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Abstract
Different statistical methods are used in various fields to qualify processes and products, especially in emerging technologies like Additive Manufac-
turing (AM) or 3D printing. Since several statistical methods are being employed to ensure quality production of the 3D-printed parts, an overview of 
these methods used in 3D printing for different purposes is presented in this paper. The advantages and challenges, to understanding the importance 
it brings for design and testing optimization of 3D-printed parts are also discussed. The application of different metrology methods is also summarized 
to guide future researchers in producing dimensionally-accurate and good-quality 3D-printed parts. This review paper shows that the Taguchi Meth-
odology is the commonly-used statistical tool in optimizing mechanical properties of the 3D-printed parts, followed by Weibull Analysis and Factorial 
Design. In addition, key areas such as Artificial Intelligence (AI), Machine Learning (ML), Finite Element Analysis (FEA), and Simulation require more 
research for improved 3D-printed part qualities for specific purposes. Future perspectives are also discussed, including other methods that can help 
further improve the overall quality of the 3D printing process from designing to manufacturing.

Introduction
Statistics as a branch of science is mainly concerned with 
collecting, organizing, summarizing, and analyzing data 
and generating conclusions, making the data set more 
understandable. It also aids in making intelligent judg-
ments and informed decisions in any uncertainty and vari-
ation.[1] With this, the widespread use of different statisti-
cal methods has been practiced in various fields such as 
medicine,[2,3] aerospace,[4] automotive.[5] Statistical meth-
ods are also essential in planning, designing, processing, 
testing, and assessing projects in the abovementioned 
fields, especially for research and development purposes. 
Emerging technologies also rely upon the results of the 
applied statistical methods.[6] Additive Manufacturing 
or 3D printing is one of the production technology that 
needs to employ various statistical methods to ensure 

the production of quality products.[2–12] This technology 
creates a 3D-printed object from a digital 3D model by 
adding materials layer-by-layer.[8–12] Over the years, dif-
ferent statistical methods such as Design of Experiment 
(DOE), Taguchi methodology,[7,11,13] and Weibull[14–21] 
were also applied in numerous studies concerning the 
designing, pre-processing, post-processing, and testing 
of the 3D-printed polymer parts.

Because many research studies use statistical methods and 
analyses in 3D printing optimization, choosing which statistical 
tool to utilize for a certain application has become challenging. 
This study, therefore, aims to collect, summarize and synthesize 
relevant literature regarding the use of different statistical methods 
in assessing the quality of 3D-printed polymer parts. Moreover, 
this study also aims to identify which statistical methods are being 
employed for the qualification of 3D-printed parts, the advan-
tages, and disadvantages of using different statistical methods and 
to understand the importance of using other statistical methods 
in designing and testing 3D-printed parts. This paper only briefly 
discusses simple statistical treatments and those rarely found in 
the literature. This study also explores the possibility of applying 
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advanced statistical methods and simulation models in data analy-
sis to design and test 3D-printed polymer parts.

The gathering of relevant information related to the sta-
tistical methods used in 3D printing polymer materials was 
done. A keyword search was used in scientific journal data-
bases and other online sources. The following keywords 
were used for the examination as [3D printing OR AM AND 
statistical methods (DOE, Taguchi Methodology, Weibull) 
AND polymers], [3D printing OR AM AND statistical 
methods AND CAD], [3D printing OR AM AND statisti-
cal methods AND methods of metrology], [3D printing OR 
AM AND statistical methods AND mechanical testing AND 
polymer], [3D printing OR AM AND Artificial Intelligence 
AND Machine Learning], and [3D printing OR AM AND 
Finite Element Analysis]. Other more specific keywords were 
used. Initial scanning of obtained references was performed. 
Only relevant papers related to the statistical methods, tools, 
and techniques that can help design and test the 3D-printed 
polymer materials were included, and irrelevant documents 
were excluded. Lastly, selected papers were analyzed and 
synthesized. A detailed process flowchart of the literature 
search is shown in Fig. 1 below.

Methods of statistical analysis
DOE (Factorial Design and Taguchi 
Methodology)
DOE or Factorial Design was introduced by R.A. Fisher in the 
1920s as a powerful statistical technique to study the effect of 
multiple variables simultaneously. This includes different fac-
torial levels, such as three-level, four-level, full factorial, and 
fractional factorial. Early applications include finding out the 
amount of sunshine, fertilizer, water, necessary to harvest the 
best crop. Eventually, further development for this statistical 
technique has taken place in the academic setting, but it also 
aided the advancement of various applications in production. 
Genichi Taguchi, a Japanese researcher, further studied the 
DOE techniques. He made this experimental technique more 
user-friendly, and its application improved the quality of a 
manufactured product. This standardized technique or method, 
known as the Taguchi Method or Taguchi Approach, was intro-
duced in the early 1980s in the USA. Engineers and research-
ers consider this the most effective quality building tool in all 
manufacturing activities. In addition, this method is economical 
as it significantly minimizes the time to conduct experimental 
investigations. DOE using the Taguchi approach is highly effec-
tive for optimizing product and process designs and studying 

Figure 1.   Process flow of the literature search.
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the effects of multiple factors based on performance. The influ-
ence of the individual elements on each performance can also 
be checked using this technique.[1,22]

Meticulous preparation, thorough experiment layout, and 
skilled interpretation of the results are necessary for apply-
ing the DOE. Genichi Taguchi’s years of investigation and 
testing have led to this conclusion and developed the stand-
ardized methodologies for each of the DOE application steps 
outlined below. As a result, DOE using Taguchi Approach 
has become a far more appealing tool for engineers and 
scientists.[22]

•	 Experiment planning and problem formulation depend on 
modern work practices that emphasize teamwork. Projects 
are more successful when everyone agrees on the experi-
mental aims and parameters.

•	 The number of samples to be evaluated and the experi-
ment guidelines are defined. The experiment layout’s size 
is standardized for a given number of factors and levels, 
emphasizing the cost and magnitude of the tests. To limit 
variation, uncontrollable factors are explicitly treated.

•	 Data Analysis uses standardized steps for analysis and a 
standard procedure for determining the optimum, and sig-
nificance test and pooling guidelines are defined.

•	 The term "error" is defined clearly in the interpretation of 
results. There is a discrete indicator regarding confirmation 
of the results and the ability to put a monetary value on 
improvements.

•	 The overall advantage of using Taguchi in DOE aims to 
increase quality, which can be defined as performance con-
sistency and reduction of variation in results. This can be 
accomplished by bringing the average performance closer 
to the target and minimizing variations around the mark. 
The traditional DOE does not precisely address quality. The 
Taguchi experiment design technique is primarily motivated 
by reducing variation. As a result, this technique focuses on 
achieving the desired quality targets.

The standardized technique of DOE using the Taguchi 
Approach can be applied to various applications such as ana-
lytical simulation in the early stages of design, development 
testing, process development, manufacturing, and problem-
solving in all areas of manufacturing and production.[1,22–30]

Additive Manufacturing (AM), also known as 3D printing, 
is a technology that builds a 3D-printed object layer-by-layer 
from a 3D-printed model. Nowadays, different types of 3D 
printing technologies are available in the market, creating a 
wide range of opportunities to make customizable and flexible 

Figure 2.   Response surface plots of each two-parameter combination for different properties using Factorial Design.[32]
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production of various 3D-printed objects.[4,5] One factor that 
needs to be considered is the quality in achieving the desired 
property of each 3D-printed object. To ensure this, other 
research groups have carefully studied different variables in 
printing parameters. DOE and Taguchi Methods are two of the 
various statistical techniques used to identify the optimum 3D 
printing parameters in different types of 3D printing technolo-
gies following the desired property for 3D-printed products.

In a study by Khalid et al., they used Taguchi’s DOE to 
investigate the printing parameters of AM technology for sus-
tainability to minimize process energy and material consump-
tion. Using the Fused Deposition Modelling (FDM) technol-
ogy, they also identified the printing parameters as printing 
layer height, the number of shells, material infilling percentage, 
infilling type, and building orientation.[31]

Furthermore, Durão et al. investigated and optimized the 
AM technology’s material consumption, manufacturing time, 
and dimensional accuracy using DOE. They identified that 
the print speed and the number of contours were the critical 
factors for a good quality 3D-printed part[32] (Fig. 2). Using 
Taguchi L25 orthogonal array, Fotovvati et al. analyzed the 
significance and contribution of the processing parameters for a 
Laser-Based Powder Bed Fusion (L-PBF) process. A fractional 
factorial DOE was also used for the response surface method 
(RSM), optimizing the L-PBF processing parameters.[33]

Fused Filament Fabrication (FFF) is a type of AM tech-
nology widely used to produce complex geometry parts. The 
Taguchi methodology was used to design the experiment by 
Shakeri et al. to investigate the effect of the different printing 
parameters, such as chamber temperature, printing tempera-
ture, layer thickness, and print speed. They used ANOVA and 
Taguchi’s S/N ratio to identify the optimal printing parameters 
to improve the geometrical accuracy and mechanical behav-
ior of an FFF 3D-printed part.[34] The Taguchi S/N ratio was 
employed by Shakeri et al. to optimize the FFF process param-
eters to improve shape deviations, cylindricity, and circularity 
of 3D-printed items. Their study concluded that the optimal 
FFF process parameters for the shape deviations should have a 
hexagonal infill pattern, 5 mm thickness, a wall layer of 2, and 
a layer height of 1.125 mm[35] (Fig. 3).

Weibull
The Weibull distribution is a continuous probability distribu-
tion named after Waloddi Weibull. It is generally used to model 
failure times, analyze life data, and assess product reliability.[21] 
It is also being used to describe the variability in the strength of 
materials. Moreover, it is commonly used to measure ceramic 
materials’ probability of failure or mechanical reliability. The 
Weibull modulus could indicate a material’s stability and struc-
tural homogeneity.[19,35] A higher value of the Weibull modu-
lus indicates a narrower strength distribution and may be con-
cluded to be a more reliable material.[36]

The probability of failure (reliability) occurring from 
critical flaws in ceramic materials may be quantified by the 

Weibull probability function given as a cumulative distribution 
equation[36]:

where Pf(σ)—probability of failure at stress (σ), σo—Weibull 
scale parameter—the stress value where the probability of fail-
ure is at a certain percentage, σt—threshold stress—no failure 
occurs in the material below this value, maybe zero for ceram-
ics, m—Weibull modulus.

Weibull distribution is widely used to analyze the mechani-
cal properties of conventionally manufactured parts. For exam-
ple, Da Costa et al. investigated the dependence of the tensile 
strength of culm-stripped bamboo fibers on their diameter using 
Weibull analysis. Results showed that the strength is inversely 
correlated with the fiber diameter, i.e., the fibers with smaller 
diameters have more significant tensile strengths.[17] Schilling 
et al. evaluated the mechanical properties of soy protein that 
were molded by compression with different concentrations of 
glycerin plasticizer. Based on Weibull statistics analysis, the 
samples demonstrated stiff and brittle behavior and good tensile 
strength reliability.[37] Boyce et al. tested over 1000 identical 
tensile bars. Results showed substantial variability in mechani-
cal properties within a single build and more significant vari-
ability between builds. They noted that these findings on vari-
ability might not be possible by testing only a few samples, 
and a probabilistic (or worst-case threshold) may be needed 
to prevent unexpected failures during the service of parts.[38]

Juhar et al., via the Weibull distribution, studied the plastic 
deformation of fibrous polymers (polypropylene fibers, pan-
based carbon fibers, and Kevlar fibers). They observed that the 
strength, Young’s modulus, and strain at break of the tested 
fibers showed dependence on the size effect. They further 
concluded that the Weibull model is appropriate for statisti-
cally representing fibrous polymers.[14] (Fig. 4) Additionally, 
Naito investigated the tensile behavior, fracture behavior, 
and Weibull Modulus of High-Performance Polymer Fibers, 

Pf (σ ) = 1− exp

[

−(σ − σt)
m

σ0

]

Figure 3.   Signal-to-noise ratio of cylindricity of polyamide 6 
3D-printed parts.[35]
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including Polyethylene, Polyacrylate, and Polylactic acid 
(PLA). He found that the Weibull modulus decreases with 
increasing tensile strength, tensile modulus, and inverse of the 
failure strain.[16] Ouamomar et al. investigated the mechani-
cal properties of industrial polymers via Weibull statistical 
analysis to extract Weibull elements and define the reliability 
theory. Their insights regarding Weibull parameters, such as 
the Weibull modulus, may determine the material’s homogene-
ity/heterogeneity of defect distribution. Moreover, the Weibull 
distribution defines the survival probability and damage and 
thus may be used for timely predictive maintenance of parts.[18]

In 3D printing, the Weibull analysis is also employed in dif-
ferent engineering materials. Revilla-León et al. compared the 
flexural strength and Weibull characteristics of SLA 3D-printed 
and milled zirconia using 3-point flexural tests. They calculated 
the two-parameter Weibull distribution values, including the 
Weibull modulus, scale, and shape. The manufacturing and 
mastication simulation (aging procedures) significantly affected 
the measured flexural strength and the interaction between 
these two procedures. Moreover, the mastication simulation 
significantly reduces the flexural strength obtained for 3D print-
ing and subtractive manufacturing. Lastly, the Weibull modulus 
showed considerably higher values for the milled specimens 
than those produced via 3D printing.[15] Byun et al. studied 
the mechanical properties of Silicon Carbide (SiC) created 
using binder jetting. Samples with two or three orientations 

were subjected to mechanical loading and obtained the equi-
axial flexural failure strength and elastic constants. Similar 
flexural failure strength results were observed from Weibull 
distributions regardless of different orientations.[39] Feilden 
et al. explored the use of Robocasting in the production of 
structural parts. The authors formulated hydrogel-based inks 
for the robocasting of ceramic materials. Specifically, they 
investigated 3D-printed Aluminum Oxide (Al2O3) and Silicon 
Carbide (SiC) parts. Robocasting is a process where “green” 
objects are produced by extruding a paste (ink) through a noz-
zle/extruder controlled by the 3D printing software based on 
the CAD model, and the parts are built layer-by-layer, similar 
to FFF. But unlike FFF, where the fusion of layers results from 
solidification, the extruded material in robocasting impinges on 
the preceding layer and merges with it because of surface ten-
sion. They observed anisotropic values in strength and Weibull 
modulus due to defects from the printing process, limiting the 
strength of the parts depending on the printing orientation.[40]

Hu et al. investigated carbon fiber damage during FDM 3D 
printing of polymer matrix laminates. They specifically studied 
the two-parameter Weibull strength distribution of the carbon 
fiber in its original and printed conditions. They investigated 
the damage caused to the continuous carbon fibers during the 
3D printing process to understand the reason for the decay and 
found that the FDM process significantly degrades the strength 
of the carbon fibers.[41] Additionally, Wang et al. investigated 

Figure 4.   Weibull moduli of CNC and AM Groups.[14]
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the material stiffness of fiber-reinforced composites produced 
via Large Area Additive Manufacturing (LAAM). They incor-
porated the fiber aspect ratio distribution to predict the elas-
tic properties of LAAM-produced polymer composite beads. 
The fiber length distribution of carbon fiber-reinforced ABS 
composite beads has been measured using high-resolution opti-
cal microscopy. Weibull distribution was used to describe the 
measured data statistically. To calculate the variability of the 
elastic properties of the composite bead, the fitted probabil-
ity density function was incorporated into a fiber orientation 
homogenization process. The elastic modulus was calculated 
using their proposed homogenization approach, and the meas-
ured fiber aspect ratio distribution was similar to previous 
reports.[42]

Moreover, Weibull analysis was also employed in inves-
tigating 3D-printed materials intended for medical purposes. 
Lu et al. used Digital Light Processing (DLP) as a fabrication 
technique for zirconia-based dental restorations. They studied 
the flexural strength of Yttria-stabilized Tetragonal Zirconia 
Polycrystal (Y-TZP) produced via DLP SLA 3D printing and 
subtractive manufacturing. They employed uniaxial (3-point 
bending) and biaxial (ring on a ring) tests and evaluated the 
results using Weibull distribution. They observed that the flex-
ural strength of DLP-fabricated samples was close to those 
of Y-TZP produced via subtractive manufacturing. However, 
they observed that the Weibull modulus of samples produced 
via DLP was lower than those made via subtractive manufac-
turing.[19] Roohani-Esfahani et al. designed and fabricated 
3D-printed scaffolds that are highly porous, anisotropic, 
glass–ceramic scaffolds with hexagonal architecture to repair 
bone defects. These scaffold designs may treat bone defects in 
maxillofacial, dental, and orthopedic applications. Under cyclic 
compression and flexural tests, the scaffold was observed to 
exhibit high fatigue resistance, relatively high flexural strength, 
and failure reliability compared with those scaffolds produced 
with conventional architecture. They used Weibull analysis to 
obtain the Weibull modulus and Weibull scale parameter.[36] 
Farzadi et al. investigated the effect of layer printing delay of 
50 ms, 100 ms, 300 ms, and 500 ms on the dimensional accu-
racy and mechanical properties of 3D-printed porous parts for 
bone tissue engineering. The researchers used Calcium Sulfate 
based powders to fabricate porous scaffolds (printing orienta-
tion: x-direction). A depowdering step followed the printing. 
Results show that the toughness, compressive strength, and tan-
gent modulus of samples printed with a delay of 300 ms have 
the highest values compared with other samples and have the 
highest dimensional accuracy. The calculated Weibull modulus 
of four samples is, correspondingly, S50 (1.262), S100 (1.117), 
S300 (1.738), and S500 (1.505). They concluded that higher 
values of the Weibull modulus mean that the material is more 
consistent and that defects are uniformly distributed throughout 
the entire volume.[43]

In food 3D printing applications, De Rossi et  al. used 
Weibull analysis to model microbial inactivation, microbial 
growth, and other degradation reactions. They investigated the 

effects of two (2) printing variables, namely flow level and 
print speed, on the printability of fruit-based formulation for 
the 3D-printed customized snacks. They observed that a higher 
amount of deposited materials (by increasing the flow level) 
increased the part’s total weight, volume, and side length and 
reduced its porosity fraction. Further, increasing the flow also 
increased the distribution of filament thickness. On the other 
hand, the print speed and flow may affect the pore diameter 
distribution. Additionally, the print speed affected the sam-
ples’ growth rate (in height), and the print speed and flow level 
affected the deposition rate of the formulation. Generally, the 
results demonstrated that the Weibull distribution model fits the 
experimental results.[44] At the same time, Huang 3D-printed 
two (2) hydrocolloids, namely xanthan gum and modified 
starch. He used a syringe extrusion system for this extrusion-
based room-temperature 3D printing. The Weibull distribution 
function was used to fit the obtained data from experimental 
and steady-state extrusion rates and the time required to reach 
steady-state.[45]

Computer‑aided design vs. 3D 
printing parameters
Computer-Aided Design (CAD) and Computer-Aided Manu-
facturing (CAM) were considered one field of specialization 
until these broke out into different names and manufacturing 
systems later in the 1950s.[46] That was during the era of 
traditional manufacturing that involved milling and other 
subtractive and integrated manufacturing methods. CAD 
became a necessary design tool in many areas, such as in-
network,[47] mechanical, and manufacturing designs,[48] 
requiring careful consideration of both the design model and 
the design outcomes based on that model. In other words, 
CAD is the most critical pre-manufacturing process that 
defines the model before its actual manufacturing, factoring 
in the geometry of the parts, orientations, and composition 
tuned around the specific parameters of the utilized manu-
facturing technology.[48]

CAD is a vital product design process in 3D printing, regard-
less of the 3D printing technology. Although 3D models can be 
designed through any CAD software that can produce a Stand-
ard Tessellation Language or STL, such as SolidWorks, many 
technologies only allow the use of their proprietary software 
bundled alongside the 3D printer itself that can optimize the 
generic 3D model design centered on the 3D-printer-specific 
parameters.[49–53] However, unlike traditionally-manufactured 
products where 3D models made in SolidWorks can take on 
simulations based on specific material properties, 3D mod-
els used for 3D printing can only take on the geometry of the 
design. The CAD is a design process that can only be optimized 
through the 3D model’s shape, orientations, and the number 
of parts for a particular 3D printing technology but not in 
terms of a CAD design containing material characteristics. It 
is because 3D printing requires a layer-by-layer manufacturing 
process. Hence additive manufacturing is contrary to traditional 
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manufacturing, which fabricates from and produces a mono-
lith of a material.[48] Thus, material characteristics matter and 
can only be embedded as relevant CAD properties for specific 
conventional manufacturing processes. With this challenge, 
3D printing requires CAD methodologies from the geometri-
cal design down to the material-level design considerations.

Several other challenges were articulated by Oropallo and 
Piegl (see Table I) that are implicated in CAD and 3D manu-
facturing processes, such as shape optimization, designing, pre-
processing, printing methodology, part orientation, and slicing 
(see Fig. 5), and multi-material printing. The effects of these 
challenges need to be accounted for in CAD and 3D printing 
parameters.[48] 

These challenges commonly manifest in the dimensional 
accuracy and mechanical properties of the 3D-printed parts. 
Thus, creating a 3D model with an accurate dimension the 
same as the CAD model must be emphasized, as well as ensur-
ing good quality 3D-printed parts thru testing its mechanical 
properties.

Methods of metrology
Creating some highly complex components and even assem-
blies is now possible with 3D printing. With infinite design 
freedom in 3D printing comes infinitely complex shapes to 
measure. Hence, there is often a big question about the dimen-
sional accuracy and qualities of these components and assem-
blies. Therefore, it puts new demands on how measurements 
and application of metrology are carried to components manu-
factured by 3D printing. Metrology involves establishing units, 
developing measurement protocols, and producing artifacts that 
act as measurement standards to allow traceability and meas-
urement analysis on uncertainties and accuracies.[54,55] Metrol-
ogy is used to gauge a part’s fit-for-purpose, which is deter-
mined by considering tolerance and functionality. It allows the 
manufacturing of complex parts while avoiding unnecessary 
scrap material and redundant processing time, improves energy 
efficiency and gives customers confidence in the product.

Figure  6 shows current metrology methods applied to 
3D-printed polymers. These methods have specific advan-
tages and disadvantages; therefore, thorough consideration 
is required before choosing which will be adopted. With so 
many developments coupled with an array of equipment manu-
facturers’ claims, it is often difficult to choose the optimum 
measuring instrument for a user. However, the non-destructive, 
contactless, real-time, in situ measurements and accurate, less 
time- and cost-consuming methods that are consistent and facil-
itate process control are more favorable.[54] The following sec-
tions discuss some of these state-of-the-art metrology methods.

Measurement of physical properties 
of 3D‑printed polymers
Dimensional metrology was defined by Vora et al. as concerned 
with geometric features, particularly in the measurement of 
size, distance, angle, form, or coordinates. Furthermore, they 

emphasized its critical role in monitoring and controlling 
manufacturing processes where contacts between mechanical 
components create drifts in geometry. They considered linear, 
angular, and comparators under this method. The dimensional 
metrology method is selected or utilized based on accuracy, 
precision of measurements, quickness, and ease of use. See 
Fig. 6 for some examples of each measurement method.

When assembling parts, the properties of their mating sur-
faces significantly impact the successful manufacturing of 
the whole system in terms of friction, stress, corrosion, aes-
thetics, reliability, etc. Therefore, the application of Surface 
metrology or measurement of the variation within the surface 
between two points on the same surface, surface character-
istics such as surface finish, topography, or roughness, is 
essential. Surface irregularities such as roughness, waviness, 
lay, flaws, surface texture, and form error describe surface 
metrology. When these surface irregularities are measured, 
they are assigned a numerical value. Some of the popular 
representations of surface roughness are the 10-point height 
average (Rz), centerline average (Ra), and Root Mean square 
(Rq) value. See Fig. 6 for examples of surface metrology 
methods.

On the other hand, Coordinate metrology is the most 
advanced method to measure three-dimensional coordinate 
information.[54–56] The coordinates, location, or position infor-
mation is essential for three-dimensional measurements. The 
current ability to manufacture parts with the highest precision 
is only possible due to Coordinate metrology instruments. 
Advancements in electronics, mechanics, mechatronics, optics, 
and computer science have directly contributed to the develop-
ment of coordinate metrology systems that use dimensional, 
optical, and imaging metrology based on modern contact or 
contactless systems (visual) and modern multi-sensor systems. 
Contactless coordinate metrology generally provides high pre-
cision and accuracy in measurements, but the systems are more 
expensive, and measurements are time-consuming. Optical or 
contactless coordinate metrology is becoming more popular, 
offering fast measurements that are inaccurate. Coordinate 
metrology techniques and equipment involving Coordinate 
measuring machines (CMMs), multilateration optical GPS, 
X-ray computed tomography, automated inspections, machine 
visions, and magnetic resonance imaging.

Geometrical dimensioning and tolerances (GD&T) refer to 
the information on manufacturing variables or characteristics 
such as straightness, flatness, squareness, roundness, paral-
lelism, cylindricity, and runout to evaluate parts and process 
capabilities.[54] Dimensional, surface, and coordinate metrology 
techniques and equipment previously introduced can all be used 
to assess the geometrical dimensioning and tolerances. How-
ever, it is common to encounter coordinate metrology, espe-
cially when using coordinate measuring machines in GD&T 
characterization.

One of the significant challenges in AM technology is the 
dimensional accuracy of the 3D-printed polymer materials 
since it is a clear indicator of how exactly a 3D-printed part 
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was manufactured and processed regarding the 3D CAD model. 
Along with dimension accuracy, tolerance is also essential due 
to the application of parts in assemblies.[57,58] Even though 
FDM has various advantages, only limited studies have been 
conducted about the dimensional accuracy of FDM/FFF printed 
parts and the impact of slicing parameters on them.[59–62] Here 
are some researches that studied the dimensional metrology of 
3D-printed parts. It was observed by Ali et al. that the accuracy 
of the measured dimension between ABS and PLA 3D-printed 
parts has no significant difference.[63] In addition, Dardzinska 
et al. used computed tomography (CT) and a 3D scanner to 
measure the dimensional accuracy of 3D-printed parts. They 
compared various 3D printing processes, including Polyjet, 
FDM, and others.[64]

Some researchers have also used more complex measure-
ment techniques. In a study conducted by Wang et al., surface 
metrology was considered. They created a process tool for 
changing the effects of parameters. The post-processing pro-
cedure shows a varying Surface quality result, with these vari-
ations attributed to manual or chemical changes in the mate-
rial.[65,66] Chohan et al. employed a study using the Taguchi L9 
orthogonal array; here, the specimen used is an Acrylonitrile 
Butadiene Styrene (ABS) FDM 3D-printed part. The param-
eters considered to study the surface roughness were infill 
pattern, nozzle temperature (°C), thickness measurement, and 
printing speed (mm/s). The Taguchi method helped determine 
that the print speed is the most influential printing parameter 
considering the surface roughness.[67] Other researchers evalu-
ated 3D-printed parts using coordinate metrology. Yankov et al. 
used an SLA 3D printer to create micro-squares. They used a 
Carl-Zeiss optical microscope to determine the coordinates of 
the items. The micrographs were used to calculate the object’s 

microgrid deviations. Depending on the object’s placement on 
the build plate, they found more significant and irregular devia-
tions from CAD values.[68]

On the other hand, Kacmarcik et al. used a coordinate meas-
uring machine (CMM) to study the shape, size, orientation, and 
location accuracy of FDM 3D-printed items. They found that 
industrial 3D printers are more accurate than 3D printers man-
ufactured at home.[69] Furthermore, geometrical dimensioning 
and tolerances were utilized by Mahesh et al. to investigate 
geometries using free-form surfaces and reported deviations 
from the set dimension ranging from 5 to 15%.[66] According 
to Jadayel et al., the three-dimensional metrology feedback 
and mesh morphing enhanced accuracy in eliminating sys-
tematic deviations. They employed a 3D geometric compensa-
tion method that morphed the object’s original surface mesh 
model using the inverse of the systematic deviations. They 
scanned many sacrificial 3D-printed items to measure system-
atic deviations and then computed the average deviation vec-
tor throughout the model.[70] Although many factors must be 
considered while analyzing the dimensional accuracy of parts, 
the size of the specimen or samples has been overlooked. It 
has been discovered that the specimen’s mechanical properties 
are influenced by its size, also known as the ’size effect’.[71] 
They recently employed a factorial design in determining the 
best combinations of different sizes, layer thickness, and infill 
density for dimensional accuracy in 3D-printed items.[7,13]

Measurement of mechanical properties 
of 3D‑printed polymers
Material properties are best evaluated using common mechani-
cal testing methods such as non-destructive tests, tension tests, 
impact tests. Also, in situ metrology methods using thermo-
couples, high-speed cameras, thermal cameras, pyrometers, 
X-Ray Diffraction, etc. are being employed. Using a high-speed 
optical scanning system integrated with an FDM 3D printer, 
McGuan et al. developed a method for layer-by-layer mapping 
of 3D-printed items. This setup might scan the object through-
out the printing process to validate and conduct in situ adjust-
ments of 3D printing parameters in real-time.[72]

A 3D-printed material is usually highly anisotropic; hence, 
it exhibits a highly complicated material behavior. Several 
printing parameters influence these behaviors, such as fila-
ment material, temperature, printing speed, and print orien-
tation. Different mechanical tests may be employed together 
with statistical test methods to understand the relationship 
between these printing parameters. Mechanical testing of 
3D-printed materials generally involves tensile, compression, 
flexure, impact, creep, and fatigue tests. In addition, ASTM 
and ISO standards for the mechanical testing of polymers have 
already been developed. Standard test methods must govern 
the determination of the mechanical properties of the polymer, 
including specifications, guides, and practices, to have a reli-
able result.

The mechanical properties of a 3D-printed part cannot 
be known or approximated before its printing and material 

Figure 5.   STL model vs CAD model.[48]
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testing. Hence, Sagias et al. showed that the influence of 
a printing parameter is directly related to the mechanical 
properties of an ABS 3D-printed part. They used the Tagu-
chi methodology as the optimization tool to obtain improved 
mechanical properties of a 3D-printed part before its print-
ing.[73] The tensile test is one of the most common mechani-
cal tests used to determine and analyze several mechanical 
properties of materials that are vital in design.[74] Therefore, 
the mechanical behavior of some 3D-printed materials have 
been widely studied by many researchers under tensile tests 
with the help of statistical testing techniques. Auffray and his 
group explored the influence of several printing parameters 
on the tensile properties of FFF 3D-printed PLA specimens 
using the L27 Taguchi orthogonal array supplemented by a 
two-level fractional factorial design with four factors (24–1). 
Their methodology helped them find that the infill density, 
raster pattern, printing orientation, and printing velocity are 
the most influential parameters. In contrast, layer height, 
extruder temperature, and outline overlap have no significant 
influence on Young’s modulus and yield strength.[75] Similar 
materials were investigated by Mena et al. However, they 
only investigated the effect of the filling percentage on the 

tensile strength of 3D-printed PLA specimens for different 
printing patterns, using an ANOVA and a DOE with a single 
factor to obtain appropriate filling percentages for printing 
parts according to the desired filling pattern.[76] Sukindar 
et al. employed Taguchi’s 33 factorial design and ANOVA to 
analyze the impact process parameters on the tensile strength 
of 3D-printed PLA material using 3D print Repetier-Host 
software.[77] Hikmat et al. also used the Taguchi methodology 
and ANOVA in their research. Their group studied the effect 
of various printing parameters such as build orientation, ras-
ter orientation, nozzle diameter, temperature, infill density, 
shell number, and extrusion speed on the tensile strength of 
FDM 3D-printed PLA materials. They used Taguchi’s mixed 
model fractional factorial design to determine the number of 
experiments. The ANOVA was used to indicate the significant 
parameters and their effect on the tensile strength of the mate-
rials. Further, they also used the Signal-to-Noise ratio (S/N) 
to select the optimal combination of the parameters. Using 
their method, they developed a linear regression model to 
predict the tensile strength of the 3D-printed part.[78] Ouhsti 
et al. used the central composite design (CCD) to develop an 
empirical model relating to response and process parameters. 

Figure 6.   Current method of metrology used in additive manufacturing.
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The ANOVA was used to test the validity of determining 
the desired mechanical properties. They studied the effect of 
printing parameters such as deposition angle, extruder tem-
perature, and printing speed on the tensile strength and elastic 
modulus of FDM 3D-printed PLA parts.[79] The central com-
posite design (CCD) was also used by Godec et al. for opti-
mization processes of 3D printing parameters, such as extru-
sion temperature, flow rate multiplier, and layer thickness, to 
obtain the maximum tensile strength of the FFF 3D-printed 
17-4PH Stainless Steel. The ANOVA and response surface 
models were used to explore the relationship between the 
adjustable printing parameters and their tensile properties.[80] 
The ANOVA was also used by Pernica et al. to investigate the 
effect of different temperature nozzles on the tensile strength 
of 3D-printed PLA, PETG, and ABS materials. They also 
include the Tukey test in their statistical evaluation.[81] On 
the other hand, Eguren et al. demonstrated the effectiveness 
of applying DOE techniques in improving the 3D printing 
process to obtain high-quality 3D-printed parts. They used 
composite material and investigated its mechanical properties 
under tensile test.[82] Jiang et al. conducted a study utiliz-
ing an L9 orthogonal array of Taguchi experimental design, 
which helps to compare the tensile strength and porosity of 
the Polyetheretherketone (PEEK) FDM 3D-printed part. 
The optimal printing parameters were 5 mm/s print speed, 
0.1 mm layer thickness, 395°C printing temperature, and 
0.44 mm extrusion strand. The 3D-printed part underwent 
an annealing process; the tensile strength increased from 
91.48 to 98.85 MPa, while the porosity decreased from 3.9 
to 0.3%. Hence, the study concluded that using the optimal 
printing parameters in a low-cost FDM machine is appropri-
ate since it can produce PEEK 3D-printed parts with high ten-
sile strength and good crystallinity.[83] Keles et al. performed 
tensile tests on 3D-printed ABS samples with and without a 
hole (in the center) to investigate the effect of build orienta-
tion on the mechanical reliability of 3D-printed ABS parts. 
Seven (7) sets of ~ 30 samples were printed with different ori-
entations (XY, XZ, and C + 45). Weibull distribution was used 
to quantify the variation in tensile strength, and the analysis 
showed that the reliability of 3D-printed ABS could be low, 
similar to advanced ceramics. The XZ printing orientation 
showed the highest average fracture strength for both sample 
configurations with and without a hole. The C + 45 orientation 
demonstrated the lowest strength. They further claimed that 
since the Weibull distribution can be used to relate the prob-
ability of failure to the applied stress, the Weibull analysis 
proves to be a practical design approach in determining the 
reliability of 3D-printed parts.[84]

Aside from the tensile test, other mechanical tests, such as 
compressive and flexural tests, were also used along with statis-
tical testing techniques to characterize the material behavior of 
3D-printed materials. Compression tests are essential for meas-
uring brittle or low-ductility materials’ elastic and compres-
sive fracture properties.[74] On the other hand, the flexural tests 

measure the force required to bend a beam of plastic material 
and determine the resistance to a material’s flexing (stiffness).

Under compressive and flexural tests, Calvo et al. evalu-
ated the mechanical properties of continuous fiber fabrication 
(CFF) 3D print technology. They used the DOE as a statistical 
method in investigating the effect of reinforcement pattern, 
reinforcement distribution, print orientation, and percentage 
of fiber on compressive and flexural properties of polyamide 
6 (PA6) reinforced with carbon fiber.[85] Additionally, Mamo 
et al. conducted a study that analyzes flexural strength using 
the fuzzy logic (FL) technique to develop a prediction model 
for an FDM 3D-printed ABS part. They used the Taguchi L18 
orthogonal design technique to organize the tests. In addition, 
they also studied the relationship between layer thickness, 
raster width, raster angle, orientation angle, and the flexural 
strength of the ABS 3D-printed components using ANOVA.[86] 
An almost similar approach was employed by Kumar et al., 
which used the Taguchi L9 experimental method to analyze the 
effects of print speed, infill density, and layer height on flexural 
strength, tensile strength, and hardness of FDM 3D-printed 
carbon fiber-reinforced PETG thermoplastics for optimization. 
They also analyzed the ANOVA to determine the link between 
print speed, infill density, and layer height.[87]

The requirements of the orthogonal arrays are met by con-
sidering different experimental factors.[11] Espino et al. used the 
Taguchi methodology in identifying the optimum 3D printing 
configuration based on the indentation hardness properties of 
SLA 3D-printed parts. Arifin et al. used the Taguchi method to 
improve the dimensional changes in 3D printing. They identi-
fied the major molding parameters, such as layer height, print 
speed, and temperature. Results show that the optimal param-
eters from a Brinell Hardness number are 0.10 mm layer height, 
20 mm/s print speed, and 205°C print temperature.[88] A mate-
rial’s hardness is determined through the hardness test method, 
which investigates the resistance of a material to penetration 
using various indenters.[89] Hardness testing is a non-destruc-
tive test and is easy to perform. Unlike another material test-
ing, hardness testing can be carried out directly on the material 
without making a significant adjustment.

Furthermore, most of the equipment used for hardness tests 
is more inexpensive than the other types of material testing 
equipment. These tests have been very beneficial for material 
evaluation and ensuring quality control.[90] The earlier mechan-
ical tests discussed in this paper are quasi-static tests because 
they are conducted at a low strain rate. However, since many 
materials fail suddenly under the high strain rate condition, 
material behavior must be investigated using the impact test 
method when subjected to impact loading. The impact test is 
used to investigate the fracture mechanics of the material by 
measuring the energy the material can absorb during a collision. 
Moreover, this test can generate essential values such as tough-
ness, impact strength, fracture resistance, impact resistance, or 
fracture resistance of the material, which are critical in material 
selection in applications that involve shock loading properly.[9] 
Using this experimental test and the Taguchi methodology, 
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Atakok and his group conducted a statistical investigation to 
understand the effects of different layer thicknesses, occupancy 
rates, and filling structures on the impact strength of 3D-printed 
PLA and recycled PLA (Re-PLA) parts. They also investigated 
the effect of the mentioned parameters on the tensile strength 
and three-point bending strength of PLA and recycled PLA (Re-
PLA) parts.[91] Kananathan et al. also performed a statistical 
analysis investigating the effects of infill percentage and infill 
pattern on the impact properties of coconut wood-filled PLA 
composites 3D-printed parts. They also developed a mathemati-
cal model that can predict the energy absorbed and the impact 
energy of the 3D-printed components. The ANOVA was used 
to validate the experimental data, and a mathematical model 
was then developed.[92] Recently, Mazen et al. used a DOE 
method like Fractional factorial experiments to study the effect 
of print orientation, layer height, extrusion width, nozzle diam-
eter, and filament temperature on the impact toughness and 
ultimate tensile strength of the 3D-printed samples. The test 
results were analyzed with a normal probability plot compli-
mented with ANOVA. Also, an adopted regression equations 
model was used to predict the ultimate tensile strength and the 
impact toughness as a function of the print orientation.[93] The 
various research studies that employed statistical methods in 
3D printing are shown in the Table II. Graphical results rep-
resenting various statistical methods applied in some research 
studies mentioned earlier are shown in Figs. 2 and 3.

Artificial intelligence and machine 
learning (AI/ML)
From the humble beginnings of image processing and recogni-
tion, artificial intelligence (AI) has become a very sophisticated 
technology that involves, at its core, a barrage of computers 
processing information in unprecedented ways. The appli-
cations for AI may be found in robotics, medical diagnosis, 
face recognition, internet applications, data mining, and other 
industries.[94] Among the application location for Deep Learn-
ing technology or AI are Chatbots or Conversational agents 
developed just to emulate conversations but to answer ques-
tions that use these environments.[95] AI is finding its way into 
becoming the supra-intelligence[96] while serving in various 
situations, such as the COVID-19 pandemic.[97] AI is steadily 
finding its way into surpassing human cognitive abilities.[98]

Early machine learning (ML) technologies used the logis-
tic regression algorithm.[99] Logistic regression takes a data 
set of N examples known as training sets corresponding to 
outcome Y. The labels or tags describe these training sets’ 
image (outcome Y). The eventual task is to predict Y given 
data X. The data X is coupled with another parameter that 
changes the data X into a sample Z. The interesting portion in 
this exciting likelihood or the probability of the given data X 
into the Z. The point of interest shifts to the probability of the 
outcome Y. This certain probability is changed into a sigma 
function that shows a certain probability of occurrence. This 

sigma variable is later turned into a sigmoid function that 
results in an infinite positive value from zero (0) to one (1). 
Complex prediction requirements developed into the multi-
layer perceptron (MP) model, basically a multiple layer of 
the logistic regression.[99]

The MP is considered the start of Deep Learning technol-
ogy. This is where the primary result of the simple logistic 
regression is layered and transformed into another layer of the 
data set, providing depth of information. Feature maps of the 
characteristics of the basic images are stacked and layered by 
creating more data sets and leading to features that distinguish 
them from other images of the same category. The features 
become the information that relates to the characteristics of 
people or users. This forms Convolutional Neural Networks 
(CNN), which became the natural extension of MP. This is 
accomplished by passing the primary image filter across the 
sample layer. The various degree of similarity of the features 
is recorded into data matrices that describe the probability of 
similarity. One can see that these are layered logistic regression 
models, which are now called MP or CNN.

The learning process described above is built upon statisti-
cal approaches either in the simple logistic regression or the 
deep learning convolutional neural networks. The methods are 
just repetitions of the same steps as an attempt to build the 
features of the image in contrast with a set of filters passed and 
compared to the data set. These filters are constructed with vast 
quantities of data and information. The computational require-
ments of deep learning have become very big because of the 
stacks of features and information. Machine learning takes the 
overall probabilities of a decision most likely taken by a human 
doing the same task. However, Machine Learning does not rely 
on the highest probability only. Instead, it also takes on the 
lowest possible comparison error.[100]

In sophisticated machine learning tools such as Silas, 
machine learning is fused with logical reasoning: formal veri-
fication of the prediction model against user specifications, 
training correct-by-construction models, and explaining the 
decision-making of predictions.[101] In these setups, real-life 
problems are solved using artificial intelligence. This incorpo-
rates Automatic AI—a hybrid approach to selecting algorithms 
and hyperparameter tuning.[102] Technologies like autono-
mous driving cars are applications of deep learning algorithms 
which require vast amounts of data for processing and learning 
directly from input data.[100]

Deep learning continues to evolve to drive industry 4.0. 
Machine learning systems also help educational systems with 
data retention and recognition of requirements based on survey 
answers.[103] Personalized learning and data retentions through 
the identification of attributes become key learning validation 
processes. Intelligent technologies and AI have also started 
finding ways for home energy management systems.[104]

The study provided proof of concept for the importance 
of data availability and speed of access requirements for 
AI-enabled systems. Among other requirements, perhaps 
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the most important would be the data required for reli-
able AI. As mentioned, even the basic logistic regression 
algorithm requires vast amounts of data for learning. The 
samples or training sets need to be pre-labeled by humans 
and stored in databases that are readily accessible to the 

system. The delay or shortage of information could lead 
to loss of lives; such are cases for augmented reality and 
predictive systems that provide notifications for impend-
ing danger.[105]

Table II.   Statistical methods used in various studies.

Research study Statistical tool/technique used

Design of experiment Weibull Other(s)

Factorial 
design

Taguchi  
methodology

Juhar et al.[14] ✓
Revilla-León et al.[15] ✓
Naito[16] ✓
Da Costa et al.[17] ✓
Ouamomar et al.[18] ✓
Khalid et al.[31] ✓
Durão et al.[32] ✓
Fotovvati et al.[33] ✓
Shakeri et al.[34] ✓
Shakeri et al.[35] ✓
Roohani-Esfahani et al.[36] ✓
Schilling et al.[37] ✓
Boyce et al.[38] ✓
Byun et al.[39] ✓
Feilden et al.[40] ✓
Hu et al.[41] ✓
Wang et al.[42] ✓
Lu et al.[19] ✓
Farzadi et al.[43] ✓
De Rossi et al.[44] ✓
Huang et al.[45] ✓
Chohan et al.[67] ✓
Sagias et al.[73] ✓
Auffray et al.[75] ✓
Mena et al.[76] ✓
Sukindar et al.[77] ✓ ✓
Hikmat et al.[78] ✓ ✓ Regression Analysis
Ouhsti et al.[79] ✓ Central Composite Design (CCD)
Godec et al.[80] ✓ Central Composite Design (CCD)
Pernica et al.[81] ✓
Eguren et al.[82] ✓
Jiang et al.[83] ✓
Keles et al.[84] ✓
Calvo et al.[85] ✓
Mamo et al.[86] ✓ Fuzzy Logic (FL)
Kumar et al.[87] ✓
Espino et al.[90] ✓
Arifin et al.[88] ✓
Atakok et al.[91] ✓
Kananathan et al.[92] ✓
Mazen et al.[93] ✓ ✓ Regression Analysis
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Quality assurance in additive manufacturing (AM) contin-
ues to benefit from ML with various algorithms that check 
sensor data to evaluate the conditions of the manufacturing 
classification processes.[106] Among the trend-setting inno-
vations is 3D printing in construction, where value-adding 
activities are moved once again to the site in the form of 
one-off construction projects or customized designs specific 
to particular sections of the project. Or, at the time, modular 
construction enables the contractor to build the sections else-
where and bring them to the site later. This maximizes the 
efficiency and productivity of manpower and resources.[107]

The quality of 3D-printed products also plays an essential 
role in the acceptance of AM. A study on one of the market’s 
most popular 3D printing technologies is known as FDM, 
which incorporates several parameters for the optimization 
of the process. Investigating the effects of the process param-
eters on FDM products requires the DOE methods. Charac-
teristics of the PLA material, namely in terms of tensile char-
acteristics of 3D-printed products, have been studied using 
the Taguchi Optimization Methodology and ANOVA.[108] 
Analyzing such factors and features also require ML and 
other statistical analysis.

Future perspectives
Information‑rich metrology for 3D 
printing optimization
Senin et al. introduced the term information-rich metrology to 
refer to any additional information to improve measurement 
processes. Information may be obtained from knowledge of 
the manufacturing process, the object to be measured, and 
an understanding of the physical interactions and principles 

underlying the measurement. Information may come from "pri-
ori" information such as CAD, models, course measurement 
data. If optical equipment is used and a priori manufacturing 
data is combined with decent modeling, this can significantly 
enhance measurements, Fig. 7.[109]

Prediction models for 3D printing 
optimization
AM is an enabling technology that needs to have standards 
and standardized testing for translation to various fabrication 
formats and highly reliable performance. AM-produced parts 
can be of higher design complexity but require high tolerance, 
accuracy, and precision for their intended application. In dimen-
sional stability, layer-by-layer fabrication requires unique pro-
cess development compared to bulk formative manufacturing 
or net-shaped subtractive manufacturing. More than anything 
else, the type of materials properties, coefficient of thermal 
expansion (CTE), melting point, heat deflection temperatures 
(HDT), tensile modulus, etc., will determine the expected fail-
ure properties that need to be predicted or empirically tested. 
There should be a focus on utilizing simulation and finite ele-
ment analysis (FEA) methods as a predictive procedure and 
helping define structure-composition-property relationships. 
The development of in situ, real-time testing and inspection 
methods can be used as data point harvesting modes to imple-
ment Artificial Intelligence and Machine learning (AI/ML) 
projects to improve the materials and fabrication process and 
even define better metrology tools. There will be advantages in 
coupling AI/ML methods with testing and metrology for digital 
manufacturing methods such as AM because of the ability to 
optimize properties rapidly. However, there are still multiple 
challenges to overcome to enable these new technologies to 

Figure 7.   Additional information sources and information flow change from conventional metrology to the IRM,[109] (Fig. 6b).
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become reliable manufacturing capabilities. Some of these 
future directions are as follows:

AI/ML materials development and optimization
There is high potential in AI/ML-driven materials optimization. 
Starting with Bayesian and straightforward artificial neural net-
work (ANN)-based methods, it is possible to focus on a more 
automated design and discovery protocol for future materials 
and materials properties. This differs from the conventional 
approach based on intuition (experience), trial-and-error-based 
optimization approaches, or improved DOE methods. A data-
enabled route results in efficient and targeted approaches to 
complete the feedback loop much closer to the hypothesis-
driven scientific method. By building data gathering and algo-
rithm development during materials development, characteriza-
tion, and testing, this informatics-based method enables one to 
connect and iterate through different steps. The materials design 
and optimization process can be cost and time-sensitive in any 
project, including AM. It is possible to accelerate optimized 
materials discovery and AM methods by focusing on hypoth-
esis generation, prediction, AI-driven synthesis, characteriza-
tion, and testing.

FEA and simulation
The Finite Element Analysis (FEA) application with 3D print-
ing (AM) is almost a story of parallel development since both 
are based on digital design and refinement methods with CAD. 
Therefore, FEA and AM should be combined as much as possible 
to enable a parallel understanding of materials’ properties or fail-
ure with design. The importance of predicting materials property 
primarily generated by anisotropy and lack of predicted thermo-
mechanical values with new and more complex topologies pro-
vides FEA significant leverage to evaluate and reduce product 
development time. This means it is possible to construct unique 
designs and enable complex process development protocols to 
achieve optimum properties in the shortest amount of time. For 
FDM printing, the strengthening in particular axes (anisotropy) is 
not easily avoided due to the nature of the XYZ CNS Movement. 
It only becomes more complex with 5 or 6-axis fabrication. For 
lightweighting, reducing parts and simplifying the design and 
strength can take advantage of FEA (or other similar methods). 
It can also help better design aesthetics, quality control, lower 
cost, and reduce fabrication time. A typical FEA method involves 
solving multiple static implicit steps with sets of finite elements 
added stepwise until failure is initiated. The discretization of the 
3D model can involve voxelization to approximate the 3D shape. 
Another consists in defining the toolpath and constructing finite 
elements by sweeping them along the path. Thus, FEA-based 
models can effectively simulate complex prints with various 
material properties and recommend a better print strategy to save 
time and cost. Some recently published works used FEA in deal-
ing with the effects of input parameters and material types for 
predicting fracture load, dynamic and static load, and estimation 

of mixed-mode load bearing on load carrying capacity and integ-
rity of 3D-printed parts.[110–113]

3D printing with bio‑inspired mechanics 
and metrology
Digital 3D and 4D printing will enable the capture of design 
from nature. With a bioinspired design, it is possible to derive a 
new function that draws inspiration from various biomechanics 
applications and new structure-composition-property relation-
ships inspired by nature. There will be a need to develop unique 
characterization and metrology tools that accommodate these 
new designs very different from bulk properties. Examples 
include the lotus leaf hierarchy of roughness, the nacre struc-
ture, structures of diatomaceous organisms, and the exoskel-
eton of several crustaceans and marine animals, which requires 
a shift in the conventional ring and evaluation of properties. 
4D printing enables other transformative and metamorphic 
features to give new functions. Usually, the properties have 
origins in stimuli-responsive elements or properties that pro-
duce a cause-and-effect shift in the targeted properties. It can 
pose challenges in characterization and testing due to the new 
design and materials concepts never before reported, much less 
developed standards.

Summary and conclusion
This paper presented and studied the application of various 
statistical methods used to analyze and interpret data sets in 
Additive Manufacturing (AM) or 3D printing. Some statistical 
methods were applied to ensure the quality of a 3D-printed part, 
starting from designing, pre-processing, post-processing, and 
up to testing, such as Taguchi Methodology, Factorial Design, 
and Weibull analysis. Also, numerous studies that show the 
importance and advantages of utilizing these statistical meth-
ods in designing and testing 3D-printed parts were covered in 
this paper. It includes applying the statistical approach in solv-
ing the variation between the 3D CAD model and 3D-printed 
parts brought by the effects of different 3D printing param-
eters. These have been combined with varying metrology meth-
ods in optimizing the physical and mechanical properties of 
3D-printed parts.

In conclusion, employing various statistical methods signifi-
cantly helped AM in the creation of higher-quality 3D-printed 
parts. However, there is still a wide range of available methods 
that can potentially help improve AM technology that needs 
to be studied further. The paper also discussed the following 
possibilities: (1) AM can produce the more complex design of 
3D-printed parts by utilizing Simulation and Finite Element 
Analysis (FEA) methods, and (2) application of Artificial Intel-
ligence and Machine Learning (AI/ML) as a tool in improving 
the materials and manufacturing process, and helping to define 
better metrology methods or tools to be used in 3D printing.
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