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Abstract

Genetic lesions in X-linked inhibitor of apoptosis (XIAP) pre-dispose
humans to cell death–associated inflammatory diseases, although
the underlying mechanisms remain unclear. Here, we report that
two patients with XIAP deficiency–associated inflammatory bowel
disease display increased inflammatory IL-1b maturation as well as
cell death–associated caspase-8 and Gasdermin D (GSDMD) pro-
cessing in diseased tissue, which is reduced upon patient treat-
ment. Loss of XIAP leads to caspase-8-driven cell death and
bioactive IL-1b release that is only abrogated by combined deletion
of the apoptotic and pyroptotic cell death machinery. Namely,
extrinsic apoptotic caspase-8 promotes pyroptotic GSDMD process-
ing that kills macrophages lacking both inflammasome and apopto-
sis signalling components (caspase-1, -3, -7, -11 and BID), while
caspase-8 can still cause cell death in the absence of both GSDMD
and GSDME when caspase-3 and caspase-7 are present. Neither
caspase-3 and caspase-7-mediated activation of the pannexin-1
channel, or GSDMD loss, prevented NLRP3 inflammasome assembly
and consequent caspase-1 and IL-1b maturation downstream of
XIAP inhibition and caspase-8 activation, even though the
pannexin-1 channel was required for NLRP3 triggering upon mito-
chondrial apoptosis. These findings uncouple the mechanisms of

cell death and NLRP3 activation resulting from extrinsic and intrin-
sic apoptosis signalling, reveal how XIAP loss can co-opt dual cell
death programs, and uncover strategies for targeting the cell death
and inflammatory pathways that result from XIAP deficiency.
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Introduction

X-linked inhibitor of apoptosis protein (XIAP), and the closely

related cellular IAPs (cIAP1/2), are RING E3 ubiquitin ligases that

were first described in mammals for their roles in suppressing apop-

totic cell death (Duckett et al, 1996; Liston et al, 1996; Uren et al,

1996; Silke & Vince, 2017). However, recent evidence has placed

XIAP as having a critical role in regulating pathogen-induced inflam-

matory responses, as humans with genetic lesions in XIAP (Birc4)

are predisposed to the hyperinflammatory syndrome X-linked
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hemophagocytic lymphohistiocytosis (HLH), as well as inflamma-

tory bowel conditions often resembling Crohn’s disease (CD)

(Marsh et al, 2010; Aguilar et al, 2014; Speckmann & Ehl, 2014;

Wada et al, 2014; Aguilar & Latour, 2015; Zeissig et al, 2015;

Amininejad et al, 2018). Other clinical manifestations resulting from

the inheritance of XIAP mutations have also been described, includ-

ing renal, dermatological, hepatic, pulmonary, infectious, neurologi-

cal and musculoskeletal conditions (Mudde et al, 2021). Similar

pathogenic variants of cIAP1/2 (Birc2/3) have not been reported,

although studies show that cIAP degradation caused by toll-like

receptor (TLR) and TNF signalling is key for the inflammatory and

cell death responses in the context of XIAP deficiency (Vince et al,

2012; Wong et al, 2014; Lawlor et al, 2017; Knop et al, 2019).

Indeed, small molecule drugs designed to mimic the IAP-binding

motif of mitochondrial DIABLO/SMAC to antagonise XIAP and

cIAPs (Du et al, 2000; Verhagen et al, 2000), phenocopy the cell

death and inflammatory signalling triggered upon genetic XIAP dele-

tion (Vince et al, 2012; Yabal et al, 2014; Lawlor et al, 2015, 2017).

The normal development of XIAP-deficient mice and human car-

riers of XIAP variants highlights that an environmental trigger, such

as microbes, is likely to cause disease onset. Consistent with this

idea, X-linked HLH is frequently triggered by pathogen infections,

particularly Epstein–Barr virus, and is marked clinically by a range

of symptoms, such as periodic fevers, hepatosplenomegaly, hyper-

ferritinaemia, hypercytokinaemia and hemophagocytosis (Marsh

et al, 2010; Wada et al, 2014; Aguilar & Latour, 2015). X-linked HLH

is a fulminant and rapidly fatal disease, and the only cure is allo-

genic haematopoietic stem cell transplantation with reduced inten-

sity conditioning, which carries a high risk of post-transplant

mortality (Arico et al, 1996; Tang & Xu, 2011; Janka, 2012).

XIAP deficiency also causes inflammatory bowel disease (IBD)

(Worthey et al, 2011; Amininejad et al, 2018). In fact, up to 4% of

male paediatric patients with CD contain mutations in XIAP (Zeissig

et al, 2015), and variants in XIAP have also been reported to cause

adult-onset IBD (Quaranta et al, 2018; Parackova et al, 2020). The

life-long debilitating symptoms of IBD result from an inappropriate

mucosal immune response that has been linked to intestinal epithe-

lial erosion and cell death and can result in diverse extraintestinal

manifestations in many organ systems (Nunes et al, 2014; Patankar

& Becker, 2020; Strigli et al, 2021; Wahida et al, 2021). CD caused

by XIAP loss is particularly severe, with patients often being

treatment-refractive and dying within a few years of onset or diag-

nosis (Nielsen & LaCasse, 2017; Chang et al, 2021). Hence, there is

a significant need to unravel the mechanisms by which XIAP defi-

ciency predisposes to heightened pathological inflammatory

responses and cell death, both systemically and within the diseased

tissue.

Patients with X-Linked HLH, or the related autoinflammatory

condition, macrophage activation syndrome, exhibit sustained ele-

vated levels of the inflammatory cytokines IL-18 and/or IL-1b
(Wada et al, 2014; Weiss et al, 2018; Crayne et al, 2019). Systemic

elevation of IL-18 and IL-1b are markers of inflammasome activa-

tion, which are pathologically triggered in numerous hereditary and

environmentally associated autoinflammatory conditions (Canna

et al, 2017; Manthiram et al, 2017; Rashidi et al, 2020; Speir &

Lawlor, 2021). Under normal circumstances, the inflammasome sen-

sor proteins, such as the NOD-like receptors (NLRs) NLRP1, NLRP3

and NLRC4, act to detect pathogen- or host-derived danger

molecules to facilitate the innate and adaptive immune response

(Menu & Vince, 2011; Jones et al, 2016). When activated, the NLR

sensor forms a large multimeric cytosolic protein complex, an

inflammasome, that triggers caspase-1 to process pro-IL-1b and pro-

IL-18 into their bioactive forms. Caspase-1 simultaneously cleaves

the pyroptotic cell death effector Gasdermin-D (GSDMD) and liber-

ates its N-terminal fragment that forms pores in the plasma mem-

brane, allowing the efficient egress of active IL-1b and IL-18 (Shi

et al, 2015; Kayagaki et al, 2015b; Aglietti et al, 2016; Gaidt & Hor-

nung, 2016; Sborgi et al, 2016).

We and other groups have previously demonstrated that in

response to pathogen ligands and TLR signalling, or upon TNF-

driven tumour necrosis factor receptor 1 (TNFR1) stimulation,

murine XIAP deletion licences dendritic cell, macrophage and neu-

trophil extrinsic apoptotic caspase-8 activation (Vince et al, 2012;

Yabal et al, 2014; Wicki et al, 2016; Knop et al, 2019). Activated

caspase-8 can process precursor IL-1b directly in addition to induc-

ing NLRP3 inflammasome formation to allow for caspase-1-

mediated cleavage of IL-1b into its bioactive fragment (Maelfait

et al, 2008; Vince et al, 2012; Yabal et al, 2014; Lawlor et al, 2015).

However, the mechanisms underpinning the inflammatory functions

of caspase-8 in the context of XIAP deficiency, including how it trig-

gers NLRP3 activity and how it signals innate immune cell death,

remain unclear.

Here we discover that two human patients with XIAP deficiency,

presenting with IBD, exhibit heightened caspase-8-activation corre-

lating with increased IL-1b and GSDMD processing in peripheral

blood mononuclear cells (PBMCs) and inflamed colonic mucosae.

Using IAP antagonist targeting to model XIAP deficiency we identify

that extrinsic caspase-8 activates multiple downstream apoptotic

and pyroptotic effectors, which act redundantly to cause both excess

cell death and inflammatory IL-1b release. We further show that the

pannexin-1 channel and GSDMD are not required for NLRP3 inflam-

masome assembly downstream of caspase-8, even though

pannexin-1 is critical for NLRP3 signalling following mitochondrial

apoptosis-mediated caspase-3 and caspase-7 activation. Collectively,

these findings reveal redundancy in the mechanisms by which

caspase-8 can induce IL-1b egress upon XIAP loss, identify potential

therapeutic targets for treating X-linked HLH and IBD, and uncouple

the downstream signalling events of intrinsic and extrinsic apoptosis

that drive cell death and NLRP3 inflammasome responses.

Results

Processed caspase-8, GSDMD and IL-1b are increased in patients
with XIAP-deficiency-associated inflammatory bowel disease

We performed whole exome sequencing and identified two male

patients with XIAP deficiency. Patient 1 was a 9-year-old male with

CD who had inherited a frameshift mutation (c.T993del-AGAAC:

p.L331delE?) from his mother (Figs 1A and EV1A). An older brother

of this patient had died from CD at the age of nine (Fig 1A). Patient

2 was a 1-year-old male presenting with Very Early Onset Inflamma-

tory Bowel Disease (VEOIBD), who had inherited a missense muta-

tion leading to a premature stop codon in XIAP (c595C>T:p.Q199X)

(Figs 1A and EV1A). In both cases, colonoscopy examinations

revealed erosions, ulcers and nodularity in the colon of both
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patients (Fig EV1B). Western blot analysis of PBMCs revealed a

complete loss of XIAP expression at the protein level in the two

patients (Fig 1B). XIAP is required for NOD2 signalling (Krieg et al,

2009; Damgaard et al, 2012), and consistent with the lack of XIAP

protein expression, muramyl dipeptide (MDP)-mediated activation

of NOD2 to induce TNF and IL-6 secretion was defective in PBMCs

from both XIAP-deficient patients compared with PBMCs from

healthy donors (Fig EV1C and D).

Findings in mice indicate that the loss of XIAP increases TLR-

induced caspase-8 activity to allow for cell death and cleavage of

IL-1b into its 17 kDa bioactive fragment, which is released into the

extracellular milieu (Vince et al, 2012; Yabal et al, 2014; Lawlor

et al, 2017). However, whether the same signalling pathway is

relevant to humans lacking XIAP, and in what tissues or cell types,

remains unclear. Consistent with murine studies, XIAP-deficient

patient PBMCs stimulated with LPS resulted in increased IL-1b
egress compared with healthy control cells, as measured by

ELISA (Fig 1C). Importantly, western blot analysis demonstrated

that XIAP deficiency enhanced LPS-mediated cleavage of IL-1b into

its bioactive form (p17), and this correlated with increased

activation-associated caspase-8 processing and the cleavage of

inflammasome-associated GSDMD into its pore-forming p30 frag-

ment (Fig 1B).

To examine if the diseased colon of XIAP-deficient patients also

displayed signs of cell death, the colonic mucosae of XIAP-deficient

patients and healthy control subjects was stained for levels of

cleaved and activated caspase-8 and GSDMD. Immunostaining and

scoring of the colonic mucosae revealed that both XIAP-deficient

patients exhibited increased levels of both active caspase-8 and

GSDMD compared with healthy control colon samples (Figs 1D and

E, and EV1E). Moreover, upon treatment (early enteral nutrition in

patient 1 and anti-TNF and immune suppression in patient 2), the

levels of cleaved caspase-8 and GSDMD detected in both patients

were substantially reduced (Fig 1D and E).

Taken together, these data provide evidence that XIAP deficiency

can predispose humans to increased TLR-driven caspase-8, GSDMD

and IL-1b activation, in PBMCs and inflamed colonic mucosal

tissue.

GSDMD is activated upon XIAP inhibition in the absence of
caspase-1 and NLRP3

We next sought to model XIAP deficiency through the use of small

molecule IAP antagonist (smac-mimetic) compounds. Although TLR

and/or TNF-induced cIAP degradation is required for the IL-1b

activation and macrophage death that can result from XIAP loss

(Lawlor et al, 2017), the loss of cIAPs alone does not suffice to cause

these responses (Lawlor et al, 2015). Consistent with these studies,

only IAP antagonists that inhibit XIAP and cIAPs efficiently (Cp.A,

030, 031, 455) caused high levels of macrophage death, caspase-8

processing and associated caspase-1 and IL-1b activation, while

those with selectivity for cIAPs (711 [birinapant], 851 and 883), did

not (Figs 2A and EV1F and G) (Condon et al, 2014; Lawlor et al,

2015). Therefore, XIAP deficiency can be modelled in cells by treat-

ment with bivalent IAP antagonists, such as Compound A (Cp. A),

which target XIAP and cIAPs (Vince et al, 2007).

Our analysis of patient samples suggested that XIAP deficiency

results in a caspase-8-GSDMD axis that facilitates IL-1b maturation

and release to promote inflammatory responses (Fig 1). In addition

to caspase-8 engagement of the NLRP3 inflammasome to activate

caspase-1 (Lawlor et al, 2015; Gaidt et al, 2016), recent studies have

indicated that caspase-8 can also directly process GSDMD to drive

pyroptotic cell death (Orning et al, 2018; Sarhan et al, 2018;

Demarco et al, 2020; Muendlein et al, 2020). However, caspase-1 is

reported to be more efficient at cleaving GSDMD than caspase-8

(Shi et al, 2015; Orning et al, 2018).

To assess whether caspase-8 contributes to GSDMD activity in

XIAP deficiency via NLRP3-caspase-1 activation or direct caspase-8

processing, we primed bone marrow–derived macrophages

(BMDMs) from wild-type (WT), Nlrp3�/� and Caspase-1�/� mice

with LPS and treated them with Cp. A to phenocopy XIAP loss and

pathogen challenge. Consistent with our analysis of XIAP-deficient

patients, Cp. A treatment resulted in the processing of GSDMD into

its active p30 fragment (Fig 2B). Although reduced, GSDMD activa-

tion was still detected in both Nlrp3�/� and Caspase-1�/� BMDMs

following Cp. A treatment, which correlated with the processing of

caspase-8 (Fig 2B). This contrasted to the treatment of BMDMs with

the canonical NLRP3 stimuli, nigericin, which triggered the produc-

tion of active GSDMD in a NLRP3- and caspase-1-dependent manner

(Fig 2B). In line with previous findings (Vince et al, 2012; Lawlor

et al, 2015), Cp. A also activated the NLRP3 inflammasome, as its

ability to induce caspase-1 processing to the p20 fragment was abro-

gated in Nlrp3�/� (and Caspase-1�/�) BMDMs. On the other hand,

Cp. A-induced IL-1b activation and release was only modestly com-

promised by the loss of NLRP3 signalling; a result of caspase-8 pro-

cessing IL-1b directly (Fig 2B) (Maelfait et al, 2008; Vince et al,

2012).

To help understand if IAP inhibition, associated caspase-8 pro-

cessing, and consequent NLRP3, GSDMD and IL-1b activation were

mirrored by other agents that trigger caspase-8, we treated LPS

◀ Figure 1. XIAP deficiency in humans is associated with increased caspase-8, GSDMD and IL-1b activation.

A Pedigrees of the XIAP-deficient patients identified in this study.
B, C PBMCs were stimulated with LPS (500 ng/ml) and after 24 h cell lysates and supernatants analysed by western blot (B) and ELISA (C), respectively. The mean of

experimental duplicates (symbols) is shown (C).
D, E Immunofluorescence staining showing activation of caspase-8 and GSDMD in the colonic mucosae of XIAP-deficient patients relative to healthy control colonic

biopsies before and after early enteral nutrition (patient 1) or anti-TNF and immune suppression (patient 2) therapies, with several images (symbols) quantified in
panel E (mean � SEM of caspase-8 or GSDMD stained area relative to overall tissue staining (DAPI) analysed using ImageJ software. Caspase-8 staining quantified
from; n = 16 healthy control, n = 8 and 6 before therapy (patient 1 and 2, respectively) and n = 5 and 9 after therapy (patient 1 and 2, respectively) separate images.
GSDMD staining quantified from; n = 10 healthy control, n = 7 and 6 before therapy (patient 1 and 2, respectively) and n = 8 and 8 after therapy (patient 1 and 2,
respectively) separate images.

Source data are available online for this figure.
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primed BMDMs with the TAK1 inhibitor (5Z)-7-Oxozeaenol

(TAK1i), as TAK1 is required to prevent caspase-8-dependent cell

death (Lluis et al, 2010; Sarhan et al, 2018). Akin to Cp. A treat-

ment, the inhibition of TAK1 induced caspase-8 activation and

NLRP3-mediated caspase-1 processing and IL-1b maturation

(Fig 2B). Importantly, TAK1 inhibition also resulted in cleavage of

GSDMD into the p30 pore-forming fragment in both Nlrp3�/� and

Caspase-1�/� BMDMs (Fig 2B). Therefore, in macrophages, IAP loss

and TAK1 inhibition trigger an inflammatory signalling pathway ini-

tiated by caspase-8.

A B

Figure 2. GSDMD is processed upon IAP targeting even in the absence of caspase-1 or NLRP3.

A BMDMs were seeded at a density of 4 × 105 cells per well, primed with 20 ng/ml of LPS for 3 h then treated, as indicated, with 500 nM of Cp. A or 711 for
20 h and cell lysates and supernatants were analysed by western blot. Ponceau staining depicts protein loading. Data representative of two independent
experiments.

B BMDMs of the indicated genotypes were seeded at a density of 5 × 105 cells per well and primed with 100 ng/ml of LPS for 3 h then treated, as indicated, with Cp. A
(1 lM), 5Z-7 oxozeaenol (TAK1i, 250 nM) for 3 or 6 h or nigericin (10 lM) for 45 min. Cell lysates and supernatants were analysed by western blot. Ponceau staining
depicts protein loading. Data representative of two independent experiments.

Source data are available online for this figure.
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GSDMD and GSDME are not required for cell death or IL-1b
secretion upon XIAP inhibition

Recent studies have reported that upon TAK1 inhibition, caspase-8

activates the pore-forming protein GSDMD to promote cell death

and allow IL-1b release (Orning et al, 2018; Sarhan et al, 2018;

Demarco et al, 2020; Muendlein et al, 2020). Given the increased

GSDMD activation observed in XIAP-deficient patients (Fig 1), and

the similarities in the caspase-8-driven inflammatory response

between TAK1 and XIAP-inhibited cells (Fig 2), we hypothesised

that GSDMD would also contribute to cell death and IL-1b release

following the loss of XIAP function.

WT and Gsdmd�/� BMDMs were primed with LPS before treat-

ment with Cp. A for 4, 8 and 16 h. Surprisingly, the loss of GSDMD

did not impact Cp. A-mediated cell death at either early or late time

points, even in the presence of the NLRP3 inflammasome inhibitor,

MCC950 (Coll et al, 2015) (Fig 3A). On the other hand, and as

expected (Shi et al, 2015), GSDMD loss or the inhibition of NLRP3

with MCC950 limited nigericin-induced macrophage killing

(Fig 3A). To further tease apart more discrete differences in cell

death kinetics upon GSDMD loss we employed IncuCyte live cell

imaging analysis. In line with our flow cytometric analysis, the loss

of GSDMD had little impact on the rate of cell death upon treatment

with Cp. A or TAK1i with or without the addition of MCC950

(Fig EV2A–C). Deletion of GSDMD also did not alter Cp. A triggered

release of IL-1b (or TNF) as measured by ELISA (Fig 3B and C),

although MCC950 targeting of NLRP3 did moderately reduce IL-1b
egress (Fig 3B), as expected based on genetic studies (Vince et al,

2012). In line with these findings, western blotting showed that the

abundance of cleaved, bioactive IL-1b in the cell supernatants upon

IAP inhibition was not impacted by GSDMD deletion (Fig 3D). Addi-

tionally, we observed that Cp. A treatment caused comparable levels

of cleaved caspase-8 to be released from WT and GSDMD-deficient

cells, consistent with equivalent cell death responses between these

genotypes (Fig 3D).

Caspase-8 activates caspase-3 which in turn can cleave GSDME

to elicit pyroptotic cell death (Rogers et al, 2017; Wang et al, 2017).

GSDME may also contribute to pathological NLRP3 inflammasome

responses that are mediated by caspase-8 (Wang et al, 2021). We,

therefore, reasoned that GSDME, either alone or in combination

with GSDMD, could have a role in cell death and IL-1b release fol-

lowing the loss of IAP function and consequent caspase-8 process-

ing. However, like the genetic deletion of GSDMD, the deletion of

GSDME alone, or together with GSDMD, did not impact Cp. A-

mediated cell death kinetics (Figs 3A and EV2A–C), IL-1b (or TNF)

release (Fig 3B and C), nor the accumulation of bioactive IL-1b in

the cell supernatants (Fig 3D). Moreover, IL-1b was still released

upon NLRP3 inhibition with MCC950 (which blocked all caspase-1

processing) equivalently in WT, Gsdme�/� and Gsdmd�/�Gsdme�/�

BMDMs (Fig 3B and D). Therefore, when IAP function is compro-

mised, GSDMD and GSDME are not required for caspase-8-mediated

IL-1b proteolysis and release, nor cell death, either in the presence

or the absence of caspase-1 activity.

GSDMD deletion compromises bioactive IL-1b release but not cell
death upon TAK1 inhibition

Given that bioactive IL-1b release upon XIAP inhibition did not

depend on GSDMD, we re-evaluated the proposed role for caspase-

8-mediated GSDMD cleavage in cell death and IL-1b release upon

TAK1 inhibition (Orning et al, 2018; Sarhan et al, 2018; Muendlein

et al, 2020). As expected, TAK1 inhibition efficiently reduced LPS-

mediated signalling, as shown by reduced phosphorylation of

ERK1/2 and p38 (Fig EV2D). Surprisingly, examination of cell death

via propidium iodide (PI) uptake (Fig 4A), or cell death kinetics in

real time by IncuCyte imaging (Fig EV2E and F), revealed equitable

responses in Gsdmd�/�, Gsdme�/�, Gsdmd�/�Gsdme�/� and WT

macrophages, regardless of the dose of TAK1 inhibitor used, or

whether NLRP3 was also inhibited with MCC950.

Previous research implicating GSDMD in efficient cell death

responses following TAK1 inhibition often used LDH as the cell

death readout (Orning et al, 2018; Sarhan et al, 2018; Muendlein

et al, 2020). However, the membrane rupture that allows LDH

release can be uncoupled from cell death (Kayagaki et al, 2021).

The delay in cell death kinetics previously reported between WT

and GSDMD-deficient macrophages may result from the dose of

TAK1 inhibitor used and/or differences in cell culture conditions

known to impact macrophage-killing responses, such as cell density

(Lawlor et al, 2017). Regardless, unlike the inhibition of IAPs with

Cp. A, or the triggering of BAX and BAK-driven mitochondrial apop-

tosis with BH3-mimetic (ABT-737) and cycloheximide (CHX) treat-

ment (Vince et al, 2018), the release of cleaved bioactive IL-1b into

the cell supernatant was reduced upon GSDMD deletion in TAK1

inhibited macrophages (Fig 4B). Therefore, macrophages lacking

TAK1 and IAP activity differ in their requirement for GSDMD pores

to allow the efficient egress of bioactive IL-1b, although in both

cases GSDMD is ultimately dispensable for cell death.

The deletion of GSDMD does not affect NLRP3-dependent ASC
oligomerisation downstream of caspase-8

Akin to non-canonical caspase-11-GSDMD-driven activation of

NLRP3 (Baker et al, 2015; Ruhl & Broz, 2015), the death ligand FasL

has recently been reported to activate a caspase-8-GSDMD axis to

allow for potassium ion efflux and consequentially trigger NLRP3

inflammasome activation (Donado et al, 2020). Intriguingly,

▸Figure 3. GSDMD and GSDME are not required for cell death or IL-1b release upon IAP inhibition.

A–C BMDMs (5 × 105 cells per well) of the indicated genotypes were primed with 100 ng/ml of LPS for 3 h before treatment with Cp. A (1 lM, up to 16 h as indicated)
or nigericin (10 lM) for 20 min, in the absence or presence of the NLRP3 inhibitor MCC950 (5 lM). (A) Cell viability was measured through propidium iodide (PI)
uptake and flow cytometry and expressed as a proportion of PI negative (live) cells. (B and C) IL-1b (B) and TNF (C) levels in cell supernatants were measured by
ELISA at the 6 h time point. Data for (A–C) represent the mean of three independent experiments (symbols) and error bars represent the mean � SD.

D BMDMS of the indicated genotypes were treated as in A, and cell lysates and supernatants analysed by western blot. Representative of three independent
experiments.

Source data are available online for this figure.
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western blot analysis of GSDMD-deficient macrophages treated with

Cp. A or TAK1 inhibitor revealed a reduction in the release of the

p20 fragment of caspase-1, indicating that GSDMD pores may also

promote NLRP3-caspase-1 signalling under these conditions

(Figs 3D and 4B). However, cell lysate analysis showed that some

caspase-1 p20 can accumulate in cells upon GSDMD deletion

(Figs 3D and 4B; Appendix Fig S1A) and, unlike NLRP3 inhibition,

IL-1b release was not reduced upon GSDMD loss (Fig 3B and D).

Therefore, these results make it difficult to establish if GSDMD loss

prevents NLRP3-mediated caspase-1 activation upon IAP inhibition,

or if a lack of GSDMD pore formation simply limits caspase-1 p20

release.

To better understand if GSDMD pores promote NLRP3 signalling

in the context of IAP deficiency or TAK1 inhibition, we evaluated

NLRP3 inflammasome formation directly via NLRP3-induced ASC

oligomerisation. WT and Gsdmd�/� BMDMs were primed with LPS

and then treated with Cp. A or TAK1 inhibitor for up to 6 h and

ASC cross-linking assays performed. As expected, inhibition of

NLRP3 in WT macrophages using MCC950, or genetic deletion of

NLRP3, abrogated ASC oligomerisation downstream of IAP or TAK1

inhibition (Fig 4C and D; Appendix Fig S1). However, compared

directly with WT cells, ASC oligomer profiling in GSDMD-deficient

cells was not affected (Fig 4C and D). These results mirrored

ASC oligomerisation patterns in WT and Gsdmd�/� BMDMs in

response to treatment with the canonical NLRP3 activator nigericin

(Fig 4C and D). Therefore, caspase-8-driven NLRP3 inflammasome

formation occurs upstream of GSDMD activity in both IAP and

TAK1 targeted cells.

Pannexin-1 is required for BAX/BAK-mediated activation of
NLRP3 but is dispensable for NLRP3 inflammasome assembly
downstream of caspase-8

The activation of the apoptotic effector caspases, caspase-3 and -7,

can result in NLRP3 signalling (Chauhan et al, 2018; Vince et al,

2018). More recently, it has been suggested that NLRP3 triggering

downstream of both intrinsic (BAX and BAK-mediated) and extrin-

sic (caspase-8-mediated) apoptosis is a consequence of caspase-3

and -7-dependent cleavage and activation of the hemichannel,

pannexin-1, to allow potassium ion efflux (Chen et al, 2019). To test

the role of pannexin-1 in caspase-8-dependent NLRP3 inflamma-

some assembly resulting from IAP loss, we generated Pannexin-1-

deficient mice and mice harbouring a mutant Pannexin-1 that is

unable to be cleaved and activated by caspase-3 and -7 (Panx1nc/nc).

Remarkably, ASC oligomerisation, as well as caspase-1 processing

to its p20 fragment and cell death, were unaffected in both Panx1�/�

and Panx1nc/nc BMDMs following Cp. A or TAK1 inhibitor treatment

(Fig 5A–G; Appendix Fig S2). In contrast, both ASC oligomerisation

and caspase-1-processing downstream of ABT-737/CHX-mediated

BAX and BAK signalling were reduced in Panx1�/� and Panx1nc/nc

BMDMs (Fig 5B; Appendix Fig S2), while nigericin responses were

intact (Fig 5B). On the other hand, ABT-737/CHX-driven cell death

◀ Figure 4. GSDMD is dispensable for NLRP3-mediated ASC oligomerisation downstream of caspase-8.

A BMDMs of the indicated genotypes were primed with 100 ng/ml of LPS for 3 h before treatment with 5Z-7 oxozeaenol (TAK1i, 125 nM, 250 nM, 500 nM, and, 1 lM),
Cp. A (1 lM) or ABT-737 (1 lM) and CHX (20 lg/ml) for 6 h, or nigericin (10 lM) for 20 min. Cell viability was measured by propidium iodide (PI) uptake and flow
cytometry and expressed as a percentage of PI-negative (live) cells. Three to four independent experiments are shown (symbols), and error bars represent the
mean � SD.

B BMDMs of the indicated genotypes were primed with 100 ng/ml of LPS for 3 h before treatment with 5Z-7 oxozeaenol (TAK1i, 125 nM, 250 nM, 500 nM, and, 1 lM),
Cp. A (1 lM) or ABT-737 (1 lM) and CHX (20 lg/ml) for 6 h, or nigericin (10 lM) for 45 min. Cell supernatants and total cell lysates were analysed by western blot.
Ponceau staining depicts protein loading. One of three independent experiments.

C BMDMs of the indicated genotypes were seeded at a density of 2 × 106 cells per well and primed with LPS (100 ng/ml) for 3 h before treatment with Cp. A (1 lM) or
5Z-7 oxozeaenol (TAK1i, 250 nM) with or without the NLRP3 inhibitor MCC950 (5 lM) for 6 h or were treated with nigericin (10 lM) for 45 min. Cell lysates and super-
natants were analysed by western blot. Following freeze-thawing of cells, the PBS-insoluble fraction of the cell lysate was cross-linked and assessed for ASC oligomeri-
sation by western blot. Ponceau staining depicts protein loading. Data representative of three independent experiments.

D BMDMs of the indicated genotypes were seeded at a density of 2 × 106 cells per well and primed with 100 ng/ml LPS for 6 h before treatment with Cp. A (1 lM) or
TAK1i (250 nM) for 6 h, ABT-737 (1 lM) and CHX (20 lg/ml) for 3 h and Nigericin (10 lΜ) for 1 h. PBS insoluble fractions of cell lysates were cross-linked to assess
ASC oligomerisation and these, alongside cell lysates and supernatants, were analysed by western blot. Data represent two independent experiments.

Source data are available online for this figure.

▸Figure 5. Pannexin-1 is required for BAX and BAK-mediated activation of NLRP3 but is dispensable for NLRP3 inflammasome assembly downstreamof caspase-8.

A, B BMDMs of the indicated genotypes were seeded at a density of 2 × 106 cells per well and were primed with 100 ng/ml LPS for 3 h and then treated with Cp. A
(1 lM) for 6 h (A) or with 5Z-7 oxozeaenol (TAK1i, 250 nM) or ABT-737 (1 lM) and CHX (20 lg/ml) for 6 h, or nigericin (10 lM) for 45 min (B). Cell lysates and super-
natants were analysed by western blot and the PBS-insoluble fraction of the cell lysate was cross-linked and assessed for ASC oligomerisation by western blot. Pon-
ceau staining depicts protein loading. Data representative of two independent experiments.

C BMDMs of the indicated genotypes were seeded at a density of 5 × 105 cells per well and were treated as outlined in (A) and (B). Cell viability was determined by
PI staining and flow cytometry and measured as a proportion of PI-negative (live) cells. Data represent the mean of three to four independent experiments (sym-
bols). Error bars are the mean � SD.

D BMDMs of the indicated genotypes were seeded at a density of 5 × 105 cells per well and cell lysates were analysed by western blot.
E–G IncuCyte live cell imaging analysis of BMDM death kinetics. BMDMs were seeded at a density of 7.5 × 104 per well and primed with LPS (100 ng/ml) for 3 h before

treatment with Cp.A (1 lΜ, E), TAK1i (250 nM, F) or ABT-737 (1 lΜ) + CHX (20 lg/ml, G) for 14 h. Cell death was measured as a percentage of cytox green positive
cells versus SPY620-DNA positive cells. Each graph is representative of three independent experiments, data points represent the mean of triplicate wells. Error bars
are the mean � SD.

Source data are available online for this figure.
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was not prevented by pannexin-1 deletion or mutation of its caspase

cleavage site (Fig 5C and G). Consequently, these data provide

genetic evidence that caspase-3 and -7 cleave pannexin-1 to activate

NLRP3 downstream of intrinsic mitochondrial apoptosis but that

pannexin-1 cleavage is dispensable for NLRP3 inflammasome

assembly downstream of extrinsic apoptotic caspase-8 and thus IAP

deficiency.

The absence of caspase-1, �3, �7, �11 and BID does not alter
cell death upon IAP inhibition

Despite evidence that caspase-8 may cleave GSDMD upon the loss

of IAP function (Figs 1 and 2), we found that deletion of GSDMD

and GSDME combined with the inhibition of NLRP3-caspase-1 had

no impact on caspase-8-dependent macrophage killing following Cp.

A treatment (Fig 3A). Caspase-8 processing of the apoptotic effector

caspases, caspase-3 and caspase-7, is the best described mechanism

for extrinsic cell death. Nevertheless, caspase-8 can also signal

NLRP3-caspase-1 activation (Lawlor et al, 2015), can collaborate

with caspase-11 to cause cell death (Mandal et al, 2018), can cleave

BID to initiate mitochondrial apoptosis (Li et al, 1998), and inhibits

RIPK3-driven necroptosis caused by the necroptotic effector MLKL

(Alvarez-Diaz et al, 2016). Indeed, western blot analysis demon-

strated that, in addition to caspase-1 (Fig 2), IAP targeting with

Compound A or inhibition of TAK1 caused processing of caspase-3,

�7 and � 9, and the cleavage of caspase-3 and -7, and/or caspase-9

still occurred in Panx1�/�, Panxnc/nc, Nlrp3�/�, Caspase-1�/�,
Gsdmd�/�, Gsdme�/�, and Gsdmd�/�Gsdme�/� macrophages

(Fig EV3A–D). Therefore, to define whether several cell death path-

ways might work in conjunction to cause cell death upon IAP defi-

ciency, we analysed CRISPR/Cas9 gene-targeted immortalised

BMDMs (iBMDMs) with combined genetic deletion of the inflamma-

tory caspases (caspase-1, -11 and -12), intrinsic (BID, caspase-9)

and extrinsic (RIPK3, caspase-8, MLKL) death regulators, and the

apoptotic effector caspases, caspase-3 and -7 (Aubrey et al, 2015;

Doerflinger et al, 2020). Western blotting was used to confirm effi-

cient deletion of the targeted genes (Appendix Fig S3). Strikingly,

cell death resulting from LPS priming and Cp. A treatment of

Caspase-1�/�3�/�7�/�11�/�12�/�Bid�/�Mlkl�/� iBMDMs occurred

as efficiently as that observed in LPS and Cp. A treated WT

iBMDMs, or in LPS stimulated XIAP-deficient macrophages

(Fig 6A). As expected, Caspase-1�/�3�/�7�/�11�/�12�/�Bid�/�Mlkl�/�

macrophages were protected from necroptosis (LPS/Cp. A/IDN-

6556 treatment), pyroptosis (LPS/nigericin treatment) and intrinsic

apoptosis (ABT-737/CHX treatment) (Fig 6B). In agreement with

BID being dispensable for Cp. A-induced cell death (Fig 6A), BAX

and BAK deficiency also did not alter macrophage killing result-

ing from IAP antagonism (Fig 6C), despite the protection of Bax�/

�Bak�/� iBMDMs to ABT-737 and CHX treatment (Fig 6C). More-

over, the lesser studied apoptotic effector caspase-6 could not sub-

stitute for caspase-3 and caspase-7 loss, as the genetic deletion of

caspase-6 in combination with caspase-1,-3,-7,-11 and -12 did not

alter macrophage killing, nor abrogate IL-1b activation, in response

to LPS priming and Cp. A treatment (Fig EV4A and B). Concordant

with these findings in macrophages, Caspase-3�/�Caspase-7�/�

murine embryonic fibroblasts (MEFs) were also susceptible to

extrinsic cell death resulting from TNF and IAP antagonist treatment

yet were protected from intrinsic BAX and BAK-mediated apoptosis

caused by MCL-1 deletion combined with ABT-737 or etoposide

treatment (Fig EV5A–C).

Collectively, these data reveal that extrinsic and intrinsic apopto-

sis differ in their requirement for caspase-3 and caspase-7 for induc-

ing efficient cell death. Moreover, they genetically demonstrate that

upon IAP loss, caspase-8 can kill in the combined absence of apop-

totic caspase-3 and caspase-7, inflammatory caspases and necrop-

totic cell death signalling.

In the absence of caspase-1, -3, -7 and BID, caspase-8 can cleave
GSDMD to cause cell death

We next considered that caspase-8 processing of GSDMD may be

responsible for cell death in the absence of the apoptotic signalling

machinery. We, therefore, generated Caspase-1�/�3�/�7�/�9�/�

Bid�/�Mlkl�/�Gsdmd�/� iBMDMs (lacking caspase-1, -3, -7, BID,

MLKL and GSDMD). Strikingly, these iBMDMs were completely

protected from Cp. A-induced cell death (Fig 6A), unlike the efficient

cell death observed in Gsdmd�/� and/or NLRP3 inhibited cells

(Fig 3A and B) and macrophages lacking caspase-1, -3, -7 and BID

(Fig 6A). Control cells lacking the essential extrinsic cell death

machinery, RIPK3 and caspase-8 (Caspase-3-�/�7�/�8�/�Bid�/�

Ripk3�/�Mlkl�/�Gsdmd�/� iBMDMs), were also protected from Cp.

A-mediated macrophage killing, as expected (Fig 6A) (Lawlor et al,

2015). In agreement with previous observations (Orning et al, 2018;

Sarhan et al, 2018), we also found that the expression of caspase-8

in 293 T cells could phenocopy caspase-1 activity and cause the

cleavage of FLAG-tagged GSDMD into its pore-forming p30 fragment

(Fig EV5D). Taken together, these data indicate that caspase-8

can directly target GSDMD for proteolysis and activation and that in

the absence of apoptotic signalling, caspase-8 signals through

GSDMD to induce efficient cell death upon IAP targeting. Impor-

tantly, this points to a redundant role for pyroptotic and apoptotic

death effectors in executing extrinsic cell death. In contrast, intrinsic

BAX- and BAK-mediated apoptosis relies entirely on caspase-3 and

caspase-7 for the efficient killing of macrophages and fibroblasts

(Fig 6D).

In the absence of caspases-1, -3 and -7, XIAP inhibition triggers
caspase-8-mediaed processing of IL-1b and GSDMD to allow for
IL-1b activation and release

Considering (i) the redundant roles and crosstalk for apoptotic cas-

pases and GSDMD in driving cell death, and (ii) that GSDMD and

GSDME were dispensable for IL-1b secretion in the presence of

caspase-3 and caspase-7 (Fig 3B and D), we hypothesised that

caspase-8 can cleave GSDMD to allow for IL-1b release upon the

loss of IAP function.

We first examined LPS-induced NLRP3 and precursor IL-1b
expression in our multi-gene knockout iBMDMs to ensure any

results did not reflect defects in TLR4 responses and inflammasome

priming. Importantly, LPS priming induced efficient expression of

both NLRP3 and IL-1b, as well as TNF, in WT, Caspase-1�/�3�/�7�/�

11�/�12�/�Bid�/�Mlkl�/�, Caspase-1�/�3�/�7�/�9�/�Bid�/�Mlkl�/�

Gsdmd�/� and Xiap�/� iBMDMs (Fig 7A and B; Appendix Fig S4).

These cells (unless genetically targeted) also expressed similar

levels of the other inflammasome components, ASC, caspase-1 and

caspase-8 (Appendix Fig S4). However, consistent with caspase-8
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having a key non-apoptotic transcriptional role in TLR-inflammasome

priming (Allam et al, 2014), cells lacking caspase-8 (Caspase-3�/�7�/�

8�/�Bid�/�Ripk3�/�Mlkl�/�Gsdmd�/� iBMDMs) displayed reduced

LPS-induced NLRP3 and precursor IL-1b expression, and also

exhibited decreased TNF secretion (Fig 7A and B; Appendix

Fig S4).

A B

C D

Figure 6. In the absence of the downstream apoptotic machinery, caspase-8-mediated cleavage and activation of GSDMD are required for cell death upon IAP
inhibition.

A iBMDMs of the indicated genotypes were seeded at a density of 2 × 105 cells per well and were primed with 50 ng/ml LPS for 3 h then treated with Cp. A (2 lM)
for 24 h. Cell viability was determined by PI staining and flow cytometry and measured as a proportion of PI-negative (live) cells. Data represent the mean of three
independent experiments (symbols). Error bars are the mean � SD.

B, C iBMDMs of the indicated genotypes seeded at a density of 2 × 105 cells per well were treated with ABT-737 (1 lM) and CHX (20 lg/ml) for 6 h, or LPS (50 ng/ml)
and Cp. A (2 lM) and IDN-6556 (10 lM) for 24 h, or with LPS (50 ng/ml) for 3 h followed by nigericin (10 lM) for 1.5 h. Cell viability was determined by PI staining
and flow cytometry and measured as a proportion of PI-negative (live) cells. Data represent the mean of three independent experiments (symbols). Error bars are
the mean � SD.

D Schematic model for how intrinsic and extrinsic cell death signalling are executed in macrophages.

Source data are available online for this figure.
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Analysis of IL-1b activation responses in gene-targeted

iBMDMs revealed that, as expected, iBMDMs lacking XIAP, or

WT iBMDMs where XIAP was inhibited with Cp. A, secreted

significant levels of IL-1b into the cell supernatants (Fig 7A and B).

Notably, consistent with our hypothesis that, as a result of IAP

deficiency, caspase-1, 3, 7, BID and GSDMD act redundantly to

allow for IL-1b release downstream of caspase-8, only the combined

absence of caspase-1, 3, �7, BID and GSDMD (i.e. caspase-1�/�3�/�

7�/�9�/�Bid�/�Mlkl�/�Gsdmd�/� iBMDMs) or caspase-8 (Caspase-

3�/�7�/�8�/�Bid�/�Ripk3�/�Mlkl�/�Gsdmd�/� iBMDMs) abrogated

IL-1b egress (Fig 7A and B). In contrast, cells retaining caspase-8

and GSDMD (i.e. Caspase-1�/�3�/�7�/�11�/�12�/�Bid�/�Mlkl�/�)

A

C

B

Figure 7.
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released levels of IL-1b comparable to WT iBMDMs (Fig 7A

and B).

To ensure the GSDMD-dependent IL-1b release we observed by

ELISA in the absence of caspase-1, caspase-3, caspase-7, caspase-11

and caspase-12 represented the active IL-1b p17 fragment, we next

analysed cell lysates and cell supernatants by Western blot (noting

that the IL-1b ELISA (R&D) can detect both precursor and mature

forms of IL-1b (Conos et al, 2017)). Importantly, LPS priming and

Cp. A treatment resulted in bioactive IL-1b release into the cell

supernatant in Caspase-1�/�3�/�7�/�11�/�12�/�Bid�/�Mlkl�/�

iBMDMs, akin to WT cells (Fig 7C). XIAP-deficient iBMDMs, as

expected, also released large amounts of processed IL-1b upon treat-

ment with LPS alone or in combination with Cp. A (Fig 7C). Criti-

cally, Caspase-1�/�3�/�7�/�9�/�Bid�/�Mlkl�/�Gsdmd�/� iBMDMs

were completely deficient in Cp. A-mediated release of activated IL-

1b, with the bioactive IL-1b p17 fragment only detectable in the cell

lysate (Fig 7C). The cleavage of IL-1b in both cell lysates and super-

natants was abrogated upon deletion of caspase-8 (Caspase-3�/�7�/�

8�/�Bid�/�Ripk3�/�Mlkl�/�Gsdmd�/� iBMDMs) (Fig 7C), consis-

tent with previous studies using primary BMDMs lacking RIPK3 and

caspase-8 (Vince et al, 2012; Lawlor et al, 2015). The pore-forming

p30 fragment of GSDMD was also moderately enriched upon IAP

targeting in WT and Caspase-1�/�3�/�7�/�11�/�12�/�Bid�/�Mlkl�/�

iBMDMs (Fig 7C), in line with caspase-8-mediated proteolysis of

both IL-1b and GSDMD. Therefore, even in the absence of the down-

stream apoptotic machinery, caspase-8 can not only cleave IL-1b to

its bioactive form but can also cleave GSDMD to trigger efficient cell

death and promote IL-1b egress.

Discussion

Here we demonstrate that two patients with XIAP deficiency diag-

nosed with IBD display heightened markers of caspase-8 and

GSDMD activity, in addition to increased IL-1b activation and

release. Using IAP antagonist (Smac-mimetic) treatment, we further

identify that the apoptotic machinery and GSDMD act redundantly

to cause both cell death and IL-1b release upon the loss of IAP func-

tion. Caspase-3 and -7 cleavage of pannexin-1 were not required for

triggering potassium ion efflux-induced NLRP3 inflammasome

assembly downstream of caspase-8, unlike NLRP3 activation result-

ing from mitochondrial apoptosis. These findings delineate cell

death and inflammatory pathways relevant to XIAP deficiency, and

uncouple the downstream signalling events of intrinsic and extrinsic

apoptosis that drive macrophage killing and NLRP3 inflammasome

responses.

XIAP deficiency sensitises individuals to microbial-induced cell

death and inflammatory-associated diseases, which are most com-

monly present as X-Linked HLH or CD. Our results indicate that

pathogenic XIAP variants can allow for increased cell death and

inflammatory responses in both the colonic mucosae and PBMCs

and that this reflects heightened caspase-8, GSDMD and IL-1b acti-

vation. The intravenous administration of anakinra, a biologic IL-1

receptor antagonist, is an off-licence treatment used for secondary

HLH and MAS and can reduce mortality (Bami et al, 2020; Eloseily

et al, 2020; Maniscalco et al, 2020; Mehta et al, 2020). IL-1b can also

mediate intestinal inflammation in mice and humans in certain con-

ditions, such as IL-10 Receptor deficiency (Coccia et al, 2012; Shou-

val et al, 2016). Whether neutralisation of the elevated IL-1b
activation observed in mice and humans lacking XIAP will be of

wide-spread clinical utility in HLH or CD, beyond reported case

studies (e.g. (Christiansen et al, 2016)), remains to be determined.

In particular, the activation of the related inflammasome-associated

cytokine, IL-18, by caspase-1 and/or � 8 is also heightened in HLH-

and XIAP-deficient patients (Takada et al, 2001; Wada et al, 2014),

and has been proposed as an additional therapeutic candidate in

HLH, MAS and IBD (Monteleone et al, 1999; Kanai et al, 2001, 2003;

Ludwiczek et al, 2005; Jarry et al, 2015; Mokry et al, 2019; Krei

et al, 2021; Geerlinks et al, 2022).

An alternative to inhibiting IL-1b and/or IL-18 is to target the

upstream intracellular machinery responsible for their activation.

This may have the added benefit of inhibiting pathological cell death

signalling, which we show contributes to both intracellular IL-1b
activation and its egress into the extracellular milieu upon the loss

of XIAP function. These findings are consistent with past research

defining how distinct cell death pathways can operate to trigger

inflammasome responses (Vince & Silke, 2016; Gaidt & Hornung,

2018). In the case of XIAP deficiency, our study identifies that two

critical cell death initiators and effectors, caspase-8 and GSDMD, are

activated in patient colonic mucosae and PBMCs. Previous research

has shown that, upon IAP loss, caspase-8 is required for cell death

and NLRP3-caspase-1 inflammasome assembly (Vince et al, 2012;

Yabal et al, 2014; Lawlor et al, 2015, 2017; Knop et al, 2019). While

the assumption has been that caspase-8-mediated macrophage

killing represents the traditional extrinsic apoptotic pathway pre-

vented by caspase-3 and -7 deletion (Lakhani et al, 2006), our find-

ings demonstrate that apoptotic caspases and GSDMD can act

redundantly in the context of IAP targeting. Evidence for this plastic-

ity in cell death signalling has recently emerged during pathogen

infections (Bedoui et al, 2020), and as our study now uncovers, the

co-opting of more than one cell death modality also applies to

autoinflammatory conditions.

◀ Figure 7. In the absence of apoptotic and pyroptotic caspases, IAP loss triggers caspase-8-mediated processing of IL-1b and GSDMD to allow IL-1b activation
and release.

A, B iBMDMs of the indicated genotypes were seeded at a density of 4 × 105 cells per well and primed with either 50 ng/ml (A) or 100 ng/ml (B) of LPS for 3 h then
treated with Cp. A (2 lM) for 24 h. Cell supernatants were analysed by ELISA for levels of IL-1b and TNF, as indicated. Data represent the mean of two independent
experiments, error bars are the mean � SD.

C iBMDMs of the indicated genotypes were seeded at a density of 4 × 105 cells per well and primed with 100 ng/ml of LPS for 3 h then treated with Cp. A (2 lM) for
24 h. As control stimuli, WT iBMDMs were primed with LPS (100 ng/ml) for 3 h then treated with nigericin (10 lM) for 1.5 h or ABT-737 (1 lM) and CHX (20 lg/ml)
for 6 h. Total cell lysates and supernatants were analysed by western blot. Ponceau staining depicts protein loading. Data representative of four independent exper-
iments.

Source data are available online for this figure.
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We observed caspase-9 processing upon IAP inhibition; a hall-

mark of apoptosome formation downstream of BAX/BAK-mediated

mitochondrial outer membrane permeabilization. Caspase-8 can

contribute to BAX/BAK activation via its transcriptional roles or its

cleavage of BID (Li et al, 1998; Simpson et al, 2022). Therefore,

even though our genetic data show that BAX/BAK deficiency has no

impact on LPS killing upon Cp. A treatment, and that the loss of BID

did not impede cell death resulting from XIAP targeting, as expected

(Jost et al, 2009), it remains possible that BAX/BAK act redundantly

with caspase-8 triggering of caspase-1, �3, �7 and GSDMD.

Caspase-1 has also been shown to contribute to caspase-3 and -7

activation in some situations (Sagulenko et al, 2017; de Vasconcelos

et al, 2020). However, caspase-3 and -7 processing was not altered

in caspase-1-deficient macrophages upon IAP antagonism, nor was

cell death reduced upon caspase-1 inhibition alone, or even when

combined with GSDMD and GSDME removal, indicating that any

role caspase-1 plays is likely to be minor.

Our findings reveal important differences in both the execution

of intrinsic and extrinsic cell death and in their triggering of the

NLRP3 inflammasome. Unlike the rapid extrinsic caspase-8-driven

cell death that can occur in the absence of caspase-3 and caspase-7,

efficient BAX and BAK-mediated cell death was markedly reduced

when caspase-3 and caspase-7 were deleted. Notably, in the context

of BAX and BAK signalling we genetically proved, via the generation

of pannexin-1-deficient and caspase cleavage resistant pannexin-1

mutant mice, that caspase-3 and caspase-7 can cause NLRP3 inflam-

masome assembly via their cleavage of pannexin-1, in agreement

with previous findings (Vince et al, 2018; Chen et al, 2019). How-

ever, unlike previous research implicating pannexin-1 (Chen et al,

2019) or GSDMD (Donado et al, 2020) in caspase-8-driven NLRP3

activation, our data show that NLRP3 inflammasome assembly is

not compromised by the individual loss of GSDMD or pannexin-1 in

either IAP or TAK1 inhibited cells. Combined GSDMD and

Pannexin-1 removal may suffice to block NLRP3 signalling upon

caspase-8 activation, although this hypothesis remains to be experi-

mentally tested.

Overall, our findings show that it will be important to examine in

relevant pre-clinical HLH and IBD models whether efficient thera-

peutic responses can be achieved by inhibiting IL-1b and/or IL-18. It

remains of outstanding interest whether co-targeting the key apop-

totic and pyroptotic machinery, identified herein as executing the

inflammatory cell death resulting from XIAP loss, could also be ther-

apeutically inhibited in HLH and IBD.

Materials and Methods

Patients

The Medical Ethics Committee of Guangzhou Women and Chil-

dren’s Medical Centre approved the study procedures (ID:

2017021504). The implementations were in concordance with the

International Ethical Guidelines for Research Involving Human Sub-

jects as stated in the Helsinki Declaration. Informed written consent

was obtained from the legal guardians of all participants. Patients

had baseline demographics recorded, including clinical features, dis-

ease durations, family histories, extra-intestinal diseases, and labo-

ratory test results. All patients underwent routine examinations

prior to colonoscopy to exclude bacterial, viral, and parasitic infec-

tions, as well as tuberculosis and malignancies.

Patient sequencing

Whole Exome sequencing and sanger sequencing was performed at

the Beijing Genomic Institute (BGI).

Immunofluorescence

Immunofluorescent staining was performed as previously described

(Huang et al, 2019). Briefly, paraffin-embedded sections of colonic

biopsies were processed as reported (Zhang et al, 2018). Sections

were deparaffinised, incubated with blocking buffer (PBS with 5%

normal donkey or goat serum and 0.3% Triton X-100) at room tem-

perature for 1 h and stained with primary antibodies overnight in a

wet chamber at 4°C in the dark. Sections were then washed with

PBS, incubated with secondary antibodies for 1 h at room tempera-

ture in the dark, and mounted with VECTASHIELD Antifade Mount-

ing Medium with DAPI (H-1200, Vector Laboratories, CA, USA) for

nuclear staining. Immunofluorescent images were acquired with a

Leica TCS SP8 Inverted Fluorescence Microscope (Leica Microsys-

tems) using a 20 × 0.75 dry objective lens. Post-acquisition process-

ing (brightness, opacity, contrast and colour balance) was applied

to the entire image and accurately reflected the results of the origi-

nal image. For each single colonic mucosae image, the amount of

cleaved GSDMD or caspase-8 staining per square millimetre was

divided by the area of DAPI staining. Images were analysed using

Leica X image analysis software (Leica, Hamburg, Germany) and

ImageJ software (National Institutes of Health, MD, USA). The pri-

mary and secondary antibodies used for immunostaining were

cleaved GSDMD (Cell Signalling: 36425) and cleaved Caspase-8

(Affinity: AF5267), and the secondary antibody used was Alexa Flu-

orTM 594 goat anti-rabbit (Thermo Fisher: A-11012).

Colonoscopies

Colonoscopies were performed at the Guangzhou Women and Chil-

dren’s Medical Centre. The endoscopic activity of colonic tissue was

determined by experienced gastrointestinal (GI) endoscopists using

the Modified Mayo Endoscopic Score (MES) criteria.

Isolation, culture and stimulation of human peripheral blood
mononuclear cells

PBMCs from healthy donors and XIAP-deficient patients were isolated

by Ficoll density gradients and dispensed in 96-well plates at a density

of 2–3 × 105 cells/well in 200 ll of R10 media (RPMI 1640, 10%

foetal bovine serum (FBS), 100 units/ml penicillin and 100 mg/mL

streptomycin), and incubated at 37°C in 5% CO2. PBMCs were subse-

quently stimulated with LPS (500 ng/ml (InvivoGen), 24 h) or with

MDP (10 lg/ml (InvivoGen), 24 h) and cell lysates and supernatants

taken for western blot and ELISA analysis, respectively.

Mice

WT C57BL/6 mice and gene-targeted animals were bred at the Wal-

ter and Eliza Hall Institute of Medical Research (WEHI, Parkville,
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Australia) and/or obtained from WEHI animal supplies (Kew, Aus-

tralia). The generation and characterisation of the pannexin-1 and

pannexin-1 non-cleavable (D375A and D378A) mice will be

described elsewhere. Casp1�/� (Kuida et al, 1995) and Nlrp3�/�

(Martinon et al, 2006) mice generated on a C57BL/6J background,

and Gsdmd�/� (Kayagaki et al, 2015a), Gsdme�/� (kindly provided

by Genentech), and Gsdmd�/�Gsdme�/� (bred in-house) mice gen-

erated on a C57BL/6N background, were housed under specific

pathogen-free conditions at WEHI, Australia. Animal rooms are

maintained at approximately 21°C � 3°C at 40–70% humidity with

a timed 14/10 light-dark cycle. All procedures were approved by the

WEHI Animal Ethics Committee, Australia (Ethics 2020.038 and

2019.034). None of the mice used in our experiments had been pre-

viously used for other procedures. The animals presented with a

healthy status and were selected independently of their sex for gen-

erating macrophages. Female and male mice were 7–14 weeks old

at the time of experimentation and their genotype was not blinded.

Cell culture

To generate macrophages, bone marrow cells were flushed from the

femora and tibiae of male or female mice aged 6–14 weeks. Bone

merrow cells were cultured in Dulbecco’s Modified Eagle Medium

(DMEM) supplemented with 10% Foetal Bovine Serum (FBS),

100 U/ml Penicillin, 100 lg/ml Streptomycin, and 20% L929 condi-

tioned supernatant (containing Macrophage Colony-Stimulating Fac-

tor [M-CSF] on 15-centimetre Petri dishes for 7 days at 37°C in 10%

CO2). Where indicated, BMDMs were immortalised using Cre-J2

virus (Rapp et al, 1985) and CRISPR/Cas9 gene targeting of iBMDMs

was performed as described previously (Doerflinger et al, 2020).

iBMDMs were cultured in DMEM 10% FBS supplemented with

100 U/ml Penicillin and 100 mg/ml Streptomycin at 37°C in 10%

CO2. MEFs derived from WT and caspase-3 and caspase-7-deficient

mice, as well as HEK293 T cells, were cultured in identical condi-

tions to iBMDMs. Cell lines were routinely tested for mycoplasma

but were not authenticated by DNA profiling.

Cell stimulations

For stimulations, macrophages (BMDMs and iBMDMs) were plated

out on TC-treated (for western blotting) or non-TC treated (for cell

death analysis) 24 well tissue culture plates at 500,000 cells/well in

0.5 ml of media and were allowed to adhere to the plate. Macro-

phages were then treated where indicated with LPS (50–100 ng/ml,

InvivoGen; tlrl-3pelps). Where multiple time points were used for

analysis, TLR stimulations were performed in a reverse-time-course

fashion so that all cells were harvested at the same time. In this

instance, single treatment controls were added for the longest time

point measured. LPS, nigericin (10 lM, Sigma; N7143), Smac-

mimetics Cp. A, 030, 031, 455, 711, 851 and 883 (500 nM - 2 lM,

kindly provided by TetraLogic Pharmaceuticals), TAK1 inhibitor

(5Z)-7-Oxozeaenol (125–500 nM, Tocris; 3604), MCC950 (1–5 lM,

kindly provided by A. Roberson and M. Cooper, University of

Queensland, Australia), ABT-737 (1 lM, Active Biochem; A-6044)

and cycloheximide (20 lg/ml, Sigma; C7698) treatments were per-

formed as indicated in the relevant figure legends. Experiments were

repeated independently (2–4 times on average) to ascertain repro-

ducibility and the number of repeats performed for data presented

in each figure panel is stated in the figure legends. In cases where

variability was observed more repeats were generated unless there

was an obvious technical error.

Western blotting

Cells or cell-free supernatants were lysed in SDS (2%) lysis buffer

with b-mercaptoethanol (143 mM). Reduced and denatured total

cell lysates and supernatants were loaded onto 20-well 4–12% gradi-

ent gels (Invitrogen) and separated by electrophoresis at 120 V for

2 h. Proteins were transferred onto nitrocellulose membranes

(Amersham) through electrophoretic transfer at 110 V for 90–

110 min at 4°C. Protein loading was evaluated using Ponceau-S

stain before membrane-blocking in Tris-buffered saline containing

0.1% Tween (TBS-T) and 5% w/v skim milk (Devondale) for 1 h at

4°C. Blocked membranes were probed overnight with primary anti-

bodies. After primary antibody incubation membranes were washed

five times in TBS-T for 1 h before the application of species-

appropriate secondary antibodies conjugated to horse radish peroxi-

dase for 1 h at room temperature. After secondary antibody incuba-

tion membranes were washed 4–10 times for 1 h in TBS-T. Blots

were developed using ECL (Amersham or Millipore) and film on a

Kodak X-OMAT film processor or by the ChemiDoc Touch Imaging

System (Bio-Rad) and Image Lab software. Primary antibodies were

diluted in TBS-T containing 5% w/v BSA and 0.05% Sodium Azide

or PBS-T containing 5% w/v Skim Milk and 0.05% Sodium Azide.

All secondary antibodies were diluted in TBS-T containing 5% w/v

skim milk.

Antibodies

For mouse cell analysis membranes were probed with primary anti-

bodies overnight at 4°C (all diluted 1:1,000 in TBS-T containing 5%

w/v BSA or PBS-T containing 5% w/v Skim Milk, unless stated

otherwise). The antibodies used were b-actin (Sigma; A-1798),

caspase-1 (Adipogen; AG-20B-0042-C100), cleaved caspase-8

Asp387 (Cell Signalling; 9429, 8592), caspase-9 (Cell Signalling;

9509), caspase-3 (Cell Signalling; 9662), caspase-9 (Cell Signalling;

9508), pro-caspase-8 (in-house, 3B10), caspase-7 (Cell Signalling;

9492), GSDMD (Abcam; ab209845), GSDME (Abcam; ab215191),

IL-1b (R&D; AF-401-NA), MLKL (in-house; Murphy et al, 2013; 3H1,

available as MABC604 from Merck Millipore), XIAP (MBL; M044-3),

pannexin-1 (Cell Signalling; (D9M1C) 91137), ASC (Santa Cruz

Biotech; sc-22514), RIPK3 (Axxora; PSC-2283-c100), BID (2D1; in-

house; Kaufmann et al, 2007), caspase-6 (Cell Signalling; 9672),

NLRP3 (Adipogen; AG-20B-0014-C100), MCL-1 (Cell Signalling;

5453) and FLAG (Sigma-Aldrich; F3165). For human cell western

blotting, the antibodies used were XIAP (Cell Signalling: 2042),

caspase-8 (Cell Signalling: 9746), cleaved GSDMD (Cell Signalling:

36425) and cleaved IL-1b (Cell Signalling: 83186). Relevant horse-

radish peroxidase-conjugated secondary antibodies (Jaxon laborato-

ries) were diluted 1:10,000 in 5% skimmed milk in TBS-T applied

for 1 h at room temperature.

Cell viability assays

Cell viability was determined by PI staining and flow cytometry. At

the end point of experiments, cell supernatants were collected and
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transferred into FACS tubes. Adherent cells on non-tissue culture

treated plates were detached using 5 mM EDTA pH 8.0 in PBS (3–

5 min incubation at room temperature). Cells were then harvested

and transferred to the FACS tube containing their corresponding

supernatant. PI was added such that the final concentration was 1–

5 lg/ml. Cells were analysed using an LSRII cytometer (Becton

Dickinson, NJ) and WEASEL version 2.7 software (Frank Battye) or

FlowJo software. PI exclusion analysis for each sample was per-

formed with 10,000 single-cell events.

IncuCyte live cell imaging analysis

BMDMs were seeded in triplicate at a density of 7.5 × 104 cells

per well into 96-well plates in DMEM 10% FCS supplemented

with 20% L929-conditioned supernatant. 1:2,000 dilution of

SYTOX Green (Sartorius 4633) and 1:1,000 of SPY620-DNA (Spir-

ochrome SC401) dyes were added to medium 1 h before cell

treatment and image acquisition. Plates were analysed in an Incu-

Cyte S3 System (Essen Biosciences) using a 10-× objective over

time using red, green and brightfield channels, and images were

taken once every 30 min for 14 h. The percentage of cell death

was calculated as the number of SYTOX Green positive cells ver-

sus total SPY620-DNA positive cells. For quantification, three

views were taken per well and the mean cell counts of these

views were taken and plotted. Data presented are representative

of three independent experiments.

Cytokine analysis

Cell supernatants were analysed by ELISA for murine TNF (Invit-

rogen, 88-7324-88), murine IL-1b (R&D, DY401) or human IL-1b,
TNF and IL-6 (Thermo Fischer) levels according to the manufac-

turer’s instructions. BMDM-derived supernatants were diluted 1:2

in sterile PBS for IL-1b quantification, and 1:8 for TNF quantifica-

tion. iBMDM-derived supernatants were left undiluted for IL-1b
analysis or diluted 1:4 for TNF measurements. All values

obtained from ELISA plates were multiplied by their respective

dilution factor.

ASC cross-linking

BMDMs were seeded into tissue-culture-treated 6-well plates at a

density of 2 × 106 cells per well. After priming with 100 ng/ml LPS

for 2–3 h, the culture medium was removed and replaced with opti-

MEM. Cells were then treated with the indicated compounds (see

figure legends). At the end point of experiments, cell supernatants

were collected. Adherent cells were washed once with ice-cold PBS

before adding 225 ll ice-cold MilliQ water containing an EDTA-free

protease inhibitor cocktail (Roche). Cells were then freeze-thawed

at �80°C to cause lysis. Lysates were adjusted by the addition of

25 ll of 10× PBS, were spun at 6,000 g at 4°C for 15 min, and lysate

pellets resuspended in 200 ll of PBS. To cross-link these pellets,

2 mM (final concentration) of disuccinimidyl suberate was added to

each tube, and the samples were left to incubate at 37°C for 45 min

with occasional agitation every 5–10 min. Cross-linked pellets were

spun at 21,000 g for 20 min at 4°C. Supernatants were discarded,

and pellets were resuspended in 100 ll of lysis buffer for western

blot analysis.

293 T GSDMD cleavage assays

10 lg of FLAG-GSDMD (Addgene #80950 (Liu et al, 2016)) was

transfected into a 10 cm plate of (~ 80% confluent) 293 T cells.

After 24 h cells were re-plated into 24 well tissue culture plates and

transfected with 0.5 lg of caspase-1 or caspase-8 cDNA as indicated

in EV Fig 5. The following day total cell lysates were generated and

analysed by western blot.

Data availability

This study includes no data deposited in external repositories.

Expanded View for this article is available online.
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