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Abstract
Introduction  Multiple myeloma (MM) is a malignancy of plasma cells with characteristic bone disease. Despite recent great 
strides achieved in MM treatment owing to the implementation of new anti-MM agents, MM is still incurable and bone 
destruction remains a serious unmet issue in patients with MM.
Approach  In this review, we will summarize and discuss the mechanisms of the formation of bone disease in MM and the 
available preclinical and clinical evidence on the treatment for MM bone disease.
Conclusions  MM cells produce a variety of cytokines to stimulate receptor activator of nuclear factor-κB ligand-mediated 
osteoclastogenesis and suppress osteoblastic differentiation from bone marrow stromal cells, leading to extensive bone 
destruction with rapid loss of bone. MM cells alter the microenvironment through bone destruction where they colonize, 
which in turn favors tumor growth and survival, thereby forming a vicious cycle between tumor progression and bone destruc-
tion. Denosumab or zoledronic acid is currently recommended to be administered at the start of treatment in newly diagnosed 
patients with MM with bone disease. Proteasome inhibitors and the anti-CD38 monoclonal antibody daratumumab have been 
demonstrated to exert bone-modifying activity in responders. Besides their anti-tumor activity, the effects of new anti-MM 
agents on bone metabolism should be more precisely analyzed in patients with MM. Because prognosis in patients with 
MM has been significantly improved owing to the implementation of new agents, the therapeutic impact of bone-modifying 
agents should be re-estimated in the era of these new agents.

Keywords  Myeloma bone disease · Receptor activator of nuclear factor-κB ligand · Bone-modifying agents · Proteasome 
inhibitors · Daratumumab

Introduction

Multiple myeloma (MM) is a malignancy of plasma cells. 
It has a unique propensity to almost exclusively develop in 
the bone marrow and generates devastating bone destruction 
with enhanced osteoclastic bone resorption and concomitant 
suppression of bone formation. MM arises from its precan-
cerous stage, monoclonal gammopathy of unknown signifi-
cance (MGUS). In parallel with the progression of MGUS 
into MM, microenvironmental changes occur in the bone 
marrow, including increased osteoclastogenesis and angio-
genesis and impaired immune function. This pathologically 
skewed bone marrow microenvironment in turn stimulates 
MM cell growth and survival to cause drug resistance.

Bone disease is a characteristic feature of MM. Various 
novel anti-MM agents have been developed, and recent com-
bination treatments among them are able to exert prompt 
and deeper response in a greater portion of patients with 
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relapsed/refractory MM as well as newly diagnosed MM. 
However, MM is still incurable and eventually relapses; and 
bone destruction after repeated relapses remains a serious 
unmet issue in patients with MM. This review summarizes 
the mechanisms of the formation of bone disease in MM 
and the available preclinical and clinical evidence on the 
treatment for MM bone disease.

Bone metabolism in MM

Imbalance between osteoclastogenesis 
and osteoblastogenesis in MM

Image-documented bone lesions are observed in 80–90% 
of patients with MM during the course of their disease 
progression; 40% are reported to experience pathological 
fractures within the first year after diagnosis [1]. Typical 
images of bone disease in patients with MM are shown in 
Fig. 1. The pain and immobility caused by bone fractures 
can significantly reduce the quality of life (QoL) of patients 
with MM and may negatively affect treatment outcomes and 
thereby their life expectancy. Therefore, early detection of 
bone lesion(s) and therapeutic intervention are important in 
the treatment of MM. Bone metabolic markers can indicate 
ongoing bone metabolism and are widely used for the diag-
nosis and monitoring in osteoporosis and other disorders 
of bone metabolism. Levels of the bone resorption marker 

urinary deoxypyridinoline are increased in the majority 
of patients with MM, while levels of the bone formation 
marker serum osteocalcin are relatively decreased [2, 3], 
suggesting an imbalance of bone turnover with enhanced 
osteoclastic bone resorption and concomitantly suppressed 
bone formation.

For osteoclastogenesis, the interaction between the recep-
tor activator of nuclear factor-κB (RANK) and its ligand 
(RANKL) has been demonstrated to play a vital role. The 
expression of RANKL is induced in bone marrow stromal 
cells (BMSCs)/osteoblasts by various cytokines and physi-
ologically active substances. Binding of RANK to RANKL 
stimulates osteoclastic differentiation and activation. Osteo-
protegerin (OPG), a decoy receptor for RANKL, inhibits 
the binding of RANK to RANKL. OPG is produced from 
various types of cells, including T cells, megakaryocytes, 
and BMSCs/osteoblasts. These factors are also produced 
by osteocytes embedded in the bone matrix. Thus, the bal-
ance of RANKL expression and OPG production in the bone 
marrow determines the levels of osteoclastogenesis. In bone 
specimens from normal subjects, RANKL expression is 
low, but OPG expression is relatively high [4]. However, in 
those patients with MM, RANKL expression is increased in 
BMSCs, whereas OPG production is suppressed, indicating 
the predominance of RANKL activity in the MM bone mar-
row microenvironment.

Fig. 1   Images of bone disease in patients with MM. A Myeloma 
tumor cells accumulate in the bone marrow. B Multiple compression 
fractures in lumbar vertebrae. C Multiple radiolucent lesions without 

ossification, known as “punched-out lesions” in a skull X-p, implying 
enhanced bone resorption along with impaired calcification. D Bone 
fractures in long bone occur in an advanced case
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Pathogenic factors and clinically relevant 
biomarkers for MM bone disease

Cytokines aberrantly over-produced by MM cells, includ-
ing macrophage inflammatory protein (MIP)-1α and 
interleukin (IL)-34 as well as MM cell adhesion up-reg-
ulate RANKL in BMSCs, which play a major role in the 
enhancement of osteoclastogenesis and bone resorption 
in MM [5–7]. In addition, factors over-produced by MM 
cells and/or their surrounding microenvironment in bone 
such as soluble Wnt inhibitors, IL-3, IL-7, tumor necrosis 
factor alfa (TNF-α), activin A, and transforming growth 
factor beta (TGF-β) have been demonstrated to suppress 
osteoblastic differentiation [8–13]. Therefore, multiple 
factors act together to eventually develop extensive bone 
destruction in MM (Fig. 2). These factors can be utilized 
as clinical biomarkers to detect bone disease and evaluate 
its severity. Some of them have been reported as follows:

Soluble RANKL

Serum levels of soluble RANKL (sRANKL) and OPG and 
sRANKL/OPG ratios have been reported to be indicators 
of osteoclastic activity in patients with MM [14]. The 
serum sRANKL/OPG ratios increase and correlate with 
the clinical severity of bone destruction in patients with 

MM. They were also reported to have a negative impact 
on overall survival in patients with MM [14]. However, 
the impact of such factors on prognosis should be re-esti-
mated, because prognosis in patients with MM has been 
significantly improved by new anti-MM agents.

Macrophage inflammatory protein‑1

MM cells from patients with multiple bone lesions secreted 
significantly higher amounts of MIP-1α and MIP-1β than 
those from patients with less advanced bone disease [7], sug-
gesting the correlation between MM cell ability to produce 
MIP-1 and clinical severity of the bone disease. MIP-1α and 
MIP-1β as well as cocultures of MM cells enhanced in vitro 
osteoclast formation and activation from bone marrow 
cells. MIP-1α and MIP-1β induced RANKL expression in 
BMSCs in the presence of a physiologically low concentra-
tion of 1,25-dihydroxyvitamin D3. Addition of a surplus of 
OPG was able to inhibit RANKL activity and the effects of 
MIP-1α and MIP-1β and by MM cells, indicating a critical 
role of RANKL in osteoclast differentiation and activation 
in MM. Serum levels of MIP-1α positively correlated with 
the values of bone resorption markers in patients with MM 
with bone lesions [15].

Fig. 2   Bone destruction by factors over-produced by MM cells and/
or their surrounding microenvironment in bone in MM. MM cells 
enhance osteoclastogenesis and suppress osteoblastic differentiation 
from bone marrow stromal cells (BMSCs), leading to skewing of the 
cellular microenvironment in the bone marrow. Cytokines aberrantly 
over-produced by MM cells, including MIP-1, HGF and IL-34 as well 
as MM cell adhesion (VLA4/5-VCAM-1) up-regulate RANKL and 
IL-6 production in BMSCs to enhance osteoclastogenesis and MM 

cell growth/survival. Osteoclasts enhance MM cell growth/survival. 
MM cells enhance angiogenesis in concert with osteoclasts. In addi-
tion, factors over-produced by MM cells and/or their surrounding 
microenvironment in bone such as soluble Wnt inhibitors, IL-3, IL-7, 
TNF-α, activin A and TGF-β suppress osteoblastic differentiation. 
RANKL and sclerostin are over-produced by osteocytes. Therefore, 
multiple factors act together to eventually develop extensive bone 
destruction along with MM tumor expansion
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Hepatocyte growth factor

Serum levels of hepatocyte growth factor (HGF) are elevated 
in patients with MM with osteolytic lesions compared with 
patients with MGUS or normal subjects, and HGF levels 
correlated with the extent of osteolytic lesions [16, 17]. HGF 
is produced by MM cells and the bone marrow microen-
vironment and exerts diverse actions, including MM cell 
survival, homing, bone remodeling, and angiogenesis [18]. 
HGF induces RANKL expression in BMSCs/osteoblasts to 
promote osteoclastogenesis and suppresses their Runx2 and 
Osterix expression to impair osteoblastic differentiation [19].

Soluble Wnt inhibitors

Wnt/β-catenin signaling is essential for osteoblast differen-
tiation, which is negatively regulated by multiple soluble 
inhibitors. A series of secreted Frizzled-related proteins 
(sFRPs) and dickkopf (DKK) family members as well as 
sclerostin have been identified as soluble inhibitors for 
Wnt/β-catenin signaling [9, 20, 21]. DKK1 is produced by 
osteoblasts and osteocytes along with MM cells [21, 22]. 
Serum DKK1 levels are increased in patients with MM with 
bone disease and decreased as MM responds to anti-MM 
treatment [22, 23]. Sclerostin is a glycoprotein with a cys-
tine knot-like domain that is almost exclusively expressed 
and produced by osteocytes [24]. Serum sclerostin levels are 
increased in patients with MM with bone lesions and corre-
late with clinical stages and the severity of bone destruction 
[13]. Sclerostin expression was found in BMSCs/osteoblasts 
in addition to osteocytes in biopsy specimens from bone 
lesions in patients with MM [25]. The underlying mecha-
nisms for the over-production of sclerostin in MM bone 
lesions remain to be clarified.

Other soluble factors

TNF-α, IL-7, and IL-3 have also been reported as inhibitory 
factors of osteoblast differentiation derived from MM cells 
[26–28]. TGF-β specifically inhibits the terminal differentia-
tion (calcification) of osteoblasts [10]. TGF-β is stored as a 
latent form in the bone matrix and released from the bone by 
osteoclastic bone resorption and becomes an active form by 
acids and enzymes produced by osteoclasts. In osteoclastic 
bone lesions, activated TGF-β is abundantly released from 
bone tissues to suppress calcification. Activin A, another 
TGF-β family cytokine, is also overproduced from the bone 
marrow microenvironment in MM to suppress osteoblas-
togenesis [12, 29, 30]. In addition, other factors, including 
LIGHT [31], semaphorin 4D [32], and IL-34 [33] have been 
reported to be associated with the progression of MM bone 
lesions. These factors may become potential biomarkers for 
bone disease in MM.

MicroRNAs

MicroRNAs are short RNAs with about 21 bases that are 
produced when long RNAs transcribed from DNA are pro-
cessed by DROSHA and DICER. MM cells and cells sur-
rounding them in the bone marrow secrete exosomes that 
contain a wide variety of microRNAs [34]. As a potential 
biomarker for bone lesions, Hao et al. reported that serum 
miR-124 levels were higher in patients with MM with 
bone lesions and correlated with the extent of bone lesions 
[35]. Targets of miR-124 include the PTEN gene, which is 
involved in skeletal and muscle metabolic regulation via 
PI3K/AKT [36]. miR-135b has been implicated to inhibit 
the bone morphogenetic protein (BMP)-Smad pathway, and 
its increased production correlates with the severity of bone 
lesions [37]. miR-21-5p increases the RANKL/OPG ratio 
in BMSCs in patients with MM [38], whereas miR-342-3p, 
miR-363-5p and miR-203a-3p suppress osteoblastogeneis 
through targeting the Runx2, BMP-Smad and canonical 
Wnt-β-catenin pathways [39, 40]. A number of microR-
NAs have been demonstrated to be associated with MM 
pathogenesis.

Mutual interaction between MM cells 
and bone microenvironment

MM niche

MM cells enhance osteoclastogenesis and suppress osteo-
blastic differentiation from BMSCs, leading to skewing of 
the cellular microenvironment in the bone marrow (Fig. 2). 
Angiogenesis is also enhanced through these cellular inter-
actions. These cells surrounding MM cells create a cel-
lular microenvironment suitable for MM cell growth and 
survival to confer drug resistance, which can be called an 
“MM niche”.

Among cell components in the bone marrow in MM, the 
roles of BMSCs in MM cell growth and survival have been 
well studied. The interaction between MM cells and BMSCs 
confers MM cell homing, growth, survival, and resistance 
to chemotherapy [41]. MM cells stimulate BMSCs to pro-
duce various growth and anti-apoptotic factors for MM cells, 
including IL-6, IGF-1, SDF-1α, IL-21, B-cell-activating fac-
tor (BAFF), and vascular endothelial growth factor (VEGF) 
while inducing RANKL to enhance osteoclastogenesis. 
Notably, the adhesion of MM cells to BMSCs via VLA-4 
and/or VLA-5 confers cell adhesion-mediated drug resist-
ance (CAM-DR) in MM cells [42]. Autocrine activation of 
VLA-4 on MM cells by MM cell-derived MIP-1 and the 
up-regulation of MIP-1 production by MM cells through 
the VLA-4-VCAM-1 interaction appear to form a positive 
feedback loop between the adhesion of MM cells to BMSCs 
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and MIP-1 production by MM cells [43]. In addition to oste-
oclastogenesis, MIP-1 has been suggested to promote MM 
cell homing to or colonization in the bone marrow, which 
further enhances CAM-DR in MM cells.

In normal trabecular bones, bone remodeling with bone 
resorption by osteoclasts followed by bone formation by 
osteoblasts occurs in the bone remodeling compartments 
covered by canopy cells [44]. However, canopy cells dis-
appear, and bone remodeling compartments are disrupted 
in MM [45], and MM cells go into the bone remodeling 
compartments and directly interact with osteoclasts and 
osteoblastic lineage cells. When MM cells are isolated from 
patients with MM and cultured alone, MM cells soon die 
[46]. However, MM cells are alive and proliferating in the 
presence of osteoclasts, indicating that osteoclasts are not 
mere bone-resorbing cells but they support MM cell growth 
and survival. MM cells enhance osteoclastogenesis, and 
osteoclasts produce multiple growth and survival factors 
for MM cells, including TNF family cytokines, BAFF and 
APRIL [47, 48], thereby forming a vicious cycle between 
osteoclastic bone destruction and MM tumor progression. 
Lawson MA, et al. demonstrated that RANKL-driven osteo-
clastogenesis stimulates MM cell proliferation and reduces 
the percentage of a dormant MM cell fraction in mouse MM 
models [49], suggesting that osteoclasts make dormant mye-
loma cells divide and proliferate.

The TGF‑β–activated kinase 1‑PIM2 pathway

To effectively kill MM cells residing within the MM niche 
and improve the efficacy of treatment against MM, we looked 
for novel molecules to be targeted through comprehensive 
analysis using a DNA microarray. We found that the ser-
ine/threonine kinase PIM2 is constitutively over-expressed, 
and further up-regulated in MM cells in cocultures with 
BMSCs as well as osteoclasts [50–52]. Hematological can-
cers highly express PIM2; and MM expresses PIM2 at the 
highest level among hematological malignancies [53]. PIM2 
expression is increased in plasma cells in MGUS and much 
more in MM cells [54]. IL-6 and the TNF family cytokines 
BAFF and APRIL were found to play a predominant role 
in the PIM2 up-regulation in MM cells by interaction with 
BMSCs and osteoclasts. A variety of factors responsible 
for growth and survival signaling pathways in cancer cells 
are substrates of PIM kinases [55]; these PIM substrates 
regulate cellular processes critical for tumor progression 
and therapeutic resistance, making PIM a promising target 
for cancer therapy. Importantly, we reported that the PIM 
inhibitor SMI-16a dose-dependently suppresses the viability 
of MM cells. Treatment with the PIM inhibitor markedly 
suppressed the phosphorylation of 4E-BP1 to inhibit transla-
tion, and reduces Mcl-1 and c-Myc levels in MM cells [50]. 
Therefore, PIM2 acts as an important pro-survival mediator 

in MM cells in the bone marrow microenvironment, and 
is suggested to be an important therapeutic target in MM. 
Notably, PIM2 is also upregulated in BMSCs by MM cells 
as well as factors over-produced in MM bone lesions known 
to suppress osteoblastogenesis, suggesting PIM2 as a com-
mon downstream mediator of these inhibitory factors [51]. 
Enforced expression of PIM2 suppresses mineralized nodule 
formation or osteoblastogenesis by BMP-2, demonstrating 
PIM2 in BMSCs as a negative regulator for bone formation. 
RANKL enhances PIM2 expression in osteoclastic lineage 
cells during their osteoclastogenesis along with the induction 
of osteoclastic differentiation markers, c-fos, NFATc1, and 
cathepsin K [52]. The PIM inhibitor SMI-16a suppresses 
TRAP-positive osteoclast formation by RANKL.

We further looked into the molecular mechanism to 
upregulate PIM2 expression in MM cells and found the criti-
cal role of TGF-β–activated kinase 1 (TAK1) [56]. TAK1 
inhibition reduced PIM2 expression along with suppression 
of the phosphorylation of 4E-BP1, a substrate of PIM2, in 
MM cells. TAK1 is constitutively overexpressed and phos-
phorylated in MM cell lines and primary MM cells from 
patients; and TAK1 inhibition suppresses the viability of 
MM cells. Cell–cell contact between MM cells and BMSCs 
via the VLA-4-VCAM-1 interaction is important for MM 
cell growth and drug resistance and osteoclastogenesis. 
VCAM-1 expression is upregulated in BMSCs when co-
cultured with MM cells or cultured in the presence of TNF-
α. However, TAK1 inhibition abrogates the upregulation of 
VCAM-1 expression, thereby suppressing MM cell adhe-
sion to BMSCs and MM cell growth enhancement. Cocul-
tures with MM cells enhance RANKL and IL-6 expression 
in BMSCs, which is also inhibited by TAK1 inhibition. 
Besides, TAK1 inhibition markedly suppressed the secre-
tion of VEGF from MM cells. MM cell conditioned media 
as well as inhibitory factors for osteoblastogenesis overpro-
duced in MM induce phosphorylation of TAK1 in BMSCs 
and suppress their osteoblastogenesis. In addition, RANKL-
induced phosphorylation of TAK1 in preosteoclastic cells in 
parallel with degradation of IκB and nuclear localization of 
the NF-κB subunit p65 and phosphorylation of p38MAPK 
and ERK. Therefore, MM cells interact with BMSCs and 
osteoclasts in bone lesions to activate TAK1-mediated sign-
aling in these cells to enhance MM tumor progression and 
osteoclastogenesis whereas suppressing osteoblastogenesis 
(Fig. 3). However, TAK1 inhibition directly and/or indirectly 
suppresses MM growth and resumes bone formation while 
suppressing osteoclastogenesis. Therefore, TAK1 inhibition 
may become a promising therapeutic option, targeting the 
interaction between MM cells and their surrounding micro-
environment in MM bone lesions.
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Osteocytes

Osteocytes are the most abundant cells in bone. Osteocytes 
are derived from osteoblasts and embedded in bone. Most 
osteoblasts undergo apoptosis after forming bone, but a por-
tion of osteoblasts differentiate into osteocytes in the bone 
matrix [57, 58]. Osteocytes reside in the lacunae and connect 
with each other via their dendrites and sense and transmit 
mechanical signals via the lacuno-canalicular networks [59, 
60]. In addition to being a sensor of mechanical stress, osteo-
cytes act as a master regulatory cell of bone remodeling [61].

Under mechanical loading, the production of Wnt 
inhibitors sclerostin and DKK1 by osteocytes is decreased 
to increase bone formation [62, 63]. In contrast, mechani-
cal unloading induces RANKL expression by osteocytes 
to enhance osteoclast formation and activity and thereby 
decreasing bone mass. Rummler et al. reported an interesting 
experiment with mechanical loading in MM animal mod-
els [64]. The knee and ankle were fixated and mechanical 
loading with repeated forced compression was applied to 
tibiae into which MM cells were inoculated. Bone resorp-
tion area was increased in MM cell-inoculated tibiae more 
than in non-loaded control mice. However, mechanical load-
ing suppressed bone resorption and instead increased bone 
formation. Notably, MM tumor growth was suppressed in 
mice that underwent mechanical loading compared with 
control mice. We conducted an experiment with mechanical 
unloading in MM-bearing mice [65]. Right hind legs of mice 

were immobilized and exposed to mechanical unloading by 
sciatic denervation or casting with an adhesive bandage. 
RANKL expression was upregulated in osteocytes that expe-
rienced immobilization or mechanical unloading. Mechani-
cal unloading reduced trabecular bone volume, and bone 
morphometric analyses indicated an increase in osteoclast 
number and activity. To investigate the effects of mechani-
cal unloading on tumor growth, after sciatic denervation in 
the right hind legs, we inoculated the same MM cell line 
with different fluorescein colors, namely green fluorescent 
protein (GFP) or red fluorescent protein, simultaneously into 
right and left tibiae, respectively. More MM tumor growth 
was recorded in the immobilized legs than the intact ones. 
In addition, extraosseous tumors developed and tumorous 
lesions outside of the bone were composed of MM cells 
expressing GFP. In addition, GFP-expressing MM cells were 
predominantly observed in peripheral blood, indicating that 
mechanical unloading accelerated MM tumor expansion in 
bone and egress of cancer cells into the circulation and dis-
semination outside of the bone (Fig. 4).

Patients with MM often suffer from bone pain and frac-
tures, leading to immobilization or a bed-redden state with 
mechanical unloading. Mechanical unloading not only 
induces muscle atrophy but also bone loss with up-regula-
tion of RANKL expression in osteocytes and thereby osteo-
clastogenesis in the bone marrow (Fig. 4). The increased and 
activated osteoclasts then enhance MM growth and dissemi-
nation in and outside of the bone. These results suggested 

Fig. 3   The TAK1-PIM2 pathway in the mutual interaction between 
MM cells and the bone microenvironment. PIM2 is a novel pro-sur-
vival mediator for MM cells. Interaction with the MM bone marrow 
microenvironment potentiates PIM2 expression in MM cells through 
activation of the JAK2/STAT3 pathway by IL-6 and the NF-κB path-
way by TNF family cytokines, TNF-α, BAFF, and APRIL, to promote 
MM cell growth and survival. At the same time, PIM2 is induced 
in osteoclasts and bone marrow stromal cells (BMSCs) though the 

interaction with MM cells to cause bone destruction. TAK1 is over-
expressed and activated upstream of PIM2 in MM cells, BMSCs and 
osteoclasts through mutual interaction between these cells in the bone 
marrow. Besides PIM2 upregulation, TAK1 mediates a wide range 
of intracellular signaling pathways, including VEGF production via 
ERK in MM cells and the expression of VCAM-1 and RANKL in 
BMSCs. Therefore, TAK1 activation is vital for MM cell growth and 
survival and bone destruction
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the importance of mechanical loading for maintaining bone 
mass and suppression of tumor expansion in MM.

Paradigm shift in MM treatment

Although MM is a heterogeneous disease in terms of MM 
cell- and patient-related risk factors, major improvements 
in clinical outcomes of patients with MM in terms of over-
all survival (OS) has occurred since 2000 owing to the 
implementation of new agents. Additionally, high-quality 
responses with minimal residual disease (MRD) negativity 
can be used as a surrogate of OS and should be achieved 
[66]. Proteasome inhibitors (PIs) and immunomodulatory 
drugs are currently the mainstay of MM treatment. However, 
most patients eventually relapse with drug resistance. To 
overcome this issue, new combination regimens with thera-
peutic antibodies have been explored. Adding anti-CD38 
monoclonal antibodies, daratumumab or isatuximab, as 
well as the anti-SLAMF7 antibody elotuzumab offer better 
results for patients with MM. Furthermore, immune-based 
therapies, including antibody–drug conjugates, autologous 
chimeric antigen receptor (CAR) T-cell-based therapies, 
and bispecific antibodies, have shown promising activ-
ity for relapsed disease even with high-risk cytogenetic 
abnormality.

Elderly patients with poor performance status are often 
excluded from clinical studies. Establishment of effective 
treatment for elderly frail patients with MM, for example, 
those over 90 years old, remains an important issue in the 
era of longevity.

Treatment for MM bone disease 
with bone‑modifying agents

Bone destruction and renal impairment are common clini-
cal consequences in patients with MM. The MRC Myeloma 
IX trial, an important study comparing the effect of zole-
dronic acid intravenous injection every 3–4  weeks and 
oral daily clodronate from the start of MM treatment for 
newly diagnosed patients with MM irrespective of image-
documented bone lesion(s) [67]. Zoledronic acid effectively 
suppressed the occurrence of skeletal-related events (SREs) 
and extended OS by 5.5 months compared with oral clo-
dronate, although the survival benefit was preferentially 
observed in patients with bone disease at presentation. As 
such, some guidelines recommend initiating bone therapy 
with zoledronic acid concurrently with anti-MM therapy in 
all patients with symptomatic MM (Table 5).

Denosumab is an anti-RANKL neutralizing, fully human 
monoclonal IgG2 antibody [68]. Dose adjustments are not 
required for denosumab administration, because denosumab 
is not excreted from the kidney, nor metabolized in the liver 
[69–71]. A single subcutaneous injection of denosumab 
exerts long-term efficacy [72]. A randomized, double-
blind, multicenter phase 3 study of denosumab compared 
with zoledronic acid in the treatment of bone disease in 
patients with newly diagnosed MM with at least one image-
documented bone lesion [73]. Denosumab met the primary 
endpoint of non-inferiority to zoledronic acid for the pre-
vention of the occurrence of on-study SREs. Because most 
on-study SREs occurred within the first 3 months, a post-
hoc, landmark superiority analysis of time to first on-study 
SREs was done at 15 months. Denosumab was more effec-
tive in terms of suppression of SRE occurrence. Notably, 

Fig. 4   Mechanical unloading 
accelerates MM tumor expan-
sion. The mechanical unloading 
not only induce muscle atrophy 
but also bone loss with up-
regulation of RANKL expres-
sion in osteocytes and thereby 
osteoclastogenesis in the bone 
marrow. The increased and acti-
vated osteoclasts then enhance 
MM growth and dissemination 
in and outside of the bone. 
These results suggest the impor-
tance of mechanical loading 
in maintaining bone mass and 
suppression of tumor expansion 
in MM, and also the importance 
of inhibition of RANKL activity 
for immobilized patients in a 
bed-ridden state or paralysis
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denosumab extended median progression-free survival 
(PFS) by 10.7 months in an exploratory analysis, although 
OS was superimposed. The majority (79%) of patients were 
treated with PI-containing regimens in this study, implying 
that denosumab may prolong the efficacy of induction treat-
ment with PIs.

We retrospectively analyzed the efficacy of denosumab 
with PI-based regimens and updated the previously reported 
data [74]. Patient characteristics are listed in Table 1. All 
patients were treated with PI-based regimens with deno-
sumab. At the median follow-up of 24 months (interquar-
tile range 1–106), SRE occurred in 8 out of 61 patients 
with newly diagnosed MM (NDMM) and 6 out of 23 with 
relapsed/refractory MM (RRMM) (Fig. 5, left). The pro-
portion of patients without SRE at 3 years was 92.3% in 
the NDMM group and 59.3% in the RRMM group. Factors 
contributing to the SRE occurrence were MM progression 
and AL amyloidosis. Bone fractures occurred by falling in 
3 out of 4 cases with AL amyloidosis (Fig. 5, right). Bal-
ance loss and falling were caused by orthostatic hypotension 
and muscle weakness at the time of fracture in most cases 
(Table 2), indicating the importance of retaining physical 
function to prevent SREs. Bone fractures further deterio-
rate patients’ physical function, and resultant immobilization 
may accelerate bone loss with the tumor spreading within 
and outside of the bone.

The characteristics of zoledronic acid and denosumab are 
listed in Table 3. Zoledronic acid is administered by intra-
venous drip injection over 15 min or more. Denosumab 
is given subcutaneously. Zoledronic acid takes 3–4 days 
to exert its activity, whereas denosumab acts immediately 
after injection. Zoledronic acid acts on bone-resorbing 
mature osteoclasts but denosumab can act on immature and 
mature osteoclasts. Renal toxicity is less with denosumab. 
The incidence of osteonecrosis of the jaw was similar in 
both drug arms around 4% per year. Because of its potent 
activity, patients treated with denosumab have hypocalcemia 
more often than those treated with zoledronic acid. Risk 
factors for hypocalcemia in cancer patients after receiving 

Table 1   Patient characteristics

PS performance status, ECOG Eastern Cooperative Oncology Group, 
ISS International Staging System, SRE skeletal-related event, IMiD 
immunomodulatory drug, ASCT autologous stem cell transplantation

Sex (male/female) 45/39
Median age (range), years 69 (41–88)
Newly diagnosed 61 (73%)
Relapsed/refractory 23 (27%)
Immunoglobulin class
 IgG 49 (58%)
 IgA 15 (18%)
 IgD 3 (4%)
 Light chain only 16 (19%)
 Non-secretory 1 (1%)

PS (ECOG)
 0 29 (35%)
 1 26 (31%)
 2 11 (13%)
 3 11 (13%)
 4 7 (8%)

Durie and Salmon stage
 I 0 (0%)
 II 26 (31%)
 III 58 (69%)
 A 67 (80%)
 B 17 (20%)

ISS stage
 1 26 (31%)
 2 31 (37%)
 3 27 (32%)

Bone scale
 1 14 (17%)
 2 47 (56%)
 3 23 (27%)

AL amyloidosis 4 (5%)
Anti-myeloma treatment
 Proteasome inhibitors 84 (100%)
 IMiDs 59 (70%)
 ASCT 26 (31%)

Fig. 5   Proportion of MM 
patients without SRE. Time to 
first SRE on denosumab was 
retrospectively analyzed in 
84 MM patients treated with 
proteasome inhibitor-based 
regimens between June 2012 
and August 2022 in Tokushima 
University Hospital. The present 
study was approved by the 
Institutional Review Board of 
Tokushima University (permis-
sion number 3086-2)
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denosumab are listed in Table 4. To prevent severe hypoc-
alcemia with denosumab, corrected serum calcium levels 
should be monitored during treatment, especially in the first 
cycle of denosumab. Additionally, adequate calcium and 

vitamin D intake is recommended. Because patients with 
MM often have renal failure and vitamin D is activated in 
the kidney, patients with MM with renal failure should take 
active forms of VD3 (25-hydroxyvitamin D3 or 1,25-dihy-
droxyvitamin D3) rather than natural vitamin D.

In the guideline issued by the Japanese Society of Hema-
tology [75], it is recommended to administer denosumab 
or zoledronic acid at the start of treatment in NDMM 
patients with bone lesion(s). Denosumab is more strongly 

Table 2   Physical function and triggering factors for SRE occurrence

M male, F female, PS performance status, ECOG Eastern Cooperative Oncology Group, VGPR very good partial response, SD stable disease, 
PD progressive disease, GI gastrointestinal, DM diabetes mellitus

No. Age/Sex Amyloidosis Details of SRE Treatment 
response

Triggers Complications/comorbidities PS ECOG

1 76/M None Femoral fracture SD Loss of balance
Falling down

Peripheral neuropathy 2

2 47/M None Rib fracture
Spinal cord compression

PD None None 2

3 56/M None Pelvic fracture PD Loss of balance
Falling down

DM type 2
Orthostatic hypotension

4

4 55/M None Vertebral fracture
Spinal cord compression

PD None Peripheral neuropathy 4

5 78/M None Sacral fracture
Spinal cord compression

PD None None 3

6 77/M None Vertebral fracture
Rib fracture

PD None DM type 2
Orthostatic hypotension

1

7 74/F None Vertebral fracture PD Loss of balance Peripheral neuropathy 3
8 80/F None Vertebral fracture PD None DM type 2

Muscle weakness
3

9 73/F None Femoral fracture SD Loss of balance
Falling down

None 1

10 85/F None Vertebral fracture
Spinal cord compression

PD Falling down None 1

11 59/F None Vertebral fracture PD None None 1
12 73/F Heart, tongue, skin Femoral fracture VGPR Falling down Muscle weakness

Orthostatic hypotension
2

13 78/F GI tract, skin, muscle Vertebral fracture VGPR Loss of balance
Falling down

Muscle weakness 1

14 70/M Heart, kidney, GI tract Rib fracture VGPR Falling down DM type 2
Peripheral neuropathy
Orthostatic hypotension

0

Table 3   Characteristics of zoledronic acid and denosumab

iv intravenous, sc subcutaneous, OC osteoclast, ONJ osteonecrosis of 
the jaw

Zoledronic acid Denosumab

Injection route iv sc
Emergence of effects 3–4 days  < 1 day
Target to Mature OCs Immature 

and mature 
OCs

Hypocalcemia Sometimes More often
Renal impairment  +  −
Acute reaction  +  Rare
Bone deposition  + (cumulative) −
ONJ  +   + 
γδT cell induction  +  −

Table 4   Risk factors for hypocalcemia in patients with cancer after 
receiving denosumab

ALP alkaline phosphatase, NTx N-terminal cross-linking telopeptide 
of type 1 collagen, BSAP bone-specific alkaline phosphatase

The first cycle of denosumab treatment
Renal insufficiency
Hypercalcemia before treatment
Aberrantly high baseline serum ALP
Higher baseline bone turnover markers of NTx and BSAP
Potential vitamin D deficiency
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recommended in patients with renal impairment due to its 
low renal toxicity. Current recommendations for the use of 
bone‐modifying agents for patients with MM are listed in 
Table 5 [76–78]. Most guidelines say that these bone‐modi-
fying agents should be given every month for up to 2 years 
and stopped if the disease is controlled or continued when 
the disease is active. During the current COVID-19 pan-
demic, zoledronic acid can be given every 3 months for bone 
disease prophylaxis. These bone‐modifying agents can be 
discontinued or changed to oral bisphosphonates for patients 
achieving a good durable response. Oral bisphosphonates 
may prevent a rebound effect by denosumab discontinuation.

Effects of new anti‑MM agents on bone 
metabolism in patients with MM

MM cells express both constitutive proteasomes and immu-
noproteasomes. The inhibition of proteasome action results 
in the accumulation of misfolded proteins and functional 
proteins to be degraded by proteasomes in the endoplas-
mic reticulum lumen and cytosol, which facilitates several 
stresses, including endoplasmic reticulum overload, gen-
eration of excess reactive oxygen species, and functional 
disorder of intracellular proteins, eventually leading to 
apoptosis. Bortezomib and oral ixazomib are reversible PIs. 
Carfilzomib irreversibly inhibits both β5 and β5i protea-
some subunits at low concentrations to induce more potent 
and prolonged suppression of proteasome activity in MM 
cells, compared with the reversible inhibitors bortezomib 
and ixazomib [79, 80]. Functionally, carfilzomib has been 
demonstrated to overcome resistance to the first-in-class PI 
bortezomib [81].

Besides their anti-tumor activity, PIs exerts bone anabolic 
actions [82–86]. During treatment with PIs, bone formation 
is restored preferentially in bone-destructive lesions in good 
responders (Fig. 6) [87]. Patients exhibiting bone forma-
tion in bone lesions tend to show a better and prolonged 

reduction of tumors [88–95]. Therefore, tumor reduction 
appears to trigger the anabolic effects of bortezomib. PIs 
induce MM cell death, which reduces the production of anti-
anabolic mediators by MM cells and from bone lesions. PIs 
also suppress DKK1 production by BMSCs and sclerostin 
mainly by osteocytes [25, 96, 97]. With enough reduction 
of tumor cells, PIs are able to directly induce critical tran-
scription factor for osteoblastogenesis, including Runx2 and 
ATF4, and activate osteoblasts to form bone [82, 83, 98, 99].

The REBUILD trial is a notable clinical study with 
daratumumab monotherapy to evaluate the role of daratu-
mumab in bone remodeling among patients with RRMM 
[100]. Daratumumab monotherapy did not show statistically 
significant differences in serum levels of indicators of bone 
resorption, C-terminal cross-linking telopeptide of type 1 
collagen and tartrate resistant acid phosphatase 5b (TRACP-
5b), nor changes in the RANKL/OPG ratios over time. In 
contrast to the weak or marginal suppression of osteoclastic 
bone resorption, daratumumab showed a positive effect on 
bone formation with increasing serum levels of bone forma-
tion markers, including procollagen type-I N-pro-peptide, 
bone-specific alkaline phosphatase, and osteocalcin. The 
anabolic benefit was greater among responders and those 
with a prolonged duration of treatment. Such anabolic effects 
were gradually observed even after 4 months in patients on 
daratumumab monotherapy in contrast to those observed in 
responders to PIs at early treatment cycles. The anabolic 
effect of daratumumab was associated with a significant 
decrease in serum DKK1 and C–C motif ligand-3 levels. 
Although MM cells substantially influence bone remodeling 
to skew towards bone resorption, daratumumab can improve 
bone turnover towards bone formation in responders.

Perspectives

To maintain bone health in patients with MM, controlling 
MM tumors is required. We can now reduce MM tumors in 
the majority of patients using induction therapy, but MM 

Fig. 6   Bone recovery in 
responders to bortezomib. A 
newly diagnosed patient was 
treated with bortezomib and 
dexamethasone and achieved a 
very good partial response after 
2 cycles of the treatment. Bone 
formation appeared in bone 
defective lesions in the iliac 
bone (right)
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regrows in most cases even after achieving a very good 
response with MRD negative state. New immunotherapies 
and/or new drug classes are expected for RRMM, especially 
for functional high-risk or triple-class refractory MM. To 
contain MM tumors without a relapse, however, the under-
lying mechanism of relapse needs to be further clarified. In 
this regard, we should elucidate the alteration of immune 
function and the tumor microenvironment in response to 
different therapeutic modalities. Cytotoxic agents often 
cause immune dysfunction, which may allow tumor cells 
to regrow. Additionally, bone marrow microenvironment 
with increased osteoclasts as well as BMSCs with defec-
tive osteoblastic differentiation provide a niche to support 
MM cell growth and induce tumor drug resistance. There-
fore, reshaping of the bone marrow niche-environment and 
immune system is needed to suppress a relapse.

Risk-stratified therapy should be taken into account with 
different new agents. To better stratify prognosis, a second 
revision of the international staging system (R2-ISS) has 
been recently established [101]. The R2-ISS assigns a prog-
nostic value to each baseline risk feature: ISS stage II (1 
point), ISS stage III (1.5 points), del(17p) (1 point), high 
lactate dehydrogenase (1 point), t(4;14) (1 point), and 1q 
copy number alterations (0.5 point). Patients are stratified 
into four risk groups according to the total additive scores: 
low (0 points), low-intermediate (0.5–1 points), intermedi-
ate high (1.5–2.5 points), and high (3–5 points). However, 
a portion of standard-risk patients has a dismal prognosis, 
whereas high-risk patients do not always show poor progno-
sis, indicating that other factors responsible for predicting a 
relapse should be incorporated into prognostic assessments 
before treatment and response assessments during or after 
treatment. Indicators of immune function and bone marrow 
microenvironment surrounding MM cells may be such fac-
tors to be included.

To treat functional high-risk patients, new treatment 
modalities will play an important role. Among others, 
immunotherapies, including autologous CAR T-cell-based 
therapies and bispecific antibodies, are drawing consider-
able attention. However, we are still quite behind in our 
understanding of the heterogeneous biology of MM and its 
implications for therapy. Therefore, we need to further elu-
cidate the efficacy of new agents especially in combinatory 
treatments with forthcoming treatment modalities such as 
immunotherapies with CAR T cells and bispecific antibodies 
to make the best use of these important agents and obtain 
better and more beneficial therapeutic outcomes in patients 
with MM.
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