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Abstract

Data provided by in situ sensors is always affected by some level of impreciseness as well 

as uncertainty in the measurements due to process operation disturbance or material property 

variance. In-process data precision and reliability should be considered when implementing active 

product quality control and real-time process decision making in pharmaceutical continuous 

manufacturing. Data reconciliation is an important strategy to address such imperfections 

effectively, and to exploit the data redundancy and data correlation based on process 

understanding. In this study, a correlation between tablet weight and main compression force 

in a rotary tablet press was characterized by the classical Kawakita equation. A load cell, situated 

at the exit of the tablet press chute, was also designed to measure the tablet production rate 

as well as the tablet weight. A novel data reconciliation strategy was proposed to reconcile the 

tablet weight measurement subject to the correlation between tablet weight and main compression 

force, in such, the imperfect tablet weight measurement can be reconciled with the much more 

precise main compression force measurement. Special features of the Welsch robust estimator to 

reject the measurement gross errors and the Kawakita model parameter estimation to monitor the 

material property variance were also discussed. The proposed data reconciliation strategy was first 

evaluated with process control open-loop and closed-loop experimental data and then integrated 

into the process control system in a continuous tablet manufacturing line. Specifically, the real-

time reconciled tablet weight measurements were independently verified with an at-line Sotax 

Auto Test 4 tablet weight measurements every five minutes. Promising and reliable performance of 
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the reconciled tablet weight measurement was demonstrated in achieving process automation and 

quality control of tablet weight in pilot production runs.
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1. Introduction

The emerging pharmaceutical continuous manufacturing (PCM) is now entering the arena 

of big data with more and more critical material attributes (CMA), critical quality attributes 

(CQA) and critical process parameters (CPP) acquired in real time using process analytical 

technology (PAT) sensors. Although the management and integration of these data have 

been receiving extensive interests (Markl et al., 2013; Cao et al., 2018), the measurement 

data reliability and the transition from a data-rich to information and knowledge-rich 

manufacturing have not attracted enough attention thus far (Ierapetritou et al., 2016). 

For example, the measurements from in-situ sensors in the powder-based pharmaceutical 

manufacturing often suffer from random errors due to process disturbances or gross errors 

occurring due to changes in material properties and environmental factors. The current 

practice in other industries is to use multivariate statistical process control (MSPC) to 

monitor the variation in the measurement data by projecting them into a small number of 

principal components and testing them against statistical control limits prespecified under 

nominal operation, e.g., Hoteling’s T2 and square prediction error (SPE). However, these 

data-driven approaches do not separate the true variation of the product quality attributes 

from the measurement data imperfection. Yet, the identification of product quality variations 

is of great concerns to support active product quality control and real-time process decision 

making in pharmaceutical continuous manufacturing (Moreno et al., 2017; Yu et al., 2014). 

Furthermore, there are some critical quality attribute variables that cannot be measured 

directly in real time and thus cannot be captured by MSPC methods, such as the tablet 

weight as investigated in this work. Moreover, an adequate database of nominal operation 

for MSPC development is not always available, especially during the early-stages of product 

or process development. Hence, the development of new approaches that are able to tackle 

data imprecision and uncertainty, based on process knowledge, may have significant impact 

in pharmaceutical continuous manufacturing.

Data reconciliation (DR) is a mathematical approach applied to correct imperfect 

measurement data to satisfy a mathematical model of the process, generally based on 

mass and energy balances, material property relations, process variance and dynamics, 

or correlation between variables. The original idea of data reconciliation in the 1960 

s, correcting the measurement data with normally distributed random errors with zero 

mean, has since been extended to measurement gross error identification and elimination, 

unmeasured state variable estimation, model parameter estimation, etc. These data 

reconciliation applications have been successfully implemented in various industries during 

the past few decades (Câmara et al., 2017). Several recent industrial applications have been 

reported, including for a natural gas processing plant, wherein the mass flows of output 
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streams and raw feed were reconciled to satisfy mass balance equations with an aim to 

check the presence of gross errors in the measured data (Rafiee and Behrouzshad, 2016). 

A corrected expansion curve with reasonable enthalpy-entropy relationships and better 

estimates of isentropic efficiencies were obtained with data reconciliation implemented in a 

1000 MW steam turbine power plant (Guo et al., 2016). More recently, data reconciliation 

was also employed to improve the reliability and accuracy of measured data for a direct air-

cooling condenser of thermal power plant based on the relationship between back pressure 

of the steam turbine and the condenser-related variables (Li et al., 2018).

Hence, the main objective of this paper is to introduce data reconciliation to the emerging 

pharmaceutical continuous manufacturing. DR has the capability to address the imperfection 

of PAT sensor measurement data by incorporating process understanding gained during 

pharmaceutical development using the QbD framework. For example, the design-space in 

QbD can be described by the inequality constraints in DR (Guo et al., 2016), the process 

understanding developed in QbD can be mathematically modelled and cast into nonlinear 

equality constraints of DR (Valdetaro and Schirru, 2011), or the variation in the process 

coefficients/material parameters can also be included and quantified as estimated parameters 

in DR (Weiss et al., 1996). Furthermore, given the significant differences in uncertainties, 

which generally occur between CQA and CPP measurements, the implementation of DR 

is also of practical importance for active process control of CQAs by adjusting CPPs. 

For example, most CQA variables are now measured using in situ spectroscopy probes, 

e.g., active pharmaceutical ingredient (API) composition in formulated powder is measured 

by a Near Infrared (NIR) probe (Vanarase et al., 2010). Such measurements are often 

subject to either inherent error in chemometric model calibration, or the extra variation/

drift due to material property change (particle size, bulk density, etc.), probe fouling, and 

environmental humidity and temperature changes, etc. (Chen et al., 2011). On the other 

hand, the CPP variables are commonly and directly measured using reliable mechanical 

or electrical sensors, e.g., the compression force in a tablet press, which tend to have less 

measurement uncertainties. It is worth mentioning that the robust design of traditional 

manufacturing equipment (tablet press, roller compactor, etc.), which provides reliable 

measurement of CPPs with minimum variations, has allowed pharmaceutical manufacturing 

to continue to operate in the past century in batch mode while handling CQA variations 

via off line statistical quality control (SQC) methods. The challenge in pharmaceutical 

continuous manufacturing nowadays is to effectively integrate those noisier and possibly 

biased CQA measurements into the process control system so as to effectively supervise the 

control of CPPs while minimizing the need for off line SQC. However, this integration could 

potentially amplify variations in CPPs and product quality attributes, if data uncertainty in 

the CQAs measurements are not carefully dealt with. DR can be considered part of the PAT 

framework for the process as the PAT framework tools include design of the measurement 

system and process control (Food and Drug Administration, 2004). In this study, a data 

reconciliation framework is proposed for pharmaceutical continuous tablet manufacturing. 

Special features of using a Welsch robust estimator to reject measurement gross error (Liu 

et al., 2018) and a joint parameter estimation to address the model-plant mismatches are 

highlighted. The proposed DR framework was demonstrated in a pilot continuous tablet 

manufacturing process. First, the Kawakita equation, which characterizes the relationship 
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between main compression force (CPP) and tablet weight (CQA) was considered (Su et 

al., 2018a), in which the material parameter was automatically estimated to accommodate 

changes in material property or compressibility. The reconciled tablet weight measurement 

was integrated into a hierarchical three-level process control design to maintain consistent 

tablet weight production (Su et al., 2017). The final tablet weights were also independently 

and periodically verified using at-line Sotax Auto Test 4 tablet weight measurements. The 

performance of the data reconciliation framework together with the developed control 

system design proved to offer a robust tablet weight control approach in pharmaceutical 

continuous manufacturing.

This paper is organized as follows. Section 2 briefly introduces the principle and recent 

development of data reconciliation and proposes a general data reconciliation framework for 

pharmaceutical continuous manufacturing systems. Section 3 describes the implementation 

of data reconciliation for a continuous tablet manufacturing process with active process 

monitoring and control of tablet weight. This is followed by the implementation and 

verification of the proposed data reconciliation framework in a rotary tablet press in 

Section 4. Concluding remarks and further consideration for the data reconciliation in 

pharmaceutical continuous manufacturing are provided in Section 5.

2. Data reconciliation

2.1. Principle

The principle of data reconciliation originally derives from the requirement to correct 

measurement errors due to random noise, which is most commonly expressed in industrial 

applications as a weighted least square (WLS) minimization problem (Câmara et al., 2017), 

as shown below,

min
z

z − zm
TW −1 z − zm

subject to z ⊆ y, x, u, θ
f y, x, u, θ = 0
g y, x, u, θ ⩽ 0

(1)

where zm is the vector of measured process variables; z is the corresponding reconciled 

measurement; W is the weighting matrix, y, x, u are process output, state, and input 

variables, respectively; and θ the model parameters in the function vectors f (·) and g (·) 

which represent the process model, i.e., mass and energy balance, as equality and inequality 

constraints, respectively. The explicit use of process knowledge by combining measurement 

data with a process model, specifically known as the topological redundancy, in data 

reconciliation ensures that the reconciled measurements are consistent with the known 

relationships between process variables with minimum adjustment of the measurement data.

Though in practice the measurement data may be subject to non-random errors, requiring 

additional techniques such as robust statistics to detect gross errors or the use of robust 

estimators to give less weight to the contribution of large errors of (z − zm) in the 

objective function (Johnston and Kramer, 1995; Weiss et al., 1996), the underlying 

principle and framework in data reconciliation mostly remains the same. Furthermore, it 
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is also straightforward for the data reconciliation to be extended to include parameter 

estimation and state variable estimation. For example, as long as the system redundancy 

and observability are satisfied (Crowe, 1996), uncertain model parameter θ and unmeasured 

process state variable x can be conveniently included in the set of decision variables z or 

constraints in the optimization problem. In such way, systematic errors in process model and 

unknown process/product qualities can be corrected and monitored, respectively. Overall, 

the scope of data reconciliation and its connections with optimization, parameter estimation, 

and state estimation can be illustrated in Fig. 1.

2.2. Recent development in data reconciliation

Current challenges related to data reconciliation for gross error detection and identification 

techniques have been recently reviewed (Valle et al., 2018). The role of data filtering or 

processing before DR was corroborated (Tona et al., 2005). The authors also collected 

an extensive set of benchmark test problems for validating new DR technique. Since 

data reconciliation is intensively based on the optimization strategy and algorithm, several 

numerical aspects of data reconciliation have also been reviewed recently (Câmara et al., 

2017), including the presence of estimated parameters in the objective function, solution 

approach using nonlinear programming solvers, methods for estimating objective function 

gradients, initial guess generation, and optimization algorithms.

In terms of the robust estimator, a recent comparative performance analysis of data 

reconciliation was presented, involving two procedures based on biweight function and three 

estimation techniques that use the Welsch, quasi-weighted least squares, and correntropy 

M-estimators (Llanos et al., 2015). Similar evaluation of robust estimators for dynamic data 

reconciliation and state estimation was also reported recently for a feeding-blending system 

in pharmaceutical continuous manufacturing (Liu et al., 2018).

Beside the commonly exploited process knowledge in the form of first-principle mass and 

energy balance at steady-state or dynamic condition, the use of simplified (Bagajewicz and 

Cabrera, 2003), data-driven, or semi-empirical process models have also been utilized for 

data reconciliation in complex systems. For example, when direct analytical formulation 

or numerical simulation techniques were not feasible for data reconciliation in a direct 

air-cooling condenser, a non-explicit relationship between the back pressure of the steam 

turbine and the condenser-related variables was established using data-driven support 

vector regression (Li et al., 2018). Additionally, shape constraints such as monotonicity 

and convexity/concavity profiles for process variables, which represent constraints relating 

measurements over several time instants have been proposed to reconcile concentration 

measurement in complex chemical reaction system without the use of first-principle reaction 

kinetic models (Srinivasan et al., 2017).

From the perspective of systematic implementation strategies, the problems of data 

reconciliation, economic optimization and interaction with the underlying basic control 

system were reviewed for hydrogen network management in a petroleum refinery (Sarabia 

et al., 2012), and the importance of data reconciliation and gross error detection in 

the proposed decision support system was demonstrated. A hierarchical decomposition 

approach for on-line data reconciliation and optimization for an industrial utility plant was 
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also proposed (Lee et al., 1998). By decomposing a large and complex system into several 

subsystems, it was suggested that the handling several small size subsystems instead of 

the original large-scale system provided a reduction in computation time, a more robust 

solution, simplicity of problem formulation and easier maintenance. Other strategies for 

handling the optimization problem in large-scale systems were also proposed, including e.g., 

a nested three-stage sequential computation approach (Faber et al., 2003; Faber et al., 2004) 

or a parallel and self-adaptive cooperative strategy (Penas et al., 2017).

A detailed review of data reconciliation technique is out of the scope of this work, 

however, its robust capabilities in dealing with measurement errors and implementation in 

various industries should provide a sound cornerstone for its applications in pharmaceutical 

continuous manufacturing.

2.3. A general data reconciliation framework for PCM

Powder-based unit operations, i.e., blending, tableting, are typically employed in 

pharmaceutical continuous secondary manufacturing, where physical changes usually occur 

within seconds or minutes. There is also a limited holdup in each unit operation due 

to the desire to reduce the waste of off-spec in-process material, thus the buffering 

provided by material inventory is limited. Additionally, the impact of stream recycling 

or substantial back mixing in the process on material traceability must be characterized 

and well understood in the pharmaceutical manufacturing industry (Lee et al., 2015). 

Thus, variations in upstream operations typically propagate rapidly with direct impact on 

downstream processes. Conventional DR formulation and experience with large-scale stream 

network based on steady-state conservation laws of mass and energy may or may not be 

directly transferable to the more challenging quality-intensive PCM process. Accordingly, a 

general DR framework is proposed based on the following mathematical formulation,

min
zt

∑
t ∈ T

wzTρ zt − zm, t + ∑
t ∈ T

wmTρ zt − zt − 1
2

subject to z ⊆ y, x, u, θ
f y, x, u, θ, t = 0
g y, x, u, θ, t ⩽ 0

(2)

where zm t, is the vector of measured process variables z at time t; zt is the corresponding 

reconciled measurement at time t; a robust estimator ρ (·) is preferably considered; wz is 

the weight vector for the measurement error e = (zt − zm,t); and wm is the penalty weight 

vector for successive move of the reconciled measurement or estimated process variables 

and model parameters in a continuous manufacturing environment; t is the process time 

when f (·) and g (·) are components of the dynamic process model; T is a moving window 

within which the process data set are used for dynamic data reconciliation (Liu et al., 2018).

Firstly, a dynamic process model is required to understand the propagation of process 

disturbances from upstream to downstream and their effect on the variance of the CQA, 

and to serve as the basis for the dynamic data reconciliation problem. The reconciled values 

of the measurement data generated in real time can then be directly used within the active 

process control system. For example, dynamic process models based on either a state-space 

model or a series of tanks model were recently demonstrated for data reconciliation purpose 
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in our recent work in a simulated pharmaceutical continuous feeding-blending system (Su et 

al., 2017; Liu et al., 2018). In the last decade, significant effort has been devoted to process/

flowsheet modelling of pharmaceutical continuous manufacturing processes (Rogers et al., 

2013; Boukouvala et al., 2012; Sen et al., 2013). For example, gPROMS process model 

libraries were reported for control system design for continuous direct compaction processes 

(Singh et al., 2014; García-Muñoz et al., 2018), facilitating the future implementation of DR 

within a flowsheet modelling environment (Piccolo et al., 1996).

Secondly, given the current challenges in reliability of PAT sensors for CQA measurement, 

a robust estimator ρ (·) is necessary to suppress the measurement gross error simultaneously 

with data reconciliation. This is also important for the direct integration of reconciled CQA 

measurements into a fault-tolerant active process control system (Su et al., 2017). On the 

other hand, in order to either avoiding excessive moves in reconciled measurement data to be 

integrated into control system due to large CQA measurement noise, or to balance between 

data reconciliation and parameter estimation in the optimization, the selection of the weights 

wz and wm in the objective function is important and is often empirically tuned based on 

heuristic process understanding in most model-based optimization and control algorithms 

(Câmara et al., 2017; Su et al., 2016).

Thirdly, although the parameter estimation is intended mainly for off-line applications, as 

generally performed during the development of process models, it is recommended that 

important model parameters be identified through sensitivity analysis and included in the 

optimization variable vector z as well as in the objective function (Piccolo et al., 1996; 

Camara et al., 2016). Product and process knowledge developed within the QbD framework 

often includes an understanding of the impact of raw material variability on final product 

quality. Thus, it is of significant importance to understand and estimate the variance of 

these material-related model parameters through joint data reconciliation and parameter 

estimation. Moreover, model-plant mismatch can be reduced through updating of model 

parameters when changes from historical values of model parameters are detected (Wu et al., 

2016). This is a widely used strategy in industrial DR applications (Câmara et al., 2017).

3. Continuous tablet manufacturing

3.1. Pharmaceutical continuous direct compression

Tablets are the most common oral solid dosage form that can be generally manufactured 

by direct compression or augmented with either dry granulation or wet granulation 

to accommodate particular formulation requirements. Common processing steps for 

direct compression include feeding, blending and tableting. The pilot continuous direct 

compression line at Purdue University was used for the studies in this work. The continuous 

manufacturing process consists of two Schenck AccuRate PureFeed® AP-300 loss-in-weight 

feeders that can achieve and maintain specified feed rates by measuring the changes 

in remaining powder weight. The feeders continuously feed the API, Acetaminophen 

(APAP), and the excipient, Avicel Microcrystalline Cellulose PH-200 (MCC 200), into a 

Gericke GCM-250 continuous blender, wherein the two components are mixed. A Schenck 

AccuRate DP4 micro feeder adds the glidant silicon dioxide into the powder flow exiting the 
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continuous blender, which is then conveyed directly to a Natoli BLP-16 continuous rotary 

tablet press featuring a total of 16 punch-die stations.

The tablet press is itself a multi-stage process, in which each station undergoes the following 

major steps: die filling, metering, pre-compression, main-compression, tablet ejection and 

take-off from lower punch, as shown in Fig. 2. After die filling in the feed frame, the 

metering stage manipulates the dosing position to adjust the volume of powder within the 

die, which is then locked between the upper and lower punches during pre-compression and 

main-compression until tablet ejection and take-off. The pre-compression helps to remove 

the air trapped in the die and to rearrange the particle packing, while the main-compression 

serves to compact and solidify the powder into tablet. The tablet weight can be controlled by 

changing the dosing position subject to the variation of powder bulk density or filling time 

due to change in turret speed and/or feed frame speed. The minimum in-die tablet thickness 

is determined by the punch displacement which is manually set by altering the distance 

between the main compression rollers before tableting operation with the current tablet 

press. Hence, the maximum main-compression force is causally dependent on the amount 

of powder in die or, equivalently, the tablet weight, as indicated by a lock symbol for the 

closed system of pre-compression and main compression stages. The relationship between 

main-compression force and tablet weight is an important QbD process understanding in 

material compressibility, as discussed next.

3.2. QbD implementation

The continuous direct compaction process was integrated with state-of-the-art process 

analytical technologies (PAT) sensors and process control strategies to monitor the process 

operation within the design-space and maintain consistent product quality. For example, 

the API mass fraction was measured in situ using a Near Infrared spectrometer (Control 

Development, Inc.) at the exit of the continuous blender (Vanarase et al., 2010). The powder 

flowrate was measured using an X-ray based mass flow meter (SETXvue XP-300, Enurga, 

Inc.) (Ganesh et al., 2017). These CQA and CPP measurement data were collected using 

Emerson DeltaV OPC system to support a hierarchical three-level process control system 

designed according to the ISA 95 standard (Su et al., 2017), as shown in Fig. 3. For example, 

the DR module in this work was located at Level 2.

Specifically, the critical-to-quality variables in the tablet press were identified as tablet 

weight, relative density, strength and main compression force (Su et al., 2018b). The weight 

of the tablet ultimately determines the API potency within a dose. It also determines the 

main compression force at the pre-set punch displacement and thus the relative density 

and tensile strength of the tablet, which in turn can affect the final product attributes such 

as dissolution rate. Commercial at-line instruments, such as Sotax Auto Test 4, are often 

employed to measure the tablet weight as well as strength at intervals of minutes. However, 

the destructive and slow measurements cannot be efficiently integrated with the process 

control system to maintain consistent quality production in real time. Therefore, an in-house 

design for real-time tablet weight measurement based on a Mettler Toledo ME 4001E mass 

balance was considered in this study (discussed in the next subsection). Although a similar 

design was reported in a recent publication for tablet weight control (Bhaskar et al., 2017); 
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neither the tablet weight measurement reliability and accuracy were thoroughly verified 

therein, nor was its validity in enhancing the real-time tablet weight control confirmed. 

For example, compared to the conventional open-loop operation, the key aspect of how 

to avoid introducing extra variations into the tablet quality attributes due to measurement 

data imperfection or due to process closed-loop control operation was not demonstrated. 

A sampling time of 20 s in the tablet press data acquisition system was used which 

may impede the capturing of process dynamics and thus downgrade the expected process 

control performance (Shardt and Huang, 2013). Hence, in the following sections, a data 

reconciliation strategy for tablet weight measurement in enhancing the QbD implementation 

in continuous rotary tablet press is demonstrated and discussed.

3.3. Data reconciliation for tablet press

The in-house design of the system used for real-time tablet weight measurement and control 

is schematically shown in Fig. 4. Tablets exciting the tablet press chute are collected in a 

container placed on top of an electronic balance. The balance is connected to a computer 

with an RS232 cable to transfer the measurement data of total tablet weight via MathWorks 

MATLAB Instrument Control Toolbox. A Baud Rate of 9600 bps (bits-per-second) is chosen 

for the RS232 serial COM connection to achieve a real-time measurement, approximately 

a sampling time of 330 ms. The corresponding tablet production rate can be obtained by 

taking the first-order derivative of the total tablet weight measurement. A tablet weight 

measurement (Wt, mg) is then calculated by dividing the tablet production rate by turret 

speed and number of stations, as shown below,

W t = Tablet production rate
Turret speed × Number of stations (3)

where the turret speed determines the total counts of tablet produced per time unit. The 

proposed in-house design is efficient and accurate, however, may lack of enough precision 

due to non-static measurement with the balance. Hence, a flexible moving window time to 

collect roughly 100 tablets was adopted when taking the first-order derivative to calculate 

the tablet production rate and tablet weight. The authors assumed that a total count of 100 

tablets is representative to calculate the mean tablet weight and a moving window time for 

100 tablets doesn’t filter out the process dynamics. However, gross errors can also occur 

when tablet samples are pneumatically diverted to the at-line Sotax Auto Test 4 device or an 

empty container is reloaded. Therefore, a data reconciliation strategy is desired to reduce the 

measurement uncertainty and eliminate the gross errors with this tablet weight measuring 

device.

First, to capture material understanding, powder compressibility is commonly characterized 

by the relationship between main compression force and the resulting in-die tablet relative 

density. It is one of the critical material attributes (CMAs) that affect consistent tablet 

manufacture. There are many models characterizing powder’s compressibility at various 

degree of compression. In this study, the Kawakita equation was employed to characterize 

the main compression force at high tablet relative density (Ludde, 1966), as given below.
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CF
1 − ρc/ρr

= CF
a + πD2/4

ab (4)

ρr = 4W t
πD2ρtT

(5)

where CF is the main compression force, kN; ρc is the model parameter of relative critical 

density, –, ρr the calculated in-die relative density from tablet weight Wt, and ρt the known 

a prior true density of the powder, g/cm3; parameters a and b (MPa) are interpreted as 

the maximum degree of compression and the reciprocal of the pressure applied to attain 

the maximum degree of compression, respectively; D is the diameter of the die, mm, and 

T is the minimum in-die tablet thickness pre-set by the punch displacement for B tooling 

punches with flat cylindrical punch surfaces, mm. It should be noted that the relative critical 

density ρc is an important material property, which can be used to characterize the material 

and compression process. Once characterized off-line, the Kawakita model can also be 

used as a soft sensor to predict the tablet weight using the real-time main compression 

force measurement as input. However, the soft sensor may lack of accuracy when the 

powder compressibility varies in, e.g., the relative critical density, due to material property 

changes of bulk density, particle size, blend composition, moisture content, etc., resulting in 

gross error due to model-plant mismatches, which should be monitored and eliminated as 

required.

The proposed general data reconciliation framework was implemented for the tablet weight 

measurement to correct the imperfect measurement data based on the process knowledge 

of material compressibility. It is emphasized here that the lock symbol in Fig. 2 indicates 

that the complexity of the large dimensional data reconciliation problem for the whole tablet 

press can be reduced by performing the DR problem on the closed subsystem consisting of 

the main-compression step that is a function involving only main compression force, tablet 

weight, and powder compressibility (Hodouin and Everell, 1980), which is easy to solve in 

real time. It should be acknowledged that the turret speed or the punch compaction speed 

also affects the main compression force to some extent. However, these process variables 

were observed to have only a marginal effect under the current operating conditions with the 

studied powder formulation and was thus neglected in the classical Kawakita model.

Since it is hard to ensure normality for the measurement error with the in-house tablet 

weight measurement, e.g., the impact of dropping tablets on the uncertainty of a non-static 

balance measurement changes as the total tablet mass builds up in the container, as well as 

due to the occurrence of gross errors, a Welsch robust estimator ρw was used in this study 

to accommodate the non-Gaussian measurement error distribution, as well to handle the 

nonlinearity of Eq. (4) (Dennis and Welsch, 1978; Prata et al., 2010), as shown below.

ρw ε = cw2

2 1 − exp − ε
cw

2
(6)
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ε = e
σ (7)

where ε is the standardized residual; cw is a tuning parameter; e = (zt − zm,t) is the 

measurement error as in Eq. (2); σ is the standard deviation of measurement error e and can 

be estimated from historical data for main compression force and tablet weight measurement 

(Wu et al., 2016). To jointly estimate and update the Kawakita model parameter, the relative 

critical density ρc is included in the reconciled vector variable z. Instead of a measured 

parameter to be included in zm, a reference estimated from the historical distribution of ρc 

can be considered herein (Camara et al., 2016).

In summary, the DR problem for the tablet weight measurement is formulated by casting 

Eqs. (4) to (7) into the general DR framework of (2), with z = [CF, Wt, ρc]. In this manner, 

both the uncertainty in the tablet press measurements and the model-plant mismatch in 

powder compressibility can be tackled within the steady-state optimization problem. Note 

that although the turret speed is also a measured variable, its measurement error is inherently 

included in determining the measured value of the tablet weight in Eq. (3), hence is not 

included explicitly in the data reconciliation.

4. Results and discussion

4.1. Powder compressibility characterization

Compressibility of a powder formulation of 10.0% APAP, 89.8% Avicel MCC PH-200 and 

0.2% silica by mass was characterized with Natoli BLP-16 tablet press. The experiments 

were run in batch mode, wherein a pre-determined amount of blend was poured into the 

tablet press hopper and both the Natoli tablet press and the Sotax AT4 tester were run in 

tandem and connected to the DeltaV OPC system and its Process Historian. MATLAB’s 

statistical toolbox was used to create a set of 30 experimental conditions using Latin 

Hypercube Sampling (LHS) of turret speeds and in-die relative densities of tablets. Tablet 

feed frame speeds were set at a constant rate of 2 rpm higher than the turret speeds and 

the dosing positions were calculated from requisite relative densities by using bulk density 

of powder blend (i.e., around 0.35 g/cm3). The powder blend level in the hopper was kept 

constant before the start of each run to simulate a continuous manufacturing process. All 

measurement data of the above mentioned CPPs and CQAs were collected for each of the 

2-minute runs. A hundred tablets were collected at-line at steady state to measure their 

attributes with the Sotax Auto Test 4 tablet tester. Process Historian data collected from 

both the tablet press and tablet tester were used to calculate mean and standard deviation 

of each of the measurements recorded. The Kawakita equation parameters were identified 

or estimated as follows, the punch die diameter D is 8.0 mm, powder true density ρt is 

1.52 g/cm3,ρc is 0.250, a is 0.791, and b−1 equals 14.15 MPa. Good agreements between 

the Kawakita equation predictions of Eqs. (4) and (5) and experimental measurements 

are obtained, as shown in Fig. 5, demonstrating the clear correlation between the main 

compression force and tablet weight. Note that two in-die tablet thickness T of 4.60 mm 

and 4.10 mm were used here with varying dosing position to cover a wider range of relative 

density.
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4.2. Offline data reconciliation for tablet press

The proposed data reconciliation strategy was demonstrated and validated offline in the 

continuous tablet manufacturing pilot plant at Purdue University first with experimental data 

stored in the DeltaV Historian, as illustrated in Fig. 6. The experiment was run in open-loop 

control with step changes imposed on turret speed and dosing position. The Sotax tablet 

tester was employed to analyze the tablet weight when the process reached steady state after 

each step change.

It is observed that a soft sensor using the Kawakita equation developed during the powder 

compressibility characterization in Fig. 5 was able to predict the tablet weight with main 

compression force quite precisely and was able to track the step changes of tablet weight 

quite well. Worth mentioning here is that the main compression force measurement with 

Natoli BLP-16 was very stable and had been recently recalibrated to confirm its accuracy 

(the reconciled main compression force agreed well with the raw measurement, not shown 

here). However, an obvious offset was found when compared to the at-line Sotax AT4 

measurement in Fig. 6(a) which was regarded as the most accurate and precise measurement 

at the current stage. It should be pointed out here that the powder compressibility 

characterization using Kawakita equation as demonstrated in Fig. 5 was completed about 

one year before this open-loop experiment and was using the same source of material but 

with shipments one year apart. Hence, variations in raw material properties are the likely 

cause for this offset. The in-house design of real-time tablet weight measurement based 

on a Mettler Toledo (MT) balance does suffer from gross errors due to diversion of tablet 

samples to the Sotax AT4 at predetermined regular intervals (see each drop-and-recover 

in measurement after Sotax AT4 sampling) as well as due to the disturbances caused by 

replacement of the tablet container between 2200 and 2400 s in Fig. 6(b). Overall, the 

tablet weight measurement by MT balance was accurate despite the noise owing to non-

static balance measurement. The proposed data reconciliation strategy of this study which 

reconciled the main compression force and tablet weight on the basis of process knowledge 

on material compressibility characterized using the Kawakita model showed promise in two 

aspects. First, the gross errors with MT balance tablet weight measurement were eliminated 

by using a Welsch robust estimator without affecting the reconciled measurement, as shown 

in Fig. 6(c), a smooth tablet weight measurement was also obtained. The role of the 

robust estimator is especially important when the sensors were undergoing maintenance 

or replacement due to failures. Secondly, the relative critical density parameter ρc was 

estimated in real-time and monitored showing a shift from the reference value of 0.250 to 

0.264, as shown in Fig. 6(d), which could be due to variations in raw material properties 

in particle size, moisture content, etc., among shipments one year apart. More research 

efforts are required to understand the influence of critical material attributes (CMAs) or 

the ingredient composition on the powder compressibility. Two more experiments with 

open-loop control and without the use of the at-line Sotax AT4 measurement to avoid gross 

errors were used to confirm the shift of the material compressibility, as shown in Fig. 7.

It can be seen from Fig. 7 that both experiments showed excellent performance of 

the proposed data reconciliation strategy in correcting the tablet weight measurement 

provided by the MT balance in reducing the measurement noise. The shift of the material 
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compressibility in relative critical density, resulting in the model-plant mismatch of 

Kawakita model as well the offset of the soft sensor model prediction, was also corrected by 

the joint model parameter estimation in the proposed DR framework. The initial reference 

value of 0.250 in the proposed data reconciliation for relative critical density ρc can be 

updated once the shift in historical probability distribution of ρc is detected, for example, the 

mean value of ρc was shifted from the initial reference of 0.250 to 0.258 and 0.261 in these 

two experiments, respectively, as shown in Fig. 7(b) and (d). The real-time model parameter 

estimation and update is useful when there was a change in raw material properties or 

process operations. Moreover, the resulting changes in model parameters can be further used 

to diagnose the system variations in process operation and material properties, as well as to 

quantify their effects on product quality attributes.

Although DR generates benefits, it can have strong negative effects when some of its 

hypotheses are violated or the procedure does not find a feasible solution. In such situations, 

using reconciled data could yield worse results than using the measurements directly 

(Camara et al., 2016). Hence, before on-line application of the proposed data reconciliation 

for tablet weight measurement is integrated with the control system in the pilot continuous 

manufacturing process, it should be verified that the data reconciliation does not alter the 

system dynamics in the process. Thus, the introduction of any stability issue with the closed-

loop control system can be avoided. In this regard, the data reconciliation was again applied 

offline, using DeltaV historian data of previous experiment trials, to a closed-loop control 

experiment with set point changes to the tablet weight by adjusting the dosing position, as 

shown in Fig. 8.

It can be seen in Fig. 8(a) that the direct use of the noisy tablet weight measurement from 

the MT balance leads to oscillations in the tablet press, as shown by the variations in dosing 

position and main compression force after reaching the tablet weight set points in Fig. 8(b) 

and (c), respectively. The hypothesis in this study, as indicated by the lock symbol in Fig. 

2, was that the main compression step forms a closed system and involves only the main 

compression force and tablet weight. The main compression step completes instantaneously 

without any dynamics nor with the exiting and dropping of tablets into the container due 

to a short distance. Therefore, it is as expected that the steady-state data reconciliation 

neither involves nor introduces extra dynamics to the system, the same oscillations for the 

reconciled tablet weight was thus also found in Fig. 8(a). The same applies to the soft 

sensor measurement by Kawakita model. The capability of data reconciliation in correcting 

the measurement uncertainties and estimating the model parameter were again confirmed 

with closed-loop experiment, as shown in Fig. 9. The measurement errors between the 

reconciled (or the soft-sensor predicted) measurement and raw measurement are plotted 

in Fig. 9(a) and (b) for tablet weight and main compression force, respectively. Normal 

error distributions with zero mean are found for both reconciled measurements as expected, 

whereas an error distribution with an offset was obtained for the soft-sensor measurement 

error due to the model-plant mismatch, which was, however, estimated and updated by the 

data reconciliation, see the distribution of relative critical density in Fig. 9(c) with a mean 

located at 0.257, shifting from its reference value of 0.250, same as observed with the 

open-loop experiment in Fig. 7(b) and (d).
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Additionally, the data reconciliation formulation focusing solely on the main compression 

step includes only two nonlinear constraints of Eqs. (4) and (5), which can be solved 

within a fraction of a second using MATLAB built-in fmincon function. Thus, it is thereby 

confirmed that the data reconciliation strategy for tablet weight measurement was capable 

of reducing the tablet weight measurement uncertainties and estimating important Kawakita 

model parameter and was ready to be integrated with the process control system for on-line 

real-time application.

4.3. Online integrated data reconciliation and process control

The reconciled tablet weight measurement was integrated into the tablet press control 

system, so that the tablet production rate is calculated by Eq. (3) with a reconciled 

tablet weight and turret speed. The tablet press control system consisted of a hierarchical 

three-level control design according to the previously proposed systematic framework 

for process control design and risk analysis in continuous pharmaceutical solid-dosage 

manufacturing (Su et al., 2017; Su et al., 2018b). The Natoli BLP-16 tablet press has a 

built-in programmable logic control (PLC) panel to manipulate process parameters of dosing 

position and turret speed, which is regarded as the Level 0 control in this context, as shown 

in Fig. 3. A Level 1 control with decoupled Proportional Integral Derivative (PID) control 

loops was designed for a cascaded control of tablet weight, tablet production rate, and main 

compression force by manipulating the set points of dosing position and turret speed at the 

Level 0 control. A Level 2 model predictive control (MPC) was also designed, in which the 

main compression force was constrained and monitored as it closely related to the tablet 

CQAs of hardness, tensile strength, and dissolution rate (Su et al., 2018a). The Emersion 

DeltaV Control Studio and DeltaV Predict toolbox were utilized for Level 1 and 2 control 

development and implementation (Bhaskar et al., 2017), details of the control loops can be 

found in Fig. 10. The PID tuning parameters at Level 1 control and MPC process model and 

tuning parameters at Level 2 control were all retuned or reidentified with the integrated data 

reconciliation to achieve a better control performance. Continuous tabletting experiment was 

run first with open-loop control, then Level 1 control, and Level 2 control to validate the 

online data reconciliation, as well as to compare the control system performance, as shown 

in Fig. 11. The at-line Sotax AT4 tester was also sampling the tablets during the run to 

independently verify the final tablet quality.

First, it should be pointed out that a total of 16 tablets were analyzed at each sample 

time with the Sotax AT4 tester, viz., collecting all tablets within one rotation of the 

turret. In this way, variation among punch stations and variation with processing time 

can both be characterized, see the box plot of sampling data points and the zoomed-in 

inset in Fig. 11(a). The control open-loop operation at the beginning of the tablet press 

run in Fig. 11(a) was conducted to confirm that the reconciled tablet weight measurement 

agreed well with the at-line Sotax AT4 measurement or to allow the data reconciliation 

to automatically update the Kawakita model parameter of relative critical density in order 

to reduce possible model-plant mismatch due to material variation. For instance, in Fig. 

11(a) note how the reconciled tablet weight measurements started to match the Sotax AT4 

measurements at the third sample and the updated relative critical density at the beginning of 

the operation in Fig. 11(c). Furthermore, during the control closed-loop operation, the data 
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reconciliation continued updating the model parameter and reached a plateau under Level 1 

and Level 2 control set-point changes. Even after a reinitialization of data reconciliation on-

purpose at time 3600 s, an offset between reconciled tablet weight measurement and at-line 

Sotax AT4 measurement was observed but was then gradually reduced with the update of 

relative critical density. Hence, the proposed data reconciliation framework demonstrated an 

important feature of on-line automatic calibration for tablet weight measurement and was 

not found to interfere with the control system design.

Compared to the control closed-loop performance shown in Fig. 8, the integrated data 

reconciliation for tablet weight measurement has improved the control performance of the 

tablet press both at Level 1 and Level 2, viz., the system oscillation in Fig. 8 was eliminated 

in Fig. 11. More importantly, the tablet weight reached the set points steadily with both 

control strategies except that the Level 2 MPC control showed a more aggressive and 

promising control performance. During the set point changes of tablet weight, the tablet 

production rate was maintained the same to match the campaign production or processing 

capability upstream, e.g., the feeding and blending, see Fig. 11(b). More importantly, 

variations of the tablet weight among stations at steady state remained the same as the 

control open-loop operation with current experiment runs, (see the box plots of each 

sampling point in Fig. 11(a)). Overall, the control system design was shown to have the 

capability of reaching a targeted tablet weight set point automatically and steadily, which is 

important during process start up or product switch. Another benefit of the process control 

system is to maintain the tablet weight under process disturbances or material property 

variations, as long as the true variations in product quality is correctly understood and not 

biased by measurement uncertainty.

To sum up, the integrated data reconciliation and control strategy in the studied continuous 

tablet manufacturing process has demonstrated the capabilities in handling measurement 

uncertainty and gross errors, monitoring and estimating variations in material properties, 

and improving process automation and quality control performance in a real pilot plant 

continuous production of oral solid dosage.

5. Conclusions

Pharmaceutical continuous manufacturing with the goal of real-time release has provided a 

driving force for the implementation of PAT tools for measuring critical quality attributes. 

The benefits of both PAT and QbD implementation can be enhanced with insights from 

process systems engineering on product and process knowledge. Data reconciliation is a 

powerful and important mathematical tool to combine process knowledge and measurement 

to reduce data uncertainty and to extend to parameter and state estimation. It has also been 

widely acknowledged in other industries to improve process understanding and monitoring. 

As an initial effort, the proposed data reconciliation framework has demonstrated 

the advantages in handling measurement uncertainty and gross errors, monitoring and 

estimating variations in material properties, and improving process automation and quality 

control performance in a real pilot plant continuous production of oral solid dosage.
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Although not demonstrated in this work, data reconciliation also shows the potential to 

estimate CQA variables that cannot be measured directly (Liu et al., 2018). Indeed, the 

joint treatment of data reconciliation with state estimation deserves more investigation in 

the future. Moreover, the estimation problem must be carefully designed in case some of 

the model parameters or state variable are not estimable or observable when performed 

independently and simultaneously with the data reconciliation procedure (Quelhas and de 

Jesus, 2013). In a broader view, data fusion or information fusion (Khaleghi et al., 2013) 

in pharmaceutical continuous manufacturing could provide further benefits. Information 

fusion is the study of efficient methods for automatically or semi-automatically transforming 

information from different sources and different points in time into a representation that 

provides effective support for human or automated real-time release decision making.
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Fig. 1. 
Scope and connections of data reconciliation with other related approaches.
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Fig. 2. 
Major steps in Natoli BLP-16 rotary tablet press.
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Fig. 3. 
A hierarchical three-level process control for direct compaction.
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Fig. 4. 
Tablet weight measurement for real-time monitoring and control.
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Fig. 5. 
Comparisons between Kawakita model prediction and experimental measurements: main 

compression force vs. relative density (top) and main compression force vs. tablet weight 

(bottom).
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Fig. 6. 
Offline data reconciliation with open-loop experiment with at-line Sotax AT4 sampling. (a) 

Soft sensor predictions of tablet weight with original Kawakita model subjects to model 

uncertainties; (b) Measurements of tablet weight with a balance subject to noise and gross 

errors; (c) Reconciled measurement of tablet weight; (d) Kawakita model parameter updates 

with data reconciliation.
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Fig. 7. 
Offline data reconciliation with open-loop experiment without at-line Sotax AT4 sampling.
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Fig. 8. 
Offline data reconciliation with closed-loop experiment without at-line Sotax AT4 sampling.
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Fig. 9. 
Measurement error and parameter estimation by offline data reconciliation with closed-loop 

experiment without at-line Sotax AT4 sampling.
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Fig. 10. 
The hierarchical Level 1 (top) and Level 2 (bottom) control for continuous tablet press.
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Fig. 11. 
Online integrated data reconciliation and process control for continuous tablet press.
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