Table 2.
Classifiers | AUC | ACC | Sensitivity | Specificity |
---|---|---|---|---|
Training set | ||||
KNN | 0.774 | 0.704 | 0.5 | 0.898 |
SVM | 0.871 | 0.765 | 0.891 | 0.695 |
Lasso | 0.941 | 0.861 | 0.982 | 0.780 |
DNN | 0.927 | 0.870 | 0.911 | 0.864 |
Test set | ||||
KNN | 0.669 | 0.655 | 0.538 | 0.75 |
SVM | 0.688 | 0.621 | 0.769 | 0.563 |
Lasso | 0.745 | 0.655 | 0.769 | 0.813 |
DNN | 0.837 | 0.759 | 0.923 | 0.688 |
External validation set | ||||
KNN | 0.615 | 0.536 | 0.857 | 0.357 |
SVM | 0.712 | 0.679 | 0.786 | 0.714 |
Lasso | 0.663 | 0.679 | 0.929 | 0.500 |
DNN | 0.796 | 0.714 | 0.714 | 0.857 |
KNN, k-nearest neighbor; SVM, support vector machine; Lasso, the least absolute shrinkage and selection operator; DNN, deep neural networks; AUC, the area under the receiver operating characteristic curve; ACC, accuracy. Bold represents the highest values of AUC, ACC, sensitivity, and specificity in different data sets