Skip to main content
. 2023 Feb 28;14:38. doi: 10.1186/s13244-023-01380-2

Table 2.

Predictive performance of various models in the training, test and external validation sets

Classifiers AUC ACC Sensitivity Specificity
Training set
 KNN 0.774 0.704 0.5 0.898
 SVM 0.871 0.765 0.891 0.695
 Lasso 0.941 0.861 0.982 0.780
 DNN 0.927 0.870 0.911 0.864
Test set
 KNN 0.669 0.655 0.538 0.75
 SVM 0.688 0.621 0.769 0.563
 Lasso 0.745 0.655 0.769 0.813
 DNN 0.837 0.759 0.923 0.688
External validation set
 KNN 0.615 0.536 0.857 0.357
 SVM 0.712 0.679 0.786 0.714
 Lasso 0.663 0.679 0.929 0.500
 DNN 0.796 0.714 0.714 0.857

KNN, k-nearest neighbor; SVM, support vector machine; Lasso, the least absolute shrinkage and selection operator; DNN, deep neural networks; AUC, the area under the receiver operating characteristic curve; ACC, accuracy. Bold represents the highest values of AUC, ACC, sensitivity, and specificity in different data sets