v4.0.4. and Python v3.7.6. The Python packages used for 
KNN, SVM, and Lasso modeling were sklearn.neighbors.
KNeighborsClassifier, sklearn.svm.SVC, sklearn.lin-
ear_model.Lasso, respectively (sklearn machine learning 
library version is 1.0 [32]). The deep learning DNN mod-
eling was conducted on the pytorch platform (version 
1.10.0). The 144 involved patients were randomly divided 
into training set and test set with a ratio of 8:2. The dif-
ferences in patient characteristics data between the OR 
and NOR groups were assessed for both training and test 
sets. To identify significant (p < 0.05) predictors for TACE 
response, continuous variables were analyzed using T 
test or Mann–Whitney U-test according to the results 
of Kolmogorov–Smirnov test; categorical variables were 
analyzed using Chi-square test or Fisher exact analysis. 
All statistical tests were two-sided; a p value ≤ 0.05 was 
considered statistically significant.

Results
Patient characteristics
Table  1 shows the univariate analysis results of demo-
graphic, clinical characteristics, and MR imaging fea-
tures between NOR and OR groups. Of the 144 included 
patients, 124 patients (86.11%) were men and 20 (13.89%) 
were women. In the training set, 48.6% of the patients (56 
of 115) had OR outcome. Similarly, 44.8% of the patients 
(13 of 29) had OR outcome in the test set. Indicators such 
as Child–Pugh classification (p = 0.05), and portal venous 

invasion (p = 0.025) illustrated statistical difference 
between NOR and OR patients; therefore, these charac-
teristics were submitted to subsequent models.

Comparison of forecasting models
Table  2 lists the predictive performance of the four 
forecasting models where we used area under the ROC 
curve (AUC), accuracy (ACC), sensitivity and specific-
ity as main measurements. Forecasting models were 
established using the extracted radiomic features. In 
the training set, Lasso outperformed others in terms of 
AUC (0.941) and sensitivity (0.982); DNN had the high-
est value in terms of prediction ACC (0.870) and specific-
ity (0.864). In the test set, DNN surpassed other models 
with regard to AUC (0.837), ACC (0.759), and sensitiv-
ity (0.923). In the external validation set, the DNN model 
obtained the best generalization performance with the 
AUC of 0.796 (accuracy: 0.714, specificity: 0.857). Over-
all, Lasso and DNN models performed better than KNN 
and SVM models, which may be due to the ability of 
DNN and Lasso to select the most important and suitable 
features automatically. To simplify the research process, 
KNN and SVM algorithms would not be considered in 
our subsequent analysis.

Then, the trained Lasso and DNN models output the 
corresponding scores for each patient, and the distribu-
tion of scores is shown in Fig.  2. Both Lasso and DNN 
scores were significantly different between non-objective 
response and objective response patients in the training 
set (both p < 0.0001), which is further verified in the test 
set and external validation set. Generally, patients with 
objective response outcome had higher scores.

Construction and validation of comprehensive models
To further improve the performance of the model, we 
developed comprehensive models based on clinical and 
radiomics features. First, a clinical model was estab-
lished by incorporating statistically significant variables 
(i.e., Child–Pugh classification and radiographic venous 
invasion) and some clinically important variables (such 
as AFP and AST) as a baseline model for comparison to 
the comprehensive models. Then, Lasso and DNN scores 
were combined with clinical indicators to build compre-
hensive models, namely clinical & Lasso merged model 
(CL model) and clinical & DNN merged model (CD 
model). The AUC, sensitivity, and specificity results of the 
three models are represented in Fig. 3. In the training set, 
the AUC, sensitivity, and specificity of the clinical model 
were 0.637, 0.732, and 0.474 respectively; the results of 
the CL model were 0.943, 0.928, and 0.847, respectively; 
the CD model performed better, with the AUC, sensi-
tivity, and specificity of 0.974, 0.928, and 0.898, respec-
tively. In the test set, the results of the clinical model 
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Table 1  Clinical characteristics of patients in the training and test sets

Training set (n = 115) p value Test set (n = 29) p value

NOR OR NOR OR

Age (years) 59.42 ± 12.54 61.29 ± 11.62 0.411a 55.25 ± 11.67 62.538 ± 15.09 0.154a

Sex 0.904 0.488

Male 50 (84.7%) 47 (83.9%) 14 (87.5%) 13 (100%)

Female 9 (15.3%) 9 (16.1%) 2 (12.5%) 0 (0.0%)

Hypertension 0.392 0.78

No 50 (84.7%) 44 (78.6%) 16 (100%) 10 (76.9%)

Yes 9 (15.3%) 12 (21.4%) 0 (0.0%) 3 (23.1%)

Diabetes 0.743 1

No 53 (89.8%) 52 (92.9%) 15 (93.8%) 12 (92.3%)

Yes 6 (10.2%) 4 (7.1%) 1 (6.2%) 1 (7.7%)

HBsAg 0.51 1

Negative 18 (30.5%) 14 (25%) 9 (15.3%) 9 (16.1%)

Positive 41 (69.5%) 42 (75%) 50 (84.7%) 47 (83.9%)

Child–Pugh classification 0.05 0.697

A 39 (66.1%) 46 (82.1%) 11 (68.8%) 10 (76.9%)

B/C 20 (33.9%) 10 (17.9%) 5 (31.2%) 3 (23.1%)

BCLC stage 0.089 0.143

A 32 (54.2%) 39 (69.6%) 4 (25%) 7 (53.8%)

B/C 27 (45.8%) 17 (30.4%) 12 (75%) 6 (46.2%)

Treatment modality 0.118 0.379

c-TACE 37 (62.7%) 27 (48.2%) 6 (37.5%) 7 (53.8%)

DEB‑TACE 22 (37.2%) 29 (51.8%) 10 (62.5%) 6 (46.2%)

Laboratory values

AFP 0.698 0.606

 ≤ 400 (ng/ml) 42 (71.2%) 38 (67.9%) 13 (81.2%) 12 (92.3%)

> 400 (ng/ml) 17 (28.8%) 18 (32.1%) 3 (18.8%) 1 (7.7%)

CEA 0.251 0.606

 ≤ 5 ng/ml 52 (88.1%) 45 (80.4%) 13 (81.2%) 12 (92.3%)

> 5 ng/ml 7 (11.9%) 11 (19.6%) 3 (18.8%) 1 (7.7%)

AST 0.158 0.588

≤ 40 (U/L) 27 (45.8%) 33 (58.9%) 7 (43.8%) 7 (53.8%)

> 40 (U/L) 32 (54.2%) 23 (41.1%) 9 (56.2%) 6 (46.2%)

ALT 0.322 0.379

≤ 50 (U/L) 42 (71.2%) 35 (62.5%) 10 (62.5%) 6 (46.2%)

> 50 (U/L) 17 (28.8%) 21 (37.5%) 6 (37.5%) 7 (53.8%)

Albumin 0.542 0.321

> 40 (g/L) 10 (16.9%) 12 (21.4%) 5 (31.2%) 2 (15.4%)

≤ 40 (g/L) 49 (83.1%) 44 (78.6%) 11 (68.8%) 11 (84.6%)

Total bilirubin 0.403 1

≤ 17.1 (µmol/L) 27 (45.8%) 30 (53.6%) 6 (37.5%) 5 (38.5%)

> 17.1 (µmol/L) 32 (54.2%) 26 (46.4%) 10 (62.5%) 8 (61.5%)

Prothrombin time 0.574 0.837

≤ 13 (s) 36 (61%) 37 (66.1%) 8 (50%) 6 (46.2%)

> 13 (s) 23 (39%) 19 (33.9%) 8 (50%) 7 (53.8%)

Platelet count 0.412 0.774

≥ 125 × 109/L 25 (42.4%) 28 (50%) 7 (43.8%) 5 (38.5%)

< 125 × 109/L 34 (57.6%) 28 (50%) 9 (56.2%) 8 (61.5%)

NLR 3.46 (2.27–5.4) 3 (1.91–5.98) 0.849b* 2.38 (1.71–3.35) 4.11 (2.52–6.38) 0.015b*
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were 0.685, 1, and 0.375, respectively; in the CL model, 
the AUC, sensitivity, and specificity were 0.716, 0.76, and 
0.75, respectively; the CD model obtained better AUC 
(0.831) compared with other models, and the sensitivity 
and specificity were 0.846 and 0.812, respectively. In the 

external validation set, CD model generalized well with 
an AUC of 0.735 (sensitivity: 1, and specificity: 0.571), 
while the results for clinical and CL model were 0.543 
(sensitivity: 0.714, and specificity: 0.5) and 0.658 (sensi-
tivity: 0.78, and specificity: 0.571), respectively.

The ROCs of the established models are depicted 
in Fig.  4. In the training set, the CD model was signifi-
cantly superior to other models (AUC 0.974, 95% CI: 
0.951–0.998) according to the results of the Delong test 
(p < 0.05). This performance was further confirmed in 
the test set (AUC 0.831, 95% CI: 0.667–0.998) and the 
external validation set (AUC 0.735, 95% CI: 0.529–0.941), 
indicating that the CD model generalized well in predict-
ing TACE response of unseen new patients. Although 
the calibration curves portrayed in Fig.  5 show that the 
consistency between the predicted results and the actual 
situation needs to be improved,  decision curve analysis 
shown in Fig.  6 demonstrated that CD model provided 
the highest net benefit compared with rival models.

Discussion
In this study, we compared the performance of four algo-
rithms in predicting TACE efficacy for HCC patients and 
found that the Lasso and DNN model performed better. 
Comprehensive models that integrated with clinically 
important indicators can significantly improve the pre-
diction performance compared to the baseline clinical 
model. Among these models, the capability of the CD 
model (Clinical & DNN merged model) was superior 

Table 1  (continued)

Training set (n = 115) p value Test set (n = 29) p value

NOR OR NOR OR

PLR 106 (70–160) 97.5 (67.5–153.3) 0.585b* 80.41 (0.467–2.243) 90 (65.24–137.08) 0.589b*

MR imaging features

Cirrhosis of background 0.168 1

Absent 17 (28.8%) 23 (41.1%) 6 (37.5%) 5 (38.5%)

Present 42 (71.2%) 33 (58.9%) 10 (62.5%) 8 (61.5%)

Tumor number 0.433 0.379

Solitary 37 (62.7%) 39 (69.6%) 6 (37.5%) 7 (53.8%)

Multiple 22 (37.3%) 17 (30.4%) 10 (62.5%) 6 (46.2%)

Tumor diameter 4.7 (2.1 to 7. 7) 3.6 (1.7 to 6.12) 0.17b* 5.1 (2.02 to 9.65) 4.3 (3.05 to 6.65) 0.559b*

Tumor margin 0.321 0.379

Smooth margin 37 (62.7%) 40 (71.4%) 6 (37.5%) 7 (53.8%)

Non-smooth margin 22 (37.3%) 16 (28.6%) 10 (62.5%) 6 (46.2%)

Portal venous invasion 0.025 0.044

Negative 43 (72.9%) 50 (89.3%) 9 (56.2%) 12 (92.3%)

Positive 16 (27.1%) 6 (10.7%) 7 (43.8%) 1 (7.7%)

Unless indicated otherwise, data are shown as number of patients, with the percentage in parentheses; a, t-test; b, Mann–Whitney U-test; others (chi-square test or 
Fisher exact test). *Data are medians, with interquartile ranges in parentheses. NOR, non-objective response; OR, objective response; BCLC, Barcelona Clinic Liver 
Cancer; AFP, alpha-fetoprotein; CEA, carcinoembryonic antigen; AST, aspartate transaminase; ALT, alanine transaminase; NLR, neutrophils/lymphocytes ratio; PLR, 
platelet/lymphocytes ratio

Table 2  Predictive performance of various models in the 
training, test and external validation sets

KNN, k-nearest neighbor; SVM, support vector machine; Lasso, the least absolute 
shrinkage and selection operator; DNN, deep neural networks; AUC, the area 
under the receiver operating characteristic curve; ACC, accuracy. Bold represents 
the highest values of AUC, ACC, sensitivity, and specificity in different data sets

Classifiers AUC​ ACC​ Sensitivity Specificity

Training set

 KNN 0.774 0.704 0.5 0.898

 SVM 0.871 0.765 0.891 0.695

 Lasso 0.941 0.861 0.982 0.780

 DNN 0.927 0.870 0.911 0.864
Test set

 KNN 0.669 0.655 0.538 0.75

 SVM 0.688 0.621 0.769 0.563

 Lasso 0.745 0.655 0.769 0.813
 DNN 0.837 0.759 0.923 0.688

External validation set

 KNN 0.615 0.536 0.857 0.357

 SVM 0.712 0.679 0.786 0.714

 Lasso 0.663 0.679 0.929 0.500

 DNN 0.796 0.714 0.714 0.857
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(AUC: 0.974), which was further confirmed by the test set 
and the external validation set.

Concerning clinical factors, we found that Child–
Pugh classification and portal venous invasion were sig-
nificantly associated with the initial treatment outcome. 
Child–Pugh classification, which is used for measuring 

preserved liver function, may help guide treatment selec-
tion for HCC patients [33, 34]. Moreover, patients with 
positive portal vein invasion status tended to gain unfa-
vorable TACE outcomes in our study. This also accords 
with previous observations [35], which indicated that 
portal vein invasion was a strong risk factor for TACE. 

Fig. 2  A LASSO scores distribution in training set; B LASSO scores distribution in test set; C LASSO scores distribution in external validation set; D 
DNN scores distribution in training set; E DNN scores distribution in test set; F DNN scores distribution in external validation set

Fig. 3  A Data for training set; B Data for test set; C Data for external validation set. Comprehensive models comparison in terms of performance 
indices for predicting TACE response. Abbreviation: CL model, Clinical & Lasso merged model; CD model, Clinical & DNN merged model; AUC, the 
area under the curve
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Although in theory, HCC with portal venous invasion is 
regarded as a contraindication to TACE, many research-
ers [35–37] have concluded that TACE can be securely 
and practicably performed in HCC patients with portal 
vein invasion. Portal vein invasion is not an absolute con-
traindication of TACE. Therefore, interventional physi-
cians are required to perform individualized assessments 
based on the portal vein invasion status of different 
patients to develop personalized treatment plans.

Previous studies have explored the performance of 
radiomics and deep learning in clinical diagnosis, ther-
apy strategy, and prognostic assessment in the realm 
of oncology [38–41]. Indeed, Kong et  al. have previ-
ously conducted an investigation using MR images to 
predict TACE response, but the outcome was not sat-
isfactory enough with the highest AUC of 0.884. In 
terms of image input, previous studies only adopted 

single-sequence images (i.e., T2WI) to train the model 
[12]. With four sequences of MR images as inputs, this 
research improved the AUC from 0.812 to 0.941 com-
pared with the previous study. This suggests that different 
sequences of MR images may provide more informa-
tion and further improve the predictive performance of 
the model. Besides, there was only a single mathematical 
model involved in the procedure and the final proposed 
model was not good enough (AUC = 0.861). Therefore, it 
is imperative to specifically compare different potential 
algorithms and pick out the most robust one.

In present study, we compared the performance of 
four classifiers in predicting TACE response for HCC 
patients. The prediction performance of the DNN and 
Lasso models was superior to other forecasting mod-
els when using the same extracted feature inputs. The 
performance of DNN and Lasso classifiers was similar 

Fig. 4  Receiver operating characteristic curve analysis of (A) Clinical model, (B) CL model (Clinical & Lasso merged model) and (C) CD model 
(Clinical & DNN merged model) for predicting TACE response

Fig. 5  Calibration curves of A Clinical model, B CL model (Clinical & LASSO merged model) and C CD model (Clinical & DNN merged model) for 
predicting TACE response
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in the training set. However, both the AUC and ACC 
of the DNN in the test set and external validation set 
were significantly higher, indicating that the generali-
zation ability of DNN model may surpass that of Lasso 
model. Although the LASSO and DNN models can 
achieve relatively satisfactory performance, the role of 
important non-radiomics variables in the prediction 
model cannot be ignored [42]. Therefore, we estab-
lished comprehensive models that integrating clinical 
information and feature classifiers. Both CL and CD 
models displayed improved predictive performance 
compared with the baseline clinical model, while the 
optimization efficacy of CD model was better. Spe-
cifically, the CD model increased the AUC value from 
0.637 to 0.974 in the training set. This was also con-
firmed in the test set (AUC value increased from 0.685 
to 0.831) and the external validation set (from 0.543 
to 0.735), showing that the CD model obtained good 
robustness in predicting TACE response of unknown 
new cases. Similarly, previous investigations [43, 
44] demonstrated that DNN performed better than 
other conventional (such as SVM or Lasso) methods 
in predicting clinical endpoints. A possible explana-
tion for this might be that DNN can prevent network 
over-fitting with the help of BatchNorm and Dropout 
modules [30, 31]. On the other hand, DNN can real-
ize automatic assignment of proper weights to each 

parameter based on its contribution with no dimen-
sionality reduction required, thereby incorporating 
different large data very effectively [45].

Our study had several limitations. First, the sub-
jects included were relatively limited, which may lead 
to selection bias. The calibration ability of the pro-
posed model was not satisfactory enough, which may 
be related to the selection bias. Hence, more sam-
ples are needed to be involved to optimize the model. 
Still, according to the decision curve analysis of the 
model, the net benefit of the CD model is significantly 
higher than that of the simple clinical model and the 
CL model, indicating that the engagement of the CD 
model to assist decision-making is more clinically prac-
tical. Secondly, this research was based on the data of 
a single institution, and multicenter investigations are 
required to further demonstrate the generalizability of 
the proposed model and optimize precise medical man-
agement for TACE treatment.

In conclusion, the results of the model-performance 
comparisons in this study indicate that the DNN model 
is the most clinically useful method in predicting TACE 
response for HCC. After integrating with clinically sig-
nificant factors, the proposed CD model (Clinical & 
DNN merged model) may be valuable in pre-treatment 
counseling of HCC patients who may benefit the most 
from TACE.
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