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Abstract 

Background:  DNA mismatch repair deficiency (dMMR) testing is crucial for detection 
of microsatellite unstable (MSI) tumors. MSI is detected by aberrant indel length distri-
butions of microsatellite markers, either by visual inspection of PCR-fragment length 
profiles or by automated bioinformatic scoring on next-generation sequencing (NGS) 
data. The former is time-consuming and low-throughput while the latter typically relies 
on simplified binary scoring of a single parameter of the indel distribution. The pur-
pose of this study was to use machine learning to process the full complexity of indel 
distributions and integrate it into a robust script for screening of dMMR on small gene 
panel-based NGS data of clinical tumor samples without paired normal tissue.

Methods:  Scikit-learn was used to train 7 models on normalized read depth data of 36 
microsatellite loci in a cohort of 133 MMR proficient (pMMR) and 46 dMMR tumor sam-
ples, taking loss of MLH1/MSH2/PMS2/MSH6 protein expression as reference method. 
After selection of the optimal model and microsatellite panel the two top-performing 
models per locus (logistic regression and support vector machine) were integrated 
into a novel script (DeltaMSI) for combined prediction of MSI status on 28 marker loci 
at sample level. Diagnostic performance of DeltaMSI was compared to that of mSINGS, 
a widely used script for MSI detection on unpaired tumor samples. The robustness of 
DeltaMSI was evaluated on 1072 unselected, consecutive solid tumor samples in a 
real-world setting sequenced using capture chemistry, and 116 solid tumor samples 
sequenced by amplicon chemistry. Likelihood ratios were used to select result intervals 
with clinical validity.

Results:  DeltaMSI achieved higher robustness at equal diagnostic power 
(AUC = 0.950; 95% CI 0.910–0.975) as compared to mSINGS (AUC = 0.876; 95% CI 
0.823–0.918). Its sensitivity of 90% at 100% specificity indicated its clinical potential for 
high-throughput MSI screening in all tumor types.
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Background
Microsatellites are DNA elements composed of short repetitive motifs that are prone 
to misalignment and frameshift mutations during cell division [1, 2]. In healthy cells, 
the ensuing small indels or single-base mispairs caused by polymerase slippage [3] are 
corrected by heterodimer enzyme complexes of the DNA mismatch repair (MMR) 
system encoded by MMR genes MLH1, MSH2, PMS2 and MSH6. DNA mismatch 
repair deficiency (dMMR) is caused by germline or somatic mutations in these MMR 
genes or by their epigenetic silencing [4, 5]. It results in the progressive accumulation 
of genetic alterations, potentially dysregulating many oncogenes or tumor suppres-
sor genes. The molecular hallmark of dMMR is microsatellite instability (MSI), with 
expansions or contractions in the number of tandem repeats throughout the genome. 
This phenomenon is observed in a considerable proportion of colorectal, endome-
trial, gastric, pancreatic, brain, biliary tract, urinary tract and ovarian tumors [1, 6].

As dMMR is caused by loss of function variants in the mismatch repair genes, 
immunohistochemistry (IHC) for loss of MLH1, MSH2, MSH6 and/or PMS2 protein 
expression is widely used as inexpensive screening test for dMMR [1, 7–11]. An alter-
native and equivalent approach [9, 11, 12], is the molecular analysis of MSI by detect-
ing shifts in the fragment length (indel) distribution of microsatellite repeats [8, 9, 11, 
13, 14]. This is typically done by visual inspection of the fluorescent PCR products 
of a limited set of microsatellite markers (MSI-PCR, e.g. the Bethesda panel [14]). 
This requires highly-trained experts and is labour-intensive. The rapidly increasing 
number of indications for MSI screening since the approval of PD-1 inhibitors in all 
microsatellite unstable solid cancers [15] thus creates pressure on labs that rely on 
classical MSI-PCR. A fast and cost-efficient alternative is to embed MSI analysis in 
bioinformatic pipelines applied on next-generation sequencing (NGS) data, that are 
increasingly being collected as standard-of-care diagnostic workup in many dMMR-
prone cancer types.

Bioinformatic tools for MSI detection on NGS data are available in different flavours: 
(A) by comparing indel distributions of microsatellites in paired tumor-normal samples, 
on exome data (MSIsensor, MANTIS, MSIseq) or targeted gene panels (USCI-msi) [16–
18], (B) by comparing indel distributions in a tumor sample versus a fixed reference set 
on targeted gene panels (mSINGS, MSIFinder) [19, 20] or (C) by analysing the number 
of single nucleotide variants and indels throughout the genome to detect the hypermu-
tated status as consequence of dMRR. (MSIseq) [21]. An overview of these tools and 
their features is presented in Table 1.

Microsatellite instability is a continuous feature that becomes more marked with 
increasing number of cell divisions of MMR deficient cells. Also, some microsatellite 
loci appear more prone to instability in specific tumor types and MSI loci optimized for 
colorectal cancers might perform sub optimally in endometrial and other cancer types 
[22]. The sensitivity of molecular MSI screening can be improved by sequencing paired 
tumor-normal tissue and by the use of exomes or very large genomic panels. One such 
assay, the FDA-approved MSIsensor script on MSK-Impact large-panel capture data of 
tumor-normal pairs, outperformed conventional MSI-PCR in both colorectal and endo-
metrial carcinoma [23]. However, the cost of such assay is prohibitive and in most clini-
cal settings, sequencing of solid tumors is restricted to small NGS panels.
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When applied on a limited set of MSI markers in small gene panels, commonly used 
scripts such as mSINGS [19] and MSIFinder [20] have been shown to achieve similar 
diagnostic performance as classical Bethesda-compliant PCR, at least in colon cancer. 
In endometrial cancers, mSINGS was still inferior to IHC, mainly because it failed to 
detect the minimal shifts in microsatellite indel distributions that occur in non-colorec-
tal tumors. One possible explanation is that mSINGS, and other widely used scripts such 
as MSIFinder, rely on a single parameter—the number of discrete, integrated peaks in 
an indel distribution—for binary scoring at locus level. This simplification can result in 
inaccurate MSI screening in case of left-shifted distributions or minimal microsatellite 
shifts, as illustrated in Additional files (Additional file 2: Figure S1) and [12].

Therefore, the aim of this study was to develop a script, DeltaMSI, that can process 
the full complexity of indel distribution (area under the curve, length of major peak and 
number of peaks). Its novel and defining feature versus existing scripts is that it uses the 
raw aligned read data (normalized read depth per position) of microsatellite loci as input 
parameter, leveraging the power of machine learning with scikit-learn [24] to handle the 
associated data complexity. To allow its clinical use and ease of implementation, addi-
tional (but not necessarily novel) required features were: (1) applicability on small NGS 
panels (unlike MSIsensor, MSIseq, Mantis that require exome data); (2) not depend-
ent on a fixed baseline reference set of healthy tissue or MSS tumors (unlike mSINGS); 
(3) automatic selection of optimal loci (like MSIsensor-pro) and (4) not dependent on 
tumor-normal paired sequencing (unlike MSIsensor, MSIseq, MSIpred and others).

All published tools for MSI screening on NGS data report high diagnostic perfor-
mance versus MSI-PCR as reference. However, as shown by Dedeurwaerdere et al. all 
dMMR detection techniques based solely on molecular methods fail to detect up to 
5–10% of dMMR tumors with demonstrated loss of MLH1/MSH2/PMS2 or MSH6 
immunohistochemical staining, either for biological reasons (minimal MSI shifts) or 
sensitivity issues (low tumor cell percentage). To assess real-world clinical performance, 
DeltaMSI was therefore trained and validated on samples classified by IHC as independ-
ent, non-molecular method for clinical truth. The resulting DeltaMSI script showed high 
robustness during implementation and satisfactory diagnostic performance in a large 
real-world data set of solid tumors of various origin tissues.

Implementation
Study specimens

All FFPE biopsy specimens were obtained from cancer patients as part of standard clini-
cal care at AZ Delta General Hospital from Jan 1, 2019 to Dec 31, 2021. Training and 
validation was done on a cohort consisting of 1072 unselected, consecutive solid tumor 
samples (large variety of origin tissues) processed for diagnostic NGS by panel-based 
capture assay and included a subset of 215 samples with IHC results. A second valida-
tion was done on a cohort of 116 consecutive samples processed by IHC and sequenced 
by an amplicon-based library preparation chemistry of the same gene panel design.

Wet lab pre‑processing

Immunohistochemistry (IHC) for MSH2, MSH6, PMS2 and MLH1 was performed 
on 5-µm thick sections of formalin-fixed, paraffin-embedded (FFPE) tumor tissue 
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on a Ventana, Benchmark Ultra device (Ventana Medical Systems, Arizona, USA) as 
described [12]. Tumors were classified as dMMR if no nuclear staining or nuclear stain-
ing in less than 10% of invasive tumor cells for 1 or several markers was seen in the pres-
ence of a positive internal control (inflammatory and stromal cells). Tumors with nuclear 
staining for all for markers in at least 10% of invasive tumor cells were classified as 
pMMR. DNA was extracted from 10-µm thick sections of the same FFPE tissue blocks as 
used for immunohistochemistry, using the Cobas DNA Sample Preparation Kit (Roche, 
Basel, Switzerland) with macrodissection guided by haematoxylin eosin staining, with 
elution in 10 mM Tris–HCl pH8.0. NGS was performed on an Illumina MiSeq (PE150) 
using a custom 138 kb (36 genes) hybridization capture-based gene panel (NimbleGen 
SeqCap EZ HyperPlus, Roche) gene panel that additionally included 36 microsatellite 
loci [12] (Additional file 2: Table S1): 15 proposed by Salipante [19], 7 from the Idylla 
assay (Biocartis, Belgium) [25], 10 proposed by Hause as informative for non-colorec-
tal cancers [22] and 4 regions from the updated Bethesda guideline [14]. DeltaMSI was 
additionally implemented and validated on samples sequenced using an amplicon-based 
method (AmpliSeq for Illumina Focus Panel, Illumina) customized with these same 36 
microsatellite loci. Both NGS methods achieved a limit of detection of 1% variant allele 
frequency for SNV, at minimal unique read depth of 500x.

Data pre‑processing

Reads were aligned to the human reference genome (hg19) with BWA-mem2 (2.2.1). 
Sorting and duplicate marking were performed using elPrep (5.0.2) [26] and SAMtools 
(1.13) [27] for the indexing of the bam files. To simplify the use of our method, read fil-
tering was integrated in the proposed DeltaMSI script. Bam files were read by DeltaMSI. 
Marked duplicates were ignored, and reads were filtered on a mapping quality of at least 
20. Only reads overlapping the complete microsatellite regions with a flanking region of 
5 bases on each side were used. Regions within samples were filtered with a minimum 
depth of 30x (similar as mSINGS). The length distribution graphs, obtained by counting 
the observed fragment lengths, were cleaned by removing lengths with a depth of only 1 
read (to decrease the complexity of the regions). As raw data for modeling the normal-
ized read depth per position for each marker locus was used, obtained by dividing the 
absolute read number per position by the maximally observed depth of all lengths within 
that locus, obtaining a value between 0 and 1 for each possible length within that region.

Machine learning modelling by train‑validation‑test split approach

Machine learning was done at locus level by scikit-learn (1.1.2) [24] taking normalized 
read depth per position as feature versus binary dMMR status measured by IHC as 
target on a model set of 179 samples sequenced by capture NGS (N = 133 pMMR and 
N = 46 dMMR deficient samples). The model set was randomly split in a training set, 
validation set and test set of equal size (graphical study design in Fig. 1). The training set 
was first used to select the subset of loci with good raw data quality based on acceptable 
coverage within sample and in 75% of all training set samples: 29 of 36 loci were retained 
(Fig. 2). Scikit-learn was used to train and compare seven machine learning models. The 
methods of machine learning were selected considering the small sample size, excluding 
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Fig. 1  Study design and implementation. The flow chart graphically summarizes the study design, modeling, 
implementation and clinical validation as described in detail in the Implementation section with reference to 
the cited figures

Fig. 2  Diagnostic power of 29 individual microsatellite marker loci in the various models to predict dMMR 
status. 29 of 36 marker loci (Y-axis) showed acceptable coverage within and between samples and were 
used for machine learning by the indicated models (X-axis). Marker loci are denoted by gene name (capitals) 
and source (Salipante/Idylla®assay/Hause/Bethesda panel) with full genomic coordinates in Additional file 2: 
Table S1. Models were trained versus outcome at sample level by IHC (dMMR/pMMR) assuming all loci of a 
sample classified by IHC as pMMR to be stable, and all loci of a sample classified as dMMR to be unstable. 
Models included isolation forest, local outlier factor, one-class support vector machine (SVM), logistic 
regression, random forest, naive Bayes and support vector classifier (SVC). The heat map shows representative 
AUC at locus level in the validation set to predict dMMR status at sample level (low to high AUC from red to 
blue). 28 of 29 loci (with exception of MSI_PBMR1_Salipante) achieved acceptable AUC and were retained in 
the final DeltaMSI script. Logistic regression and SVC consistently achieved highest AUC and were integrated 
into the combined voting model of DeltaMSI
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neural networks, and the low prevalence of dMMR samples in diagnostic settings, focus-
sing on outlier methods and methods able to handle unbalanced datasets.

Three outlier methods (isolation forest, local outlier factor and one class support vec-
tor machine) were trained with pMMR samples only. The other methods (logistic regres-
sion, random forest, naive Bayes and support vector classifier (SVC)) were trained with 
an unbalanced set of 45 pMMR and 16 dMMR samples. For each method hyperparam-
eter tuning was performed using a grid search with a kfold of 3. To allow unbiased com-
parison, each model used the same kfold split of the samples, regardless of the number 
of filtered samples for that region within that set.

Next, the validation set was used to select the best performing models and loci based 
on the AUC score at locus level. The highest AUC were obtained with logistic regression, 
SVC and random forest (Fig. 2). Random forest was removed due to strong overfitting of 
each region. 28 of 29 marker loci achieved AUC of 0.60 or higher in both logistic regres-
sion and SVC. The latter two models were selected for the final modeling and addition-
ally integrated into a combined voting model, hence DeltaMSI, that scores regions as 
unstable if both models predict the region as unstable. For each model, the percentage of 
loci scored as unstable was calculated (sample score). This sample score was then used to 
explore optimal diagnostic thresholds for dMMR/pMMR classification at sample level in 
the test set.

ROC analysis was done by MedCalc (version 19.2.1, MedCalc software Ltd, Mari-
akerke, Belgium) and Python scikit-learn [24]. A method comparison was done between 
DeltaMSI and mSINGS v4.0.

Results
Clinical validation real world data

The diagnostic power of logistic regression, SVC and the combined voting model (hence 
DeltaMSI) were evaluated in the test set, in comparison to mSINGS (v4.0). Two imple-
mentations of mSINGS were evaluated. First, a previously published implementation 
[12] that has been in clinical routine use in our centre since 4 years. It makes use of an 
optimized fixed reference set of 15 pMMR colorectal cancer samples and 10 of 15 loci 
original Salipante loci [19] in the capture panel design (hence mSINGS10). Second, an 
out-of-the-box implementation on all 28 marker loci of DeltaMSI, using the randomly 
selected pMMR samples of the train-validation set that was used in the training of Del-
taMSI as reference set (hence mSINGS). ROC analysis (Fig. 3A) indicated strong diag-
nostic power of DeltaMSI, with AUC of logistic regression, support vector classifier and 
the combined voting model of 0.92, 0.91 and 0.94, respectively, similar to mSINGS10 
(AUC = 0.93) but superior to mSINGS (AUC = 0.85).

The test set was also used to optimize cutoffs for subsequent clinical verification on 
real-world data. First, dual thresholding was tested, with a lower cutoff below which 
samples are pMMR with 95% specificity and a higher cutoff above which samples are 
dMMR with 95% specificity (Fig. 3B) and separated by a gray zone result interval. This 
thresholding was then evaluated in a real-world data set of 1072 consecutive, unse-
lected samples of solid tumors, in comparison to mSINGS on the same 28 marker loci, 
using 0.20–0.30 as gray zone for mSINGS. The data set included solid tumors of a wide 
variety of origin tissues, including colorectal (20%), lung (27%), breast (14%), pancreas 
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(6%), ovarium (5%), melanoma (5%), endometrium (4%), brain (4%), prostate (2%), GIST 
(1%) and stomach (1%) cancers (Additional file 2: Table S2). On the colorectal cancers 
(N = 214), DeltaMSI and mSINGS with dual thresholding achieved only a moderate con-
cordance of MSS/MSI classification (72%). The estimated prevalence of MSI (21% and 
18% for DeltaMSI and mSINGS respectively) was higher than the 10%-15% epidemio-
logically expected in colorectal cancers [22], suggesting suboptimal thresholding. There-
fore, an additional set of N = 36 samples was selected within the gray zone result interval 
of DeltaMSI for independent verification by IHC and aggregated these into our initial 
model set for iterated ROC analysis on a total of N = 215 samples.

In these 215 samples, DeltaMSI achieved excellent AUC of 0.95 (95% CI 0.91–0.98), 
similar to the optimized mSINGS10 (AUC = 0.93, 95% CI 0.89–0.96) but statistically 
superior to mSINGS on all 28 marker regions (AUC = 0.876, 95% CI 0.82–0.92, P < 0.05) 
(Table 2). A single binary threshold could be defined for DeltaMSI (sample score > 0.26) 
above which microsatellite instability was predicted at > 98% specificity and likelihood 
ratios above 70 (illustrated in Additional file 2: Table S2). This corresponded to a sensi-
tivity of 90% (95% CI 76–96%). Further decreasing binary cutoff had no impact on exclu-
sion of MSI (negative likelihood ratio) and thus no beneficial impact on screening rate: 
in total 5 cases were missed of which 2 for obvious technical reasons (low tumor cell 
percentage < 40%).

Robustness of DeltaMSI

DeltaMSI was developed on a relatively well powered sample set, which is not always 
available in routine diagnostic settings. To evaluate the impact of sample size on AUC, 
bootstrapping simulations were performed on training/validation sets of decreasing 
size. 50 simulations were run on 5 sample sizes: 20-10:20-10; 20-10:10-5; 20-20:10-10; 
40-20:20-10; 45-16:43-15 (train pMMR-dMMR: validation pMMR-dMMR). Decreasing 

Fig. 3  Diagnostic power of DeltaMSI to predict dMMR status at sample level. A representative AUC of logistic 
regression, SVC and the combined voting model (DeltaMSI) on 28 marker loci in the test set in one of 50 
representative bootstrap simulations, as compared to mSINGS on these same 28 loci and same bootstrap 
simulations (mSINGS) and an optimized, previously published [12] mSINGS done on 10 top-performing 
marker regions with a fixed optimized baseline set (mSINGS10). B Concordance of classification at sample 
level (blue dots, dMMR, IHC positive for loss MLH1/MSH2/PMS2 or MSH6 expression; green dots, pMMR, IHC 
negative) by logistic regression and support vector classifier and provisional dual thresholding with gray zone 
interval for subsequent clinical validation on real-world data
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sample size down to the smallest sample size (20-10:10-5) did not negatively affect AUC 
(AUC mean: 0.904, median: 0.902, 95% CI 0.873–0.947) as compared to the original 
sample size (45-16:43-15) (AUC mean: 0.893, median: 0.904, 95% CI 0.782–0.966) for 
the combined voting model (Fig. 4A) (P = 0.25). Comparison of logistic regression, SVC 
and DeltaMSI (combined voting) versus mSINGS on all 28 regions, in 50 bootstrap-
ping simulations using the smallest 20-10:10-5 train-validation size, confirmed the trend 
towards superior AUC of DeltaMSI (AUC mean 0.904, median: 0.902, 95% CI 0.873–
0.947) as compared to mSINGS (AUC mean: 0.872, median: 0.872, 95% CI 0.831–0.915) 
(P < 0.001) (Fig. 4B). The robustness of mSINGS versus DeltaMSI was also evaluated on 
the complete real-world data set (n = 1072), using minimal sample size (training 20-10: 
validation 10-5 pMMR-dMMR): over 10 bootstrapping simulations, DeltaMSI had 
a more stable performance with less variation across simulations in the percentage of 
samples classified as MSI/gray zone/MSS classification (Fig. 4C). This indicates that Del-
taMSI displays a much lower dependency on the optimal training/validation set than 
mSINGS.

As additional test for implementation robustness, DeltaMSI and mSINGS were com-
pared on an independent data set 116 (N = 86 pMMR, N = 30 dMMR) solid tumors 
sequenced using a different library preparation chemistry (amplicon-based), using 
the exact same 28 loci in the panel design. This cohort included cancers originating 
from colorectal (56%), endometrium (24%), pancreas (10%), stomach (8%) and other 
(2%) organs. 50 simulations were performed using 20-10:10-5 train-validation size, 

Fig. 4  Robustness of DeltaMSI as compared to mSINGS. A Whisker plots show AUC (Q25-median-Q75) of 
the DeltaMSI Combined voting model for the indicated sample sizes (X-axis) in the train and validation sets 
over 50 bootstrap simulations. The AUC in the smallest model set (20.10_10.5, indicating 20 pMMR.10dMMR 
samples in the training set_10 pMMR.5dMMR samples in the validation set) was comparable to the larger 
set used for initial training of the model (45.16_43.15). B AUC over 50 bootstrap simulations for the smallest 
sample size (20.10_10.5) of logistic regression (logres), SVC and the combined voting model (DeltaMSI) as 
compared to mSINGS on the same 28 regions and same bootstrap samplings. C robustness over 10 bootstrap 
simulations using the minimal sample size (20.10_10.5) in a real-world data set of N = 1072 consecutive solid 
tumor samples. Plots indicate the percentage of samples classified as MSS/pMMR (green lines) or MSI/dMMR 
(blue lines) or gray zone by DeltaMSI (dotted lines) or mSINGS (solid lines)
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and compared to mSINGS. In each simulation the train-validation set was randomly 
constructed, using the selected pMMR samples for train-validation in DeltaMSI as 
mSINGS baseline. On amplicon data, both DeltaMSI (AUC mean: 0.98, median: 0.98, 
95% CI 0.980–0.985) and mSINGS (AUC mean: 0.97, median: 0.97, 95% CI 0.970–
0.972) achieved excellent AUC, but AUC of DeltaMSI was again statistically superior 
(P < 0.001). In total, 4 of 116 (3%) samples (all non-colorectal) showed discrepant results 
between IHC and molecular methods. One endometrial adenocarcinoma was pMMR 
on IHC but convincingly MSI by both DeltaMSI and mSINGS, and thus likely indicates 
a false negative IHC. Of the three samples scored as dMMR by IHC, two samples, a duo-
denal adenocarcinoma with 60% tumor cells and an endometrial carcinoma with only 
20% tumor cells were scored as MSS by both DeltaMSI and mSINGS and one sample, an 
endometrial carcinoma with only 30% tumor cells, was correctly scored as MSI by Del-
taMSI but not mSINGS.

Standalone tool: novelty and complexity

The novelty of DeltaMSI as compared to previously published MSI calling tools stems 
from a combination of following features (Table 1): (1) multiparametric analysis of indel 
distribution shifts instead of simplification to just one parameter such as number of 
discrete indel peak lenghts; (2) automatic selection of MSI loci with highest diagnos-
tic power in any custom gene panel: such automatic selection was previously described 
in a few MSI calling tools (USCI-msi, MSIsensor-pro) but in DeltaMSI loci selection 
and model building are integrated in one command; (3) the combined use of multiple 
machine learning models on multiparametric indel data, yielding one integrated sam-
ple score. Some other MSI calling tools also used machine learning, but these typically 
relied on a single model and monoparametric data. From a methodological perspective, 
the use of IHC as outcome for clinical truth benefits clinical robustness of DeltaMSI. 
To our knowledge, only 3 other tools (Table 1) used IHC outcome, with concordances 
varying from 80% for MSIFinder [20], 84.3% for USCI-msi [17], up to 92% for MSI-
ColonCore [28] (Table 1). The performance of DeltaMSI and mSINGS was tested with 
multiple bootstraps with a concordance of above 90% and 98% for DeltaMSI versus 82% 
and 97% for mSINGS on capture and amplicon data, respectively.

DeltaMSI was developed as a standalone tool with easy implementation. The imple-
mentation in pseudocode can be found in the Additional file 1. Machine learning today 
is still hesitantly adopted in routine clinical diagnostic practice, mainly because of opac-
ity of the data handling. To decrease complexity, DeltaMSI creates visual plots (exam-
ples in Additional files) of all included loci, that graphically display indel shifts versus all 
pMMR samples in the train set.

Compute performance of DeltaMSI

DeltaMSI and mSINGS are both developed in Python and are single threaded. mSINGS 
is RAM friendly, using only up to 40 MB, while DeltaMSI used up to 6 GB of RAM for 
both training as predicting the samples (for 28 loci). On a 3Ghz cpu (Intel Xeon Gold) 
with 256 GB RAM, the creation of the mSINGS baseline with 30 pMMR samples took 
around 12 min and 30 s (mean over all simulations). The creation of the DeltaMSI model 
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with 30 pMMR and 15 dMMR samples took 11 min and 52 s (mean over all simulations). 
The prediction by mSINGS takes 26 s, for DeltaMSI it was 10 s.

Conclusions
DeltaMSI achieved a clinically acceptable sensitivity around 90% at excellent specific-
ity for MSI screening in all common cancer types. Its diagnostic performance was at 
least as good as that of another widely used script, mSINGS. As compared to mSINGS, 
however, it offered a higher robustness during implementation, with a diagnostic per-
formance that was less influenced by the composition of the training/baseline samples 
sets, and thus guaranteeing a more streamlined implementation with less validation 
efforts. Present study shows that machine learning on complex raw indel distribution 
data can achieve higher robustness at sample level than scripts running on monopara-
metric decomplexified data. Molecular screening of MSI in non-colorectal tumor sam-
ples, however, remains challenging and the diagnostic gain by DeltaMSI versus mSINGS 
are limited. Future research should investigate if progressively increasing the gene panel 
size and the number of microsatellite loci can improve the sensitivity of DeltaMSI and 
similar scripts.

Availability and requirements
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