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Abstract

Objective—Previous electrophysiological research has characterized canonical oscillatory 

patterns associated with movement mostly from recordings of primary sensorimotor cortex. Less 

work has attempted to decode movement based on electrophysiological recordings from a broader 

array of brain areas such as those sampled by stereoelectroencephalography (sEEG), especially 

in humans. We aimed to identify and characterize different movement-related oscillations across 

a relatively broad sampling of brain areas in humans and if they extended beyond brain areas 

previously associated with movement.

Approach—We used a linear support vector machine (SVM) to decode time-frequency 

spectrograms time-locked to movement, and we validated our results with cluster permutation 

testing and common spatial pattern (CSP) decoding.

Main results—We were able to accurately classify sEEG spectrograms during a keypress 

movement task versus the inter-trial interval. Specifically, we found these previously-described 

patterns: beta (13 – 30 Hz) desynchronization, beta synchronization (rebound), pre-movement 

alpha (8 – 15 Hz) modulation, a post-movement broadband gamma (60 – 90 Hz) increase and 

an event-related potential. These oscillatory patterns were newly observed in a wide range of 

brain areas accessible with sEEG that are not accessible with other electrophysiology recording 

methods. For example, the presence of beta desynchronization in the frontal lobe was more 

widespread than previously described, extending outside primary and secondary motor cortices.

Significance—Our classification revealed prominent time-frequency patterns which were 

also observed in previous studies that used non-invasive electroencephalography (EEG) and 

electrocorticography (ECoG), but here we identified these patterns in brain regions that had not 

yet been associated with movement. This provides new evidence for the anatomical extent of the 

system of putative motor networks that exhibit each of these oscillatory patterns.

Corresponding author: Nicole C. Swann < nswann@uoregon.edu>. 

Conflict of Interest
The authors declare no competing financial interests.

HHS Public Access
Author manuscript
J Neural Eng. Author manuscript; available in PMC 2024 January 18.

Published in final edited form as:
J Neural Eng. ; 20(1): . doi:10.1088/1741-2552/acae0a.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

Stereoelectroencephalography (sEEG); movement; oscillations; beta; machine learning; support 
vector machine

Introduction

Several spectral power changes in electrophysiological recordings related to the initiation 

of movement have been extensively replicated. Beta power (13 – 30 Hz) decreases 

(desynchronizes) several hundred milliseconds before movement and subsequently rebounds 

immediately following the movement. This has been shown most prominently in the 

subthalamic nucleus and globus pallidus local field potentials (Brown & Williams, 2005) 

and in sensorimotor electrocorticography (ECoG) recordings (Crone, 1998a; Miller et al., 

2007; Stolk et al., 2019). In sensorimotor areas, broadband gamma (60 – 90 Hz) also 

increases around the time of movement and immediately after (Ball et al., 2008; Crone, 

1998b), alpha power has been observed to both increase (Stolk et al., 2019) and decrease/

desynchronize (Crone, 1998a) during movement, and a robust movement-related negative 

evoked potential emerges in the time domain 1 – 2 seconds before movement (Toro et al., 

1994). These studies have focused on specific brain areas implicated in movement from 

early electrophysiological and neurosurgical work (Penfield & Boldrey, 1937) and have 

focused on the most prominent oscillations observed in those regions. However, recent 

work in a rodent model has suggested that movement-related activity is highly distributed 

throughout the brain, perhaps even more so than higher cognitive processes (Steinmetz 

et al., 2019). Sampling a broader range of brain regions in humans will clarify whether 

canonical motor-related brain regions (e.g. primary motor cortex) are the only ones that 

exhibit movement-related oscillations and to what extent traditionally non-motor regions 

demonstrate these same oscillations.

Patients with medically intractable epilepsy can have electrodes surgically inserted into their 

brains to record from deep structures to determine the focus of their epilepsy and guide 

the surgical resection of epileptogenic brain tissue. These stereo-electroencephalography 

(sEEG) recordings provide an opportunity to determine the spatial extent of movement-

related oscillations in humans because they sample a broad range of brain areas, including 

deeper regions. Previous sEEG studies found that movement direction (Johnson et al., 2017) 

and movement path direction, deviation, and speed (Breault et al., 2017) had statistically-

significant correlations with beta power in a few brain areas, which were on the order of 

r=0.2, reflecting modest predictive power at a single-trial resolution. Another study decoding 

movement speed that used a more complex classification method, least absolute shrinkage 

and selection operator (LASSO) linear regression, had a higher correlation of r=0.4 on 

average using the entire sEEG electrode implantation montage for a patient, but had a large 

range of correlations across patients and a mean squared error greater than one (Breault 

et al., 2019). Determining the electrophysiological correlates of movement characteristics, 

such as direction and speed, are valuable pursuits, but focusing on a specific property of 

movement likely requires sampling more specialized motor networks, which may not be 

extensively covered by the sEEG montages of the patients in any given study. This is 
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because the sEEG electrode placements are idiosyncratic based on the clinical indication 

for each patient and the suspected origin of their epilepsy. Therefore, in studies with small 

groups of sEEG patients, many brain areas are sampled sparsely and some are not sampled 

at all. Additionally, sEEG electrodes record local field potentials, which are the combined 

signal from many neurons and glial cells. Thus, sEEG data may be more suitable for 

studying behavioral state changes that evoke large differences in synchronous activity in 

many neurons, such as transitioning from rest to movement, rather than studying more 

subtle behavioral changes that modulate the activity of fewer neurons, such as changing 

movement speed, at least until future technological advances enable smaller-scale depth 

recordings. Therefore, to determine the spatial extent of fundamental movement-related 

brain networks, we examined electrophysiological differences recorded with sEEG between 

a simple key-pressing movement and rest. We hypothesized that event-related potentials and 

oscillatory patterns in sEEG could be used to classify periods of movement compared to 

inter-trial periods of rest in a broad array of brain areas, including, and extending beyond, 

those previously described.

Methods

Participants

Eight patients with medically intractable focal epilepsy were surgically implanted with 

sEEG electrodes for clinical localization of ictal (seizure) onset and epileptogenic zones. 

All patients underwent robotic assisted 0.8 mm diameter stereoencephalography electrodes 

(PMT, Chanhassen, MN, USA) with center-to-center pitch of 3.3 to 5 mm for electrode 

contacts. The total number of electrode contacts analyzed was 979 with 122 +/− 2 contacts 

per patient. The contacts were distributed in the patients’ brains as shown in Figure 2. 

Patient demographic and clinical information is shown in Table 1. IRB approval was 

obtained at Oregon Health & Science University (MOD00042329). Informed consent was 

obtained under the Declaration of the Principles of Helsinki. All participants were above 

the age of 16 and gave written informed consent. Consent was given for publication 

of anonymized identifiable data from all participants. Participants were not enrolled in a 

clinical trial for this research.

Task

Patients performed a forced two-choice reaction time task with the left and right arrow keys 

on a laptop using the index and middle finger of their dominant hand respectively (Figure 

1). On each trial, patients were presented with a fixation cross for 300–700 ms followed by 

a left or right arrow cue. Patients were asked to respond before the arrow disappeared with 

the corresponding key on the laptop keyboard, with a total of 300 trials. The duration of 

the cue varied between 1.5 times and 4 times each patient’s average reaction time during 

10 practice trials. The task was administered using a custom MATLAB script implementing 

PsychToolBox (Brainard, 1997; Kleiner et al., 2007; Pelli, 1997). The laptop was placed on 

the patient’s lap while reclined in a hospital bed. A photodiode was attached to the bottom 

right corner of the screen and was output to the amplifier to synchronize the task to the 

electrophysiology. Due to noise in the hospital environment a few photodiode events were 

corrupted for most patients (see Table 1), and, due to the patient displacing the photodiode 

Rockhill et al. Page 3

J Neural Eng. Author manuscript; available in PMC 2024 January 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



by shifting in bed, two blocks of 75 trials for one patient and one block of 75 trials for 

another patient were unusable. Accurate timing could not be derived from trials without 

photodiode synchronization between the electrophysiology recording and the task so these 

trials were excluded. Trials where patients pressed the wrong button or did not press a button 

within the response window were also excluded. All patients responded with their dominant 

hand. Patients Subject 2 and Subject 11 were left handed and the rest of the patients were 

right-handed.

Electrode localization

Electrode positions were determined with MNE-Python (Gramfort, 2013) using the patients’ 

postoperative computed tomography (CT) image registered to their preoperative magnetic 

resonance (MR) image (A. Rockhill et al., 2022). The Freesurfer reconstruction labeling 

of voxels was used to assign anatomical labels to individual contacts with regards to each 

patient’s anatomy. The closest gray matter label within a 2 mm radius of the center of each 

contact was assigned to that contact. If no gray matter label was within 2 mm, the contact 

was assigned to a white matter label if it was within 2 mm. Contacts in white matter have 

been shown to aid in classification but are lower amplitude (Li et al., 2021) so gray matter 

labels were prioritized. The Desikan-Killiany atlas was used to label the electrode contacts 

(Desikan et al., 2006; Fischl, 2012). The contact locations were then warped to a template 

brain (cvs_avg35_inMNI152) for comparison of their relative spatial locations.

Electrophysiology Preprocessing and Spectrogram Generation

The fixation task events were synchronized with the recording using a photodiode (A. P. 

Rockhill et al., 2020). The keypress time in the sEEG recording was then determined by 

taking the difference between the timestamp for the fixation cross being sent to the monitor 

for display and the timestamp for the keypress on the task computer and adding that to 

the time of the photodiode deflection. The sEEG data were average re-referenced after 

excluding bad channels by manual inspection. Epochs were rejected if any channel exceeded 

5 mV in peak-to-peak amplitude.

The time-frequency spectrogram for each event was computed via the Morlet wavelets 

method with frequencies from 1 to 250 Hz with 7 cycles per wavelet using MNE-Python 

(Gramfort, 2013). A baseline correction was applied by subtracting the baseline median and 

dividing by the baseline standard deviation for each frequency individually. The entire trial 

was used as the baseline as recommended in previous work (Delorme & Makeig, 2004). The 

voltage time-series signal, bandpass filtered between 0.1 and 40 Hz using a finite impulse 

response filter with a Hamming window of 6.6 times the reciprocal of the shortest transition 

band (the default in MNE-Python), was appended to the bottom of the spectrogram in order 

to include the event-related potential in the classification. For every epoch, half a second 

of data before the start and after the end of that epoch was included in the time-frequency 

decomposition but then cropped in order to avoid edge artifact.

Classification

Movement spectrograms included the period 0.5 seconds before the response key was 

pressed to 0.5 seconds after (and the cue-locked spectrograms for the additional analysis 
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was from the time of the cue to 1 second after). These were classified as different from 

an equal length spectrogram during the inter-trial interval. The classification procedure 

consisted of the following steps: first, the training spectrograms were dimensionally reduced 

from 51 frequencies and 1000 time points (51,000 features total) to 50 components using 

principal component analysis (PCA). The classification accuracies for five randomly-chosen 

contacts per patient were computed for the full range of principal components using a 

5-fold cross validation of the training data (the testing data was left unseen). The number of 

principal components that maximized the classification accuracy in this validation analysis 

was 50, which explained 60.2 ± 11.8% of the variance in the spectrogram data. The PCA 

components were then used as input to a linear SVM classifier (e.g. scikit-learn.org/stable/

auto_examples/applications/plot_face_recognition) implemented in scikit-learn (Buitinck et 

al., 2013), similar to previous approaches (Miao et al., 2021). An 80 / 20% training-test split 

was used. In addition, another equal length period during a separate part of the inter-trial 

interval was used as a null classification as shown in Figure 1. The coefficient matrices 

from the SVM, which showed the correlations of time-frequency points with the movement 

classification, were validated using a one sample cluster permutation test implemented 

in MNE-Python (Gramfort, 2013). The threshold was set at 99% of a T distribution 

(alpha=0.01) with 978 degrees of freedom (one less than the number of contacts). For each 

sEEG channel, clusters with T-statistics more extreme than 99% (alpha=0.01) of permuted 

clusters were considered significant.

The SVM method was compared to common spatial pattern (CSP) decoding, a well-used 

approach in electrophysiology signal classification, for further validation (Gramfort, 2013; 

Koles et al., 1990). The key difference between the two methods was that the SVM 

classification was per-contact and therefore did not use any information about which patient 

or location the contact was recording from, whereas the CSP classification was per-patient 

and used patterns between all the channels recorded from each patient as the basis for 

classification. For the CSP classification, the voltage signal was bandpass filtered for each 

frequency using the same filter design as above and then the spatial pattern was classified 

using a linear discriminant analysis with 5-fold cross-validation. Thus, the linear SVM 

was agnostic of the relationship between activity in different sEEG channels whereas the 

relationship between sEEG channel activity the basis of CSP classification; this difference in 

approach made CSP an ideal method for validation.

Results

Quantification of the Accuracy of the Support Vector Machine Classifier

The linear SVM using principal components was an effective method of classifying 

movement spectrograms from spectrograms during the inter-trial interval. The mean of 

the distribution of scores was unlikely to occur by chance (paired t-test, p < 0.001, df = 

977) compared to the null distribution generated from the classification with a separate 

inter-trial interval period instead of the period during movement. At an alpha=0.01 relative 

to the null distribution, 384/925 contacts had classification probabilities that were significant 

(Figure 3). The SVM classification showed that sensorimotor areas (primary motor and 

somatosensory cortex) had the highest classification accuracy, followed by prefrontal areas 

Rockhill et al. Page 5

J Neural Eng. Author manuscript; available in PMC 2024 January 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://scikit-learn.org/stable/auto_examples/applications/plot_face_recognition
https://scikit-learn.org/stable/auto_examples/applications/plot_face_recognition


(Figure 4 and, in greater detail by specific area, in Figure 5). Despite having a greater 

amount of coverage, temporal areas generally had lower accuracy of classifications, but 

some temporal areas still had contacts with spectrograms that were able to be classified at 

accuracies that were unlikely to occur by chance.

Support Vector Machine Classification Validation with Common Spatial Pattern Analysis

The CSP analysis showed that beta power was an important classification band in 5/8 

patients (Figure 6). Additionally, four patients were classified by alpha power, with one 

patient’s classification depending exclusively on alpha power (Subject 10), suggesting this 

is also an important oscillatory pattern. Two patients (Subjects 11 and 12) were not able 

to be classified effectively using this method at all. Notably, the time-frequency features 

with above-chance classification accuracy in the CSP analysis, were nearly identical to 

the features from the SVM coefficient matrices and cluster permutation analysis (Figures 

7 and 8). The CSP classification accuracies also corresponded well to those of the SVM; 

patients with worse CSP classification accuracy had fewer contacts that had significant 

classifications (r=0.966, p<0.001) for a linear regression between the CSP mean and mean 
contact accuracy per patient. Overall, the CSP and SVM classifications had concurrent 

results; the amount of movement-related brain activity implied by the accuracy of the 

classification was very similar for every patient, depending on their electrode implantation 

montage. This highlighted how widespread movement-related oscillations were observed 

to be, while, at the same time, suggesting such patterns were confined to specific neural 

circuitry that was not well-sampled in every patient.

Time-Frequency Dependencies of the Support Vector Machine Classifier

The SVM classification was used to determine which features of the spectrograms were 

important for classification to elucidate the mechanism of high-accuracy classifications. For 

each contact, the linear hyperplane optimized by the SVM was represented as a coefficient 

matrix that was used to evaluate the input spectrogram. The SVM classification worked 

by pointwise multiplying the coefficient matrix with the input spectrogram (represented 

in dimensionally reduced form by its PCA components), and if the sum is greater 

than zero the spectrogram was classified as being during movement. Thus, examining 

the coefficient matrix allowed us to explore which features of the spectrogram and the 

oscillatory patterns that they represented were related to high-accuracy classifications of 

movement. The coefficient matrices were assigned p-values for each time-frequency point 

using the distribution of coefficient matrices from the null classification with an alpha=0.01 

(uncorrected) threshold.

Example SVM classifications for three contacts are shown in Figure 7 to highlight areas 

with above-chance classification accuracy and the differences between oscillatory patterns in 

different brain areas. The first contact, the deepest contact targeted to the left premotor 

region (LPM 1) for Subject 1, exhibited a typical pattern for primary motor areas; a 

pre-movement beta desynchronization with low-beta rebound (albeit non-significant) and 

a negative evoked potential relative to the average reference. This pattern had one of the 

highest test classification accuracies despite the contact being in white matter. This is 

consistent with previous results which showed that signals from contacts in white matter 
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aid in classification but are lower amplitude (Li et al., 2021). The second contact, targeted 

to the right plane of a lesion (caused by focal cortical dysplasia; RPLS 4) of Subject 5, 

but outside of the lesion, was at the border of the right inferior precentral gyrus and pars 

opercularis and had a broader beta desynchronization both before and after the key press 

movement as well as an increase in gamma power just before the movement. The third 

contact, targeted to the left anterior cingulate (LACING 6) of Subject 10, had an increase 

in alpha power before the movement and an increase in delta power both before and after 

the movement. All of the oscillations in the classification coefficient images from these 

second two contacts have been observed in scalp EEG but precise anatomical localization 

in deep brain structures is lacking. The anatomical locations of different spectral features 

are explored in the subsequent analyses. Overall, contacts with above-chance classification 

accuracies relied on different spectral features to classify based on their anatomical location.

To interpret the coefficient matrices of the SVM classifications, and the information 

they convey about which oscillatory patterns were important for classification, several 

characteristics were computed and shown in Figure 8. The SVM coefficient matrices 

(Figure 8, left column) were compared with a cluster permutation analysis (Figure 8, 

right column) for validation; the significant time-frequency points were in almost exact 

correspondence between the two analyses. This was an important validation because the 

determining significant time-frequency points from the SVM coefficient matrices used an 

uncorrected significance level with multiple comparisons. For the first row, the proportion 

of significant time-frequency points was computed to determine which spectral features 

(i.e. time-frequency points) were the most widespread among the brain areas sampled 

in this study for contacts with significant classifications (Figure 8a and 8b). This shows 

prominent delta, alpha, and beta oscillations, an observation concordant with previous 

studies. This suggests that these spectral features are likely the most prominently used 

in movement neural circuits. Importantly, a and b show which frequency ranges are 

strongly modulated, but are agnostic as to the direction of modulation. To visualize the 

direction of movement-related modulation (relative to the inter-trial period) the proportion 

of positive significant coefficients (Figure 8c and 8d) was computed. Time-frequency points 

that consistently had decreased power in movement spectrograms compared to baseline 

spectrograms are closer to zero and shown in blue, whereas increased power is shown 

in yellow. Beta desynchronization, beta rebound and gamma power increase all had a 

consistent directionality. Lastly, for each time-frequency point, the average accuracy was 

computed for all classifications that had both a significant classification accuracy, relative 

to the null distribution of classification accuracies, and, in e, a significant coefficient for 

that time-frequency point, relative to the SVM coefficients of all the null classifiers at that 

particular time-frequency point, or, in f, were in a significant cluster (Figure 8e and 8f). 

Beta power around the time of movement as well as gamma power before and during 

movement, were observed in the contacts that were able to be classified with the greatest 

accuracies. These results are consistent with beta frequency oscillations being strongly 

linked to movement and movement disorders. They also suggest that gamma power is 

strongly associated with movement, although in fewer locations, as shown in Figure 8a and 

8b. Interestingly, pre-movement alpha power was the only spectral feature which did not 

show a consistent directionality; alpha power increased in about as many brain areas as it 
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decreased. Interestingly, alpha modulations were also observed in the greatest number of 

contacts (Figure 8a and 8b), but had lower-accuracy average classification potential than 

beta and gamma (Figure 8e and 8f). This evidence supports the conclusion that alpha 

oscillations are more ubiquitous than beta and gamma oscillations and are probably less 

directly related to movement; instead they may be primarily involved in movement-related 

cognition such as decision making or visual processing. Overall, the patterns observed in 

sEEG contacts recapitulated findings of previous literature using scalp EEG and ECoG but 

provided different information about the anatomical extent of these oscillations because 

sEEG sampled brain regions that are inaccessible with scalp EEG and ECoG.

Movement-Related Brain Areas using the same Oscillation that may be Networked

To analyze the anatomical locations of oscillatory patterns, important spectral features 

were selected qualitatively by inspection based on the feature maps in Figure 8. The 

time-frequency patterns of interest were chosen based on having a large proportion of 

significant clusters/coefficients or a consistent direction (most areas had both). The features 

chosen were the event-related potential, a movement delta increase before the movement 

but extending to slightly after, a beta decrease immediately before movement, both a high- 

and low-beta increase after movement and a gamma increase immediately after movement. 

These band-based categories are highlighted by a red box surrounding the time-frequency 

area of a relevant feature map in the first column Figure 9. The second column shows the 

distribution of significant time-frequency points relative to the area of the red box, where −1 

represents when all points within the box are significant and decrease during movement and 

1 represents when all points are significant and increase during movement. The histogram 

was divided into tertiles with the negative tertile in blue and the positive tertile in yellow. 

The contacts corresponding to classifications that used these features are plotted in the final 

three columns to show their position on the template brain. In addition, the oscillatory 

patterns of interest are shown in a different format in Figure 10; anatomical labels from 

the Desikan-Killiany atlas for the individual patient are used to highlight brain structures 

related to each oscillatory feature. The distributions of anatomical locations for contacts with 

significant classifications were unique for each oscillatory pattern.

Discussion

Interpretation of Movement-Related Oscillatory Patterns

By using an SVM to classify sEEG data around the time of a movement from rest, we 

were able to leverage the power of machine learning while maintaining information about 

what contributed most to classification. We found that many electrode contacts had high-

accuracy movement-related classifications throughout the brain; not all patients had contacts 

implanted in sensorimotor areas but nearly half of all contacts (41.5%) had classifications 

unlikely to be observed by chance. The contacts with above-chance accuracy are putatively 

in areas of distributed motor networks, or at least part of networks that were heavily 

recruited during a simple motor task. The locations of these contacts replicate and extend 

previous results in ECoG and EEG; beta desynchronization was observed in sensorimotor 

areas and the inferior frontal gyrus (Swann et al., 2009) but also extended to more superior 

frontal areas than previously described. Higher-frequency (>70 Hz) broadband gamma 

Rockhill et al. Page 8

J Neural Eng. Author manuscript; available in PMC 2024 January 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



power, which has also been associated with a greater balance of excitation compared 

to inhibition, was observed to have a different distribution with greater frontal and less 

temporal activation. Broadband gamma has been correlated with population level neuronal 

spiking, and tends to be biased towards recording large excitatory neurons (Manning et 

al., 2009). Thus, this change in power likely reflects local changes in firing rates. The 

timing of gamma compared to the event-related potentials and their observed distributions 

suggest different roles of these features in motor networks, and that they are able to measure 

excitatory neurons differently, perhaps with event-related potentials being more related to 

phase resetting (Sauseng et al., 2007). Beta-gamma phase-amplitude coupling (PAC) has 

been observed to be abnormally elevated in Parkinson’s disease (de Hemptinne et al., 

2015) so understanding the full spatial extent of the beta oscillations that are aberrantly 

coupled to gamma could inform the development of medical interventions that manipulate 

this neural circuit. Alpha power modulations were observed in prefrontal, sensorimotor, and 

mid-temporal regions, as were previously reported, but extended to subcortical and parietal 

areas that have not been linked with alpha. The areas that have not been associated with 

alpha rhythms may help link the many functional correlates of the alpha/mu oscillation 

(Pineda, 2005). The positive and negative event-related potentials were widely distributed 

in frontal, parietal and superior temporal areas. Somatosensory-related potentials have 

been successfully modeled by increases in excitatory output from the granular layer of 

somatosensory cortex (Jones et al., 2007). Lastly, the increase in delta power in almost 

all recorded brain areas during the peri-movement period may be related to an increase 

in concentration during the task (Harmony, 2013). In general, the relative timing of 

increases and decreases in oscillatory power relative to movement provides insight into how 

oscillations might travel between brain regions and consequently how information might 

flow.

Our results also quantify the amount of movement specialization in anatomically distinct 

human brain structures. We observed a normal distribution of classification accuracies across 

sEEG contacts rather than a bimodal distribution; this implies that the brain structures 

in which the contacts were implanted exist on a spectrum of movement-relatedness and 

so cannot be well-categorized as either movement-related or non-movement related. For 

contacts with different above-chance classification accuracies, these differences are not 

likely to be attributable to differences in environmental noise in the setup since that 

should be relatively similar for contacts in the same recording, nor the performance of 

the classifier since the same classifier was used and so likely learned each classification 

at a similar rate. Previous work has shown that, at a cellular level, stable sequences of 

activity are observed during simple motor tasks (Recanatesi et al., 2022) so it seems 

unlikely that different patterns of motor network activation occurred on each trial. Thus, 

the more likely explanation is that there were different amounts of movement-related signal 

relative to movement-unrelated signal in different brain areas based on the proportion of the 

population of neurons with activity modulated by movement recorded by that contact. In 

that case, the non-movement related neurons sampled by a contact could have been more 

active on some trials, overwhelming the signal of movement-related neurons and causing 

the classifier to fail on those trials. Thus, this study provides evidence that movement 

neural circuitry is distributed such that there is a continuum from relatively homogenous 
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sensorimotor-dominated areas, like primary motor cortex, to areas where only a minority of 

neurons are modulated by movement. However, the distribution of classification accuracies 

was skewed positively, meaning that there are areas, which were able to be classified 

with very high accuracy, where there is relatively little non-movement-related neural signal 

that would cause classifications to fail. Thus, these areas indicate that movement neural 

circuitry is likely not evenly distributed throughout the brain, rather that some brain areas are 

specialized to control movement-related behaviors.

Lastly, this analysis was aligned to the keypress movement so, since patients had different 

response times on every trial, movement-unrelated neural activity evoked by the task (e.g. 

visual processing of the cue) would have been out-of-phase. Consequently, the oscillatory 

patterns important for classification were likely to be biased towards movement. Figure 11 

shows that the spectral features important for classifying sEEG data time-locked to the go 

cue were more temporally smeared than for response-locked data (e.g. pre-movement beta). 

The time-course of the spectral features was therefore consistent with occurring just before 

and locked to responses. Since the spectral features for the response-locked sEEG data 

were immediately proceeding, during, and after the response and well localized in time, the 

most parsimonious explanation is that they are primarily related to movement, especially for 

such a simple task. However, other processes undoubtedly contribute and, as is typical in 

psychomotor tasks, the interpretation of the results is likely confounded to some extent by 

higher-order cognitive processes.

Considerations of sEEG Classification using a Support Vector Machine

With only eight patients, we were able to replicate some of the most widely-reported 

oscillatory patterns from ECoG and scalp EEG, which is indicative of the extensive 

research potential of sEEG, but, at the same time, our conclusions are based on sparse 

and idiosyncratic brain coverage depending on clinical needs for diagnosing epileptogenic 

zones. Stereo-EEG samples both deeper cortical structures than ECoG as well as including 

subcortical brain regions. It also can also record from white matter, and from gray 

matter without interference from pia and arachnoid mater, which can reduce ECoG signal 

amplitude relative to sEEG (Avanzini et al., 2016). However, sEEG samples a large range 

of brain networks that perform many different functions, compared to relatively contiguous 

sampling of gyral surfaces by ECoG. This information must be combined across patients, 

which we did by comparing contact-level results rather than comparing at patient-level as 

has been done in previous studies (Breault et al., 2019) since comparisons across patients 

are confounded by each patient having a different sEEG montage. One potential issue of 

this approach is that each contact must have a reference and so depends on other recordings 

of electrical potential from the patient. We used an average reference which allowed us to 

study the activity at an individual channel (compared to a bipolar referencing scheme where 

activity is localized between two contacts) but the recording from each contact was therefore 

dependent on the other contacts in the sEEG recording montage which were unique to 

every patient. However, with over 100 channels per montage, the average reference is likely 

to be stable and reproducible given a similar sized montage. All of the patients in this 

study had similar power spectral density of their sEEG data, which supports this claim, 

as does a previous study on referencing schemes which shows that the average reference 
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is comparable to low-variance reference scheme (Uher et al., 2020). One potential issue 

with an average reference is the introduction of an event-related potential from the average 

reference. When this analysis was rerun with a bipolar referencing scheme, a similar number 

of contacts had significant classifications relative to the null distribution, which is evidence 

that this is not the case. Overall, sEEG is a promising avenue of inquiry for studying whole-

brain oscillatory patterns so long as its unique limitations are considered and addressed.

We chose to account for the challenges of analyzing sEEG data by validating a machine 

learning approach with frequentist statistics. We classified sEEG spectrograms during 

movement with an SVM because of its interpretability; the SVM coefficients allowed us to 

determine which oscillations are related to movement and whether they increase or decrease 

in power. This came at the cost of classification accuracy; a more complex algorithm could 

have fit the data better. Future work may use more powerful machine learning approaches 

which will likely achieve better accuracies but may be less interpretable. Another issue with 

the SVM approach is that testing each frequency of oscillation at each time point of the 

epoch surrounding the movement to see if it differs from baseline suffers from multiple 

comparisons. We addressed this using cluster permutations which was ideal for comparison 

because it has been validated by simulations and is widely used in electrophysiology 

research (Maris & Oostenveld, 2007; Pernet et al., 2015). Cluster permutation testing 

on its own, however, cannot account for the more complex, subthreshold effects that are 

accessible to an SVM classifier and machine learning approaches in general. Additionally, 

since both the cluster permutation analysis and the PCA SVM analysis are stochastic, with 

randomness introduced during the permutations and the fitting of both principal components 

and the SVM respectively, convergent results provide evidence that results are robust and 

reproducible. A third issue with using an SVM is overfitting which can cause failures in 

replication. This was accounted for by using a test-training split; the classifier learned on 

separate data than was used to quantify its accuracy, allowing more complex patterns to be 

determined based on the training data while still being repeatable. The rationale here is that, 

if the classifier depends on idiosyncrasies in training data, it will not perform well on the 

testing data. Thus, results from classifiers that perform well on unseen data are likely to 

be generalizable to similar data. Finally, the PCA SVM analysis provides a classification 

whereas the cluster permutation analysis does not. Thus, depending on the goal, one may 

be preferable over the other. In summary, using an SVM allowed us to determine which 

oscillatory patterns related to movement in a way that is interpretable, and we validated 

this analysis with the commonly-used CSP and cluster permutation methods to ensure 

reproducibility.

Limitations

Our study had a relatively small sample size of eight patients. The sample is a unique patient 

population for which a sample of eight is not atypical. Nevertheless, the small number of 

patients and consequent limited spatial coverage is a major limitation of sEEG and this study 

in particular. Additionally, the extent of neural reorganization due to processes compensating 

for epileptic brain tissue or previous neurosurgical resection is not well known. The patients 

were able to perform this behavioral task relatively well and do not have major motor 

deficits. This may reflect a lack of significant reorganization but reorganization is possible. 
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This needs to be considered with any sEEG study in epilepsy. However, since distributed 

activity during movement has also been observed in animal models (Steinmetz et al., 2019), 

it is reasonable to suspect similar results in humans are not driven by reorganization due to 

disease alone. Epileptic activity has not been observed to compromise the functionality of 

the brain tissue involved (Rossini et al., 2017), further supporting this claim.

Another limitation of our manuscript is that, although our task was a relatively simple 

motor task, there were undoubtedly other cognitive processes engaged during the button 

press responses - for instance visual processing, attention, and motor planning. Some of the 

contributions to each are delineated by comparing cue and movement-locked results, but 

there remains ambiguity on exactly what specific processes contribute to which components 

of the distributed activation evident in our results. Additionally, since the movements were 

simple button presses, we were unable to decode more refined elements of movement (for 

instance reach direction, movement velocity, etc.). This is another limitation inherent in our 

task and experimental design.

Future Directions and Applications

Our results suggest further avenues of inquiry related to the use of sEEG data to decode 

movement brain networks. An immediate direction of future study would be to place 

microgrids, capable of isolating single or at least many fewer neurons, on accessible areas 

of cortex implicated in movement to understand more about the oscillatory patterns in the 

area and their functional significance. Another future direction would be to use spectral 

connectivity for classification instead of spectrograms. This would test whether brain areas 

that have the same oscillatory patterns are part of the same neural circuit or whether 

there are multiple independent circuits that operate at the same oscillatory frequencies. 

Furthermore, connectivity analysis would yield functionally connected networks that would 

not be constrained by the qualitative labeling of spectral features in this current study. In 

this study, although each contact had its own unique classification pattern, the contacts 

were grouped based on shared spectral characteristics that only represented a subset, 

albeit an important subset for classification, of above-chance time-frequency points. Thus, 

one especially promising future extension of this work is to characterize the functional 

connectivity of oscillatory patterns related to movement.

The results from this study have several immediate applications. Patients with motor deficits 

may undergo invasive surgery to restore function with a brain-computer interface (BCI). 

Since ECoG has not yet been able to be used to fully restore movement (Miller et al., 

2020) and since sEEG uses relatively small 2.4 mm bolt holes, which are less invasive 

than the craniotomy required for ECoG, improving BCI control by adding sEEG to sample 

different motor network nodes is an option that could be considered. Our results are also 

proof-of-concept that intraoperative functional brain mapping could be more efficient with 

this type of machine learning classification. Conventional passive (non-stimulation) mapping 

of functionally significant motor areas uses modulation of a predefined frequency band, 

commonly gamma (Kreidenhuber et al., 2019). Using an SVM or similar spectrogram-based 

classification would be more accurate because it includes a wider range of frequencies, 

including and extending beyond the predefined band.
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Conclusion

Overall, we identified distinct time-frequency patterns with high-accuracy classifications 

using electrophysiological recordings of movement. Contacts with accurate classification are 

more widespread in anatomical location than previously described. The specific structural 

networks that communicate with these oscillations have yet to be fully determined but this 

characterization makes substantial progress toward that goal.
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Figure 1. 
a) The task schema is shown per trial. The diagram is to scale in time. A typical response 

time (RT) is shown in red. Gray vertical lines indicate different time lengths used for that 

event to make trials unpredictable for the participant. Trials were included if the response 

was correct and the response time was within the cue period. b) A schematic of the SVM 

analysis process is shown. This procedure is repeated for each sEEG contact individually. 

First (labeled 1), the epochs are created for each of the shaded time areas in a. Example data 

from the response epoch is shown. Then (2), each epoch is decomposed into time-frequency 

(TFR) space. Next, principal component analysis (PCA) is applied to the spectrograms for 

training trials so each trial can be represented by weights per component (3). The explained 

variance (EV) of the components for this example is shown in the bar plot beneath the 

PCA weights per component. Next, a support vector machine (SVM) is fit to the PCA 

weights per trial. The SVM coefficients are shown both in relation to the component weights 

(4 top) and multiplied by the principal components and summed, projecting back into 

the time-frequency domain (4 bottom). Lastly, the coefficients are multiplied and summed 

with the component weights from each test trial and classified based on which category 

(movement or rest) the output is closer to. The linear decision boundary for the first two 

principal components out of the 50 used is shown for this example (5). c) The first three 

eigenvector spectrograms from the PCA decomposition for this example contact. Each 

principal component is a matrix of time-frequency loadings. Each trial was represented as a 

vector of weights, one for each principal component, that the SVM used to learn a decision 

boundary. The dimensionally-reduced, time-frequency representation of each trial can be 

visualized as a sum of these eigenvector spectrograms weighted by the vector of principal 

component weights for that trial. The SVM coefficients representing the optimal separation 

between response and inter-trial spectrograms are represented this way in step 4 (bottom) in 

b which creates a response-spectrogram-matching-template.
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Figure 2. 
Surgical lead placements for the eight patients shown in a 3D rendering from three 

perspectives. Coverage was generally biased towards unilaterality and temporal lobe, but 

a wide range of brain areas were covered.
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Figure 3. 
A histogram of the classification accuracy for all electrode contacts across all patients for the 

SVM classification. Contacts that are significant at an alpha=0.01 level relative to the null 

distribution pooled across all contacts are shown in red, those that are not are shown in blue. 

The mean of the total distribution of scores is indicated with a black line, compared to the 

mean of the null distribution which is shown in gray (paired t-test comparing differences in 

means between test and null data, p < 0.001, df = 924). Note that each patient had a different 

number of trials that were used as shown in Table 1 (see Methods for explanation of missing 

trials) but the classification accuracies are pooled since accuracy is a normalized metric.
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Figure 4. 
Electrode contacts which had spectrograms that were classified with accuracies significant 

at an alpha=0.01 level by the SVM are colored to indicate accuracy per contact (a) and 

averaged per region (b). The number of contacts implanted in each brain region across all 

patients for this study is shown in c and d, in tabular format. The highest accuracy was 

in sensorimotor regions followed by frontal areas with notably lower accuracy in temporal 

contacts. Regions without data are not shown. The central sulcus is drawn in red to aid in 

orienting the brain image.
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Figure 5. 
The classification accuracies of the SVM are shown for anatomical labels using the 

Desikan-Killiany atlas parcellation of the individual patient anatomy. Note that 48 contacts 

were unlabelled and are not shown. Some contacts were unlabelled because Freesurfer’s 

automated labeling process failed near lesions from previous epilepsy surgeries, contacts 

were above the pial surface (this happened when the deepest contact reached its target when 

the most superficial contact was still above the pial surface), or limited resolution of the MR 

and imperfect labeling process could not assign a label.
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Figure 6. 
SVM and CSP classifier accuracies are shown on the left and right respectively of each 

pair of plots per patient. On the left, channels with significant (alpha=0.01) classifications 

relative to the null distribution for that patient are plotted in red, over a density plot of 

the distribution. On the right is the classification accuracy using the spatial pattern at each 

time-frequency bin. Note that patients with more significant classification channels (shown 

in red on the left) had greater CSP accuracies (darker red on the right). A linear regression 

between the mean scores for each was significant (r=0.966, p<0.001).
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Figure 7. 
Electrode contacts with the highest classification accuracies: SVM coefficients from 

spectrogram classification are shown on the left with red contours from the cluster 

permutation analysis, and the anatomical location is on the right with the contact colored 

darker than the rest of the electrode. Note that LPM 1 is located in white matter and only 

gray matter structures are shown.
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Figure 8. 
Summary feature maps of all the contacts with significant SVM classifications are shown. 

The SVM coefficient matrices (left column) corresponded nearly perfectly to the cluster 

permutation analysis (right column) that was performed independently for validation. Time-

frequency points without any significant SVM coefficients or clusters are shown in white. 

In the left column are the SVM coefficients that are greater in absolute value than 99% 

of the null distribution of coefficients, and in the right column are the clusters that were 

significant at an alpha=0.01 level. a and b) The proportion of significant SVM coefficients 

(a) and clusters (b); more time-frequency points tended to be significant for pre-response 

alpha, post-response delta or evoked potentials. c and d) The proportion of each of the 

significant SVM coefficients (c) and clusters (d) that were positive; pre-response beta 

coefficients tended to be negative, post-response beta and gamma tended to be positive 
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and all delta tended to be positive very strongly. Yellow indicates that more significant 

time-frequency coefficients or clusters increased during movement, blue indicates that more 

decreased during movement compared to the inter-trial period and green indicates that an 

equal amount increased and decreased significantly in different channels. e and f) The 

average classification accuracy for significant SVM coefficients (e) and clusters (f); beta and 

gamma oscillations tended to have higher classification accuracies.
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Figure 9. 
Anatomical locations of spectral features are shown on the template brain. In the first 

column, the time-frequency period in consideration is surrounded by a red box over a cluster 

permutation analysis feature map (Figure 8), except for the event-related potential for which 

both the proportion of significant clusters (blue) and the proportion of positive significant 

clusters (black) are shown in a time plot for ease of visualization. The choice of which time-

frequency areas to consider was made based on the proportion of significant time-frequency 

points feature map and the proportion of positive clusters feature map, but only the feature 
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map that shows the pattern more clearly is shown. The second column has histograms of 

the proportion of the selected area in a significant cluster for each contact, with −1 being 

all points in a significant negative cluster and +1 being all points in a significant positive 

cluster. The negative tertile is colored blue and the positive tertile is colored yellow. Note 

that the vast majority of contacts are near zero so the y-axis is truncated to show the rest of 

the distribution. The final three columns show the anatomical locations of contacts with each 

feature (i.e. in the negative and positive tertiles), warped to a template brain.
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Figure 10. 
a) The Deskian-Killiany atlas labels, based on the individual patient’s brain anatomy, with 

significant-accuracy SVM classifications that used that oscillatory pattern as determined in 

Figure 9. Note that up arrows preceding the feature name indicate that that feature increased 

during movement period and down arrows indicate the opposite. b) The locations of the 

labels used in (a) on the template atlas with the colors matching the colors of the names 

of the brain regions of interest on the y-axis of (a). Note that the atlas labels are sorted 
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clockwise by their angle in the sagittal plane, starting with frontal areas and wrapping 

around to temporal areas.
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Figure 11. 
Cluster permutation results are shown for spectrogram data time-locked to the go cue (left 

column) and time-locked to the response (right column). These cluster permutation results 

were similar but the time-frequencies that were important to the classification for a greater 

number of contacts had greater spread in time for the go cue (a) compared to the response 

(b). as evidenced by the yellow areas in (a) being elongated in the time dimension compared 

to those in (b). This suggests that these signatures are more response-related than related to 

a cognitive process evoked by the go signal. Note the go cue is the presentation of the right 

or left arrow and the response-locked data was analyzed previously and is reproduced from 

Figure 8 (right column).
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Table 1.

Patient demographic information and task performance information.

ID Age Sex Hand 
Used

Response 
Time (s)

Task 
Accuracy 
(Missed 
trials)

Events 
Used

Diagnosis of 
Origin

Surgery Based 
on sEEG

Notes

Subject 
1

44 M R 0.447 +/− 
0.118

98.6% (0) 202 Left entorhinal 
cortex

None Photodiode 
displaced for one 

block Previous left 
amygdalohippoca 

mpectomy

Subject 
2

47 F L 0.858 +/− 
0.245

100.0% (1) 280 Bilateral middle 
and superior 
temporal gyri

Bilateral 
anterior 
thalamic 

nucleus DBS

Previous right 
anterior temporal 

lobectomy

Subject 
5

33 F R 1.373 +/− 
0.624

99.3% (12) 291 Bilateral temporal 
pole, amygdala, 
left orbitofrontal

Ablation of 
right frontal 

FCD and right 
temporal pole 
and bilateral 

anterior 
thalamic 

nucleus DBS

Frontal cortical 
dysplasia

Subject 
6

31 F R 0.401 +/− 
0.058

99.0% (0) 298 No seizures Right anterior 
temporal 

lobectomy

Subject 
9

39 M R 0.558 +/− 
0.266

97.9% (8) 286 No seizures None

Subject 
10

31 F R 0.615 +/− 
0.276

94.2% (7) 289 Left hippocampus, 
amygdala, 

parahippoca mpal 
gyrus

Left amygdalo-
hippocampect 

omy

Posterior fossa 
arachnoid cyst and 

pseudomeningoc ele

Subject 
11

30 M L 0.595 +/− 
0.485

100.0% (0) 134 Left amygdala and 
hippocampus

RNS in bilateral 
hippocampus

Photodiode 
displaced for two 

blocks

Subject 
12

26 M R 0.434 +/− 
0.118

98.3% (0) 279 Temporalfrontal 
neocortical and 
mesial regions

None Previous surgical 
resection of right 

temporal lobe 
Cortical dysplasia 

left fusiform / 
parahippocampal 

gyrus

Abbreviations: deep brain stimulation (DBS), responsive neurostimulation (RNS), focal cortical dysplasia (FCD).
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