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INTRODUCTION
Breast cancer is one of the most common malignancies in 
females worldwide and one of the main causes of cancer 

deaths.1 The status of axillary lymph node (ALN) metastasis 
is not only an important independent factor affecting the 
prognosis of breast cancer patients,2 but also an important 
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Objective: To develop and test a contrast-enhanced 
mammography (CEM)-based radiomics model using 
intratumoral and peritumoral regions to predict non-
sentinel lymph node (NSLN) metastasis in breast cancer 
before surgery.
Methods: This multicenter study included 365 breast 
cancer patients with sentinel lymph node metastasis. 
Intratumoral regions of interest (ROIs) were manually 
delineated, and peritumoral ROIs (5 and 10 mm) were 
automatically obtained. Five models, including intratu-
moral model, peritumoral (5 and 10 mm) models, and 
intratumoral+peritumoral (5 and 10 mm) models, were 
constructed by support vector machine classifier on the 
basis of optimal features selected by variance threshold, 
SelectKbest, and least absolute shrinkage and selection 
operator algorithms. The predictive performance of radi-
omics models was evaluated by receiver operating char-
acteristic curves. An external testing set was used to test 
the model. The Memorial Sloan Kettering Cancer Center 

(MSKCC) model was used to compare the predictive 
performance with radiomics model.
Results: The intratumoral ROI and intratumoral+peritu-
moral 10-mm ROI-based radiomics model achieved the 
best performance with an area under the curve (AUC) 
of 0.8000 (95% confidence interval [CI]: 0.6871–0.8266) 
in the internal testing set. In the external testing set, the 
AUC of radiomics model was 0.7567 (95% CI: 0.6717–
0.8678), higher than that of MSKCC model (AUC = 
0.6681, 95% CI: 0.5148–0.8213) (p = 0.361).
Conclusions: The intratumoral and peritumoral radiomics 
based on CEM had an acceptable predictive perfor-
mance in predicting NSLN metastasis in breast cancer, 
which could be seen as a supplementary predicting tool 
to help clinicians make appropriate surgical plans.
Advances in knowledge: The intratumoral and peri-
tumoral CEM-based radiomics model could noninva-
sively predict NSLN metastasis in breast cancer patients 
before surgery.
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clinical indicator that guides the choice of adjuvant therapy. Axil-
lary lymph node dissection (ALND) is the most accurate method 
to evaluate the status of ALN in breast cancer, but it can easily 
cause lymphatic and venous return disorders and even nerve 
damage.3–5 Study has shown that about two-thirds of patients 
who underwent ALND have no metastasis in the non-sentinel 
lymph node (NSLN) among patients with one or two positive 
sentinel lymph nodes (SLNs).6

The results of the American College of Surgical Oncology Group 
(ACOSOG) Z0011 trial and the International Breast Cancer 
Study Group (IBCSG) 23–01 trial showed that there was no 
significant difference in the efficacy of further axillary radio-
therapy and ALND for breast cancer patients.7,8 Although these 
trials provided evidence for reducing unnecessary ALND, they 
had certain applicable conditions, such as early breast cancer 
(cT1-2N0M0), patients with 1–2 positive SLNs, receiving breast 
conserving surgery, and tumor less than 5 cm in diameter. 
Breast cancer patients who did not meet the eligibility criteria 
still received ALND routinely. In clinical practice, accurately 
predicting the risk of non-sentinel lymph node metastasis in 
patients with positive SLNs will help clinicians to select high-risk 
patients for ALND and exempt low-risk patients from ALND. 
Therefore, clarifying whether breast cancer patients have NSLN 
metastasis is of great clinical significance.

Many institutions have proposed NSLN metastasis predictive 
models. The Memorial Sloan Kettering Cancer Center (MSKCC) 
model is the most widely validated model to predict NSLN 
metastasis in the world. However, its validation results varied 
greatly among different populations, with the area under the 
curves (AUCs) ranging from 0.53 to 0.86.9–11 Bi et al12 and Liu 
et al13 had verified the predictive value of the MSKCC model in 
Chinese breast cancer patients, yielding AUCs of only 0.722 and 
0.624, respectively, indicating that a more accurate NSLN metas-
tasis predictive tool is needed.

Lambin et al first proposed the concept of radiomics in 2012.14 
Compared with traditional imaging findings, such as shape, 
size, margins, internal enhancement pattern, etc., radiomics can 
deeply mine features from medical images that are invisible to the 
human eyes.15 To some extent, radiomics features can help assess 
tumor heterogeneity, and radiomics models can be established 
to assist decision-making. Studies have shown that intratumoral-
based radiomics has good performance in classifying breast 
lesions and predicting the efficacy of neoadjuvant chemotherapy 
and lymph node metastasis in breast cancer patients.16–19 Others 
studies have shown that the peritumoral-based radiomics may 
provide additional value in predicting ALN metastasis and 
pathological complete response to neoadjuvant chemotherapy 
in breast cancer.20–22 The performance of radiomics combined 
with intratumoral and peritumoral regions in predicting NSLN 
metastasis in breast cancer patients has not been fully reported.

Contrast-enhanced mammography (CEM) is a newly emerging 
breast imaging technology in recent years, which combines 
intravenous iodine contrast agent and mammography. CEM can 
not only reflect the glandular structure and calcification of the 

breast, but also reflect its blood supply through the enhancement 
degree of the lesion. Studies have shown that CEM has similar 
sensitivity and positive predictive value to magnetic resonance 
imaging (MRI) in detecting lesions.23 Our previous research24 
showed that CEM-based radiomics had good predictive perfor-
mance in predicting ALN metastasis, but its performance in 
predicting NSLN metastasis was still unclear.

The purpose of this study is to extract intratumoral and peritu-
moral radiomics features from the preoperative CEM images of 
breast cancer patients, and establish a radiomics model to predict 
NSLN metastasis.

METHODS AND MATERIALS
Patients and sets
The training and internal testing sets in this retrospective study 
were collected from Center one from July 2017 to June 2020, 
while the external testing set was collected from Center two 
from March 2016 to February 2020. This study was approved 
by the institutional ethics committee of both hospitals, and 
patients’ informed consents were waived. The inclusion criteria 
were as follows: (a) breast cancer patients who received SLN 
biopsy and ALND, and diagnosed with a complete pathology 
result, (b) patients who did not receive any preoperative 
therapy, (c) surgery within 14 days after CEM examination, and 
(d) patients with complete clinical information. The exclusion 
criteria were as follows: (a) multifocal or bilateral breast cancer, 
(b) non-mass lesions without delineate boundaries, (c) biopsy 
before CEM examination, (d) patients with distant metastasis 
or other malignancies previously, and (e) patients with poor 
image quality.

Finally, a total of 365 women (mean age = 55.01±10.34 years; 
range = 27–80 years) with ALN metastasis were included in this 
retrospective study, including 194 patients with NSLN metas-
tasis and 140 patients without NSLN metastasis (Figure 1). All 
patients from Center one were randomly divided into a training 
set with 220 patients and an internal testing set with 96 patients 
with a ratio of 7:3. The 49 patients from Center two were enrolled 
in the external testing set.

CEM examination
All CEM images from center one were obtained with a full-digital 
breast machine (Senographe Essential, GE Healthcare), while 
CEM images from center two were obtained with a full-digital 
breast machine (Senographe Pristina, GE Healthcare). The 
imaging process of both centers was consistent. The Omnipaque 
300 (GE Healthcare, Inc., Princeton, NJ) was used as contrast 
agent, which was injected into the upper arm vein at a dose of 
1.5 ml/kg and injection flow rate of 3.0 ml s−1. Two minutes after 
injecting the contrast agent, low- and high-energy images were 
obtained on both cranial caudal (CC) view and mediolateral 
oblique (MLO) view within 5 min on bilateral breast. To increase 
the contrast uptake of the lesion, the breast without a suspected 
lesion was imaged first, and then the images of breast with the 
suspected lesion were taken. Recombined images were generated 
through post-processing system.

http://birpublications.org/bjr
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Clinical and radiological characteristics
The status of NSLN metastasis, estrogen receptor (ER), proges-
terone receptor (PR), human epidermal growth factor receptor 
Type 2 (HER2), Ki-67, molecular subtypes, lymphovascular 
invasion, menstrual status and age were obtained from patho-
logical examination results and the medical record system. The 
diameter of breast cancer was detected on the recombined image 
on CC view.

Considering that background parenchymal enhancement (BPE) 
and breast density may be the risk factors of breast cancer,25,26 
BPE was evaluated on MLO view of recombined images in bilat-
eral breast according to enhancement range, while breast density 
was evaluated on MLO view of low-energy images in bilateral 
breast according to the amount of fibroglandular tissue.27 Reader 
1 and reader 2 (who had 6 and 11 years’ experience in breast 
imaging, respectively) evaluated the BPE and breast density. If 
contradictory, the categories of BPE and density were deter-
mined by both readers after discussion.

Image segmentation and radiomics feature 
extraction
All CEM images were downloaded in Digital Imaging and 
Communications in Medicine (DICOM) format from Picture 
Archiving and Communication System (PACS). The intratu-
moral regions of interest (ROIs) were drawn manually on low-
energy and recombined images on CC view on ITK-SNAP 
software (version 3.8.0) by reader 1, who was blinded to the 
pathology results. Peritumoral ROIs were obtained automat-
ically by uniformly extending the intratumoral ROIs by 5 and 
10 mm using the “matplotlib”, “SimpleITK”, and “radiomics.

featureextractor” function packages in Python software (version 
3.6). If the peritumoral regions were beyond the parenchyma of 
the breast after extension, the portion beyond the parenchyma 
was manually removed. A schematic of ROI segmentation is 
shown in Figure  2. Finally, five ROIs were generated on each 
image, including intratumoral ROI (I), peritumoral 5 and 10 mm 
ROIs (P5, P10), intratumoral+peritumoral 5 and 10 mm ROIs (I 
+ P5, I + P10).

Image preprocessing was conducted before radiomics feature 
extraction, including the standardization of the gray value 
of ROI, gray level discretization, and image resampling by 

Figure 1. Flow chart of patients’ enrollment.

Figure 2. Examples of ROI segmentation on CEM images. 
The green region represents the intratumoral region. The yel-
low region represents the peritumoral 5 mm region. The yel-
low+blue regions represent the peritumoral 10 mm ROI. The 
green+yellow regions represent the intratumoral+peritumoral 
5 mm ROI. The green+yellow+ blue regions represent the intra-
tumoral+peritumoral 10 mm ROI. (a, c) Low-energy images on 
CC view. (b, d) Recombined images on CC view.

http://birpublications.org/bjr
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standardizing the images. Quantitative radiomics features were 
extracted from each ROI using the “RadiomicsFeatureExtractor” 
package of Pyradiomics, including first-order statistical features, 
shape-based features, and texture features.

Interobserver and intraobserver agreement of ROI 
segmentation and feature extraction
The CEM images of 30 patients were randomly selected to eval-
uate inter- and intraobserver agreement. To evaluate interob-
server agreement, reader one repeated the intratumoral ROI 
segmentation after 3 months. To evaluate intraobserver agree-
ment, reader two used the same method to delineate intra-
tumoral ROIs. The Dice coefficient was used to evaluate the 
agreement of ROI segmentation, with 0 meaning no overlap and 
one representing complete consistency. Inter- and intracoeffi-
cients (ICCs) were used to assess the reproducibility of radio-
mics feature extraction. ICCs greater than 0.75 were considered 
as good agreements.

Radiomics feature selection
The variance threshold, SelectKbest, and least absolute shrinkage 
and selection operator (LASSO) methods were used in sequence 
to reduce the redundant features and select optimal radiomics 
features. The eigenvalues of the variance<0.8 in the variance 
threshold method and the features with p < 0.05 in the SelectK-
best method were included. The score function of SelectKbest 
method was the mutual_info_regression. For the LASSO algo-
rithm, the optimal LASSO α parameter was set by five-fold cross-
validation, and radiomics features with non-zero coefficients 
were finally selected in the training set.

Development and validation of the radiomics 
model
On the basis of the selected features from five ROIs (I, P5, P10, 
I + P5, I + P10), five radiomics models were built by support 
vector machine (SVM) classifier, including intratumoral model 
(Model 1), peritumoral 5 and 10 mm models (Models 2 and 3), 
and intratumoral+peritumoral 5 and 10 mm models (Models 
4 and 5). Receiver operating characteristic (ROC) curves were 
drawn to evaluate the predictive performance of radiomics 
models. In particular, a new radiomics model (Model 6) was 
developed by SVM through combining features from two ROIs 
with the highest AUCs in the internal testing set. Moreover, we 
re-performed feature selection using the same method on the 
raw extracted radiomics features of the two models with the best 
AUCs in Models 1–5. Another radiomics model (Model 7) was 
constructed using the boosting algorithm to integrate logistic 
regression and SVM based on re-selected features to explore 
whether the predictive performance could be improved.

One-way analysis of variance (ANOVA) and multivariate logistic 
regression were used to select independent predictive factors of 
clinical and radiological characteristics related to NSLN metas-
tasis in the training set. In multivariate logistic regression, factors 
with p < 0.05 were considered as independent factors. The 
combined radiomics model (Model 8) was developed with the 
independent predictive factors and the best model from Models 
1 to 7 by SVM classifier.

Comparison with the MSKCC model
As one of the most widely validated NSLN predictive models in 
the world, the MSKCC model was used to compare the predic-
tive performance with the radiomics model. The pathological 
data of each patient in the external testing set were input to the 
MSKCC model (http://www.mskcc.org/nomograms) to obtain 
the probability of NSLN metastasis, and then the ROC curve 
of the MSKCC model was used to assess the predictive perfor-
mance, and the AUCs of the radiomics model and the MSKCC 
model were compared in the external test set.

Statistical analysis
Statistical analysis was performed in Python (version 3.6), R 
software (version 3.4.1), and SPSS (version 26). The pathology 
results were used as the gold standard in judging whether NSLN 
had metastasis. Continuous variables were compared by t-test, 
while qualitative variables were analyzed by chi-square test or 
Fisher’s exact test. Delong test was used to compare the differ-
ence between AUCs of radiomics model and MSKCC model in 
the external testing set. McNemar’s test was used to compare 
the performance of radiomics model and MSKCC model. 
The “sklearn.feature_selection”, “sklearn.linear_model”, and “​
matplotlib.​pyplot” function packages in Python were used to 
select radiomics features, while the “stats” package in R software 
was used for the selection of independent predictive factors. The 
“sklearn” and “pROC” packages in Python were used for radio-
mics model development and ROC analysis. A two-sided p < 
0.05 was regarded as a statistically significant difference.

RESULTS
Clinical and radiological characteristics
About 58.6%, 58.3%, and 53.1% of patients had NSLN metastasis 
in the training, internal, and external testing sets, respectively. 
The clinical and radiological characteristics of patients in three 
sets are shown in Table 1. Significant difference in T stage (p = 
0.018) was found between NSLN positive and NSLN negative in 
the training set.

Feature extraction and consistency assessment
A total of 1322 radiomics features were extracted from each ROI. 
Dice coefficients ranged from 0.83 to 0.95 in the same reader 1 
and from 0.81 to 0.94 in two different readers, indicating good 
consistency in ROI segmentation. The ICCs ranged from 0.816 
to 0.954 in the same reader 1 and from 0.773 to 0.935 in two 
different readers, indicated good reproducibility of radiomics 
feature extraction.

Predictive performance of radiomics models
A total of 6, 26, 26, 17, and 14 radiomics features were finally 
selected from I, P5, P10, I + P5, and I + P10 ROIs, respectively 
(Supplementary Table 1). Models 1–5 were developed with an 
AUC of 0.7004 (95% confidence interval [CI]: 0.5839–0.7372), 
0.6558 (95% CI: 0.5564–0.7148), 0.6545 (95% CI: 0.5332–
0.6937), 0.6781 (95% CI: 0.5535–0.7232), and 0.6933 (95% CI: 
0.5552–0.7233), respectively, in the internal testing set by SVM 
classifier (Table 2). Then, using the radiomics features from intra-
tumoral (I) ROI and intratumoral+peritumoral 10 mm (I + P10) 
ROI, a new radiomics model (Model 6) was developed by the 
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SVM classifier, with an AUC of 0.8000 (95% CI: 0.6871–0.8266) 
in the internal testing set, higher than Model 1, which was based 
on intratumoral features alone (p = 0.0037) . The raw radiomics 
features of intratumoral (I) ROI and intratumoral+peritumoral 
10 mm (I + P10) ROI were re-selected together, and 17 features 
were re-selected finally (Supplementary Table 2). Model 7, which 
was constructed by using the boosting algorithm to integrate 
logistic regression and SVM based on re-selected features, did 
not improve the predictive performance with Model 6, yielding 
an AUC of 0.7862 (95% CI: 0.6727–0.8165) in the internal testing 
set (Table 2).

In the training set, T-stage (p = 0.0024) was proven to be an inde-
pendent factor in predicting NSLN metastasis. Model 8, which 
was developed with T stage and radiomics features from Model 
6, did not improve the prediction performance, yielding an AUC 
of 0.7906 (95% CI: 0.6403–0.7891) in the internal testing set. 
Figure 3 displays the ROC curves of each radiomics model.

Model six achieved the highest predictive performance among 
all models in the internal testing set, containing six radiomics 
features from intratumoral ROI and 14 radiomics features from 
intratumoral+peritumoral 10-mm ROI with non-zero coef-
ficients in LASSO logistic regression (Table  3, Figure  1). The 
accuracy, sensitivity, and specificity of Model six in the internal 
testing set were 0.7500, 0.8250, and 0.6964, respectively. The 
AUC, accuracy, sensitivity, and specificity of Model six in the 
external testing set were 0.7567 (95% CI: 0.6717–0.8678), 0.7551, 
0.7826, and 0.7308, respectively (Figure 3C).

Comparison with the MSKCC model
The AUC of our proposed radiomics model (Model 6) was higher 
than that of the MSKCC model (AUC = 0.6681, 95% CI: 0.5148–
0.8213) (p = 0.361) (Figure 3C). Meanwhile, Model six showed 
statistically significant higher sensitivity (0.7826 vs 0.4615, p = 
0.003) than the MSKCC model. Accuracy in Model six was also 
higher than the MSKCC model (0.7551 vs 0.6327, p = 0.157), but 
was not statistically significant. The specificity of Model six was 
slightly lower than that of the MSKCC model (0.7308 vs 0.8261, 
p = 0.705) with no statistical significance.

DISCUSSION
The status of NSLN metastasis is related to the choice of treatment 
options for breast cancer patients with SLN metastasis. Preopera-
tive assessment of NSLN metastasis status has important clinical 
significance.28,29 Our multicenter study explored the potential 
ability of CEM-based radiomics in predicting NSLN metastasis. 
The radiomics model (Model 6), which was developed with 
features from intratumoral ROI and intratumoral+peritumoral 
10 mm ROI, showed the best predictive performance, with AUCs 
of 0.8000 and 0.7567 in the internal and external testing sets, 
respectively.

Before the emergence of radiomics, many scholars had used clin-
ical and pathological factors to predict NSLN metastasis. Gruber 
et al30 established a logistic regression model to predict NLSN 
metastasis using clinical factors, yielding an AUC of 0.73 in the 
validation group. Reynders et al28 used seven significant factors 
related to NSLN metastasis to establish a predictive model, 
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achieved the AUCs of 0.76 in the training set and 0.58 in one 
of the external sets, indicating that the generalization ability of 
the model needed to be further improved. Moreover, among the 
seven related factors, lymphovascular invasion and intraopera-
tive positive SLN were obtained after the surgery, which might 
affect the use of the predictive model. In our study, the proposed 
radiomics model, which was established by radiomics features 
extracted from preoperative CEM images, had higher AUC than 
the well-known MSKCC model validated by external testing 
set (0.7567 vs 0.6681), indicating that the radiomics model had 
potential ability in predicting NSLN metastasis before surgery.

As an emerging discipline, radiomics, which combines traditional 
medical imaging with machine learning, can provide a stable and 
non-invasive approach to reflect the heterogeneity of tumors to 
a certain extent. More and more studies had confirmed that the 
peritumoral region could provide more information such as 
lymphocytic infiltration relating to SLN metastasis.31 Liu et al32 
established a radiomics model based on intra- and peritumoral 
radiomics features extracted from dynamic contrast-enhanced 
MRI (DCE-MRI) to noninvasively predict SLN metastasis in 
breast cancer, yielding an AUC of 0.869 in the validation set, 
which was higher than that of the model using intratumoral 

Figure 3. (a, b) ROC curves of constructed radiomics models in the training and internal testing sets, respectively. (c) ROC curves 
of Model six and the MSKCC model tested by the external testing set.

Table 3. LASSO coefficient profiles of the 20 features in Model 6

ROI Radiomics Features Modality Coefficient
Intratumoral wavelet-HHL_gldm_LargeDependenceEmphasis Recombined 0.054211969

wavelet-HLL_glszm_ZonePercentage Low-energy −0.027478837

wavelet-HLL_glszm_ZonePercentage Recombined −0.002436579

wavelet-HLL_gldm_SmallDependenceLowGrayLevelEmphasis Low-energy −0.012799902

wavelet-LHH_glszm_LowGrayLevelZoneEmphasis Low-energy 0.037350932

wavelet-LHL_glrlm_ShortRunEmphasis Recombined −0.005482193

Intratumoral
+Peritumoral 10 mm

wavelet-HHL_glszm_LargeAreaHighGrayLevelEmphasis Low-energy 0.034885685

wavelet-HHH_glrlm_GrayLevelVariance Low-energy 0.024310428

wavelet-HHH_glrlm_ShortRunEmphasis Recombined −0.016050074

wavelet-HHH_glrlm_ShortRunLowGrayLevelEmphasis Low-energy −0.010330209

wavelet-LHL_gldm_LargeDependenceHighGrayLevelEmphasis Recombined 0.034539233

wavelet-LLH_glszm_SizeZoneNonUniformity Recombined 0.036595107

wavelet-LLL_glszm_ZonePercentage Low-energy −0.029445573

wavelet-HHH_glrlm_GrayLevelNonUniformityNormalized Recombined −0.019092896

wavelet-HLL_firstorder_Kurtosis Low-energy 0.034413406

wavelet-LLH_glszm_SmallAreaEmphasis Recombined 0.00273036

wavelet-LLL_glrlm_RunLengthNonUniformity Low-energy −0.000597858

wavelet-HHL_glszm_SizeZoneNonUniformityNormalized Low-energy −0.047975366

wavelet-LLL_firstorder_InterquartileRange Low-energy 0.014380025

wavelet-HLL_glszm_SmallAreaEmphasis Low-energy 0.003804684
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radiomics features alone (AUC = 0.819). Similarly, Braman et 
al33 used intra- and peri-tumoral radiomics features from DCE-
MRI to predict pathological complete response to neoadjuvant 
chemotherapy of breast cancer, yielding an AUC of 0.740 in the 
independent testing set. In our study, Model 6, which used the 
radiomics features extracted from intratumoral and peritumoral 
regions, showed better predictive performance than the intratu-
moral model (AUC, 0.8000 vs 0.7004, p = 0.0037), indicating that 
the peritumoral features had certain significance in predicting 
NSLN metastasis.

Our research has several advantages. First, to our knowledge, 
using CEM-based radiomics to predict NSLN metastasis has not 
been previously reported. Second, considering that the peritu-
moral region of the breast cancer might provide additional infor-
mation in predicting NSLN metastasis, we explored the predictive 
performance of radiomics based on different peritumoral regions 
(5 and 10 mm). The results showed that combining intratumoral 
and peritumoral regions could improve the predictive perfor-
mance of the radiomics model. Third, an external testing set was 
used to verify the generalization ability of the proposed model, 
showing good predictive ability in NSLN metastasis.

Admittedly, this study has some limitations. First, although this 
study was one of the CEM-based radiomics studies with a rela-
tively large number of patients, the number of patients enrolled 
in the external testing set was limited. A multicenter study with 
a larger sample size is warranted to prove the robustness of 
the proposed model. Second, as a feasibility study, the predic-
tive performance of the radiomics model needs to be further 
improved for better clinical application. Deep learning method 
can automatically mine deep network features from images 
according to different tasks. Guo et al showed that ultrasound-
based deep learning radiomics model had good predictive 

performance in predicting the SLN and NSLN metastasis of 
breast cancer.34 In the future study, we will use larger sample data 
to explore whether CEM-based deep learning could improve 
predictive performance of NSLN metastasis. Third, although the 
types of CEM equipment at two centers are different, both are 
produced by the same company. Future studies will incorporate 
different CEM devices from more centers. Fourth, the segmen-
tation of tumor ROIs was performed manually. Although Dice 
coefficients and ICCs showed good consistency and reproduc-
ibility, some studies found that semi-automatic and automatic 
segmentation methods had higher stability.35,36 An automatic 
segmentation model will be trained to delineate the ROIs in the 
future study.

In conclusion, the radiomics model based on intratumoral and 
peritumoral regions of CEM images showed acceptable predic-
tive performance in predicting NSLN metastasis of breast cancer 
patients, which can potentially benefit patients without NSLN 
metastasis by reducing unnecessary ALND. This study is a step 
toward precision medicine and personalized treatment for breast 
cancer patients. Further research on larger datasets with more 
centers is needed in the future.
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