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Abstract

During the early stage of biomarker discovery, high throughput technologies allow for 

simultaneous input of thousands of biomarkers that attempt to discriminate between healthy and 

diseased subjects. In such cases, proper ranking of biomarkers is highly important. Common 

measures, such as the area under the ROC curve (AUC), as well as affordable sensitivity 

and specificity levels, are often taken into consideration. Strictly speaking, such measures are 

appropriate under a stochastic ordering assumption, which implies, without loss of generality, 

that higher measurements are more indicative for the disease. Such an assumption is not always 

plausible and may lead to rejection of extremely useful biomarkers at this early discovery stage. 

We explore the length of a smooth ROC curve as a measure for biomarker ranking, which is not 

subject to directionality. We show that the length corresponds to a ϕ divergence, is identical to the 

corresponding length of the optimal (likelihood ratio) ROC curve, and is an appropriate measure 

for ranking biomarkers. We explore the relationship between the length measure and the AUC of 

the optimal ROC curve. We then provide a complete framework for the evaluation of a biomarker 
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in terms of sensitivity and specificity through a proposed ROC analogue for use in improper 

settings. In the absence of any clinical insight regarding the appropriate cutoffs, we estimate the 

sensitivity and specificity under a two-cutoff extension of the Youden index and we further take 

into account the implied costs. We apply our approaches on two biomarker studies that relate to 

pancreatic and esophageal cancer.

Keywords

2 cutoff ROC; ϕ divergence; isoperimetric; kernels; likelihood ratio; sensitivity; specificity; 
optimal ROC; stochastic ordering; youden

1. Introduction

The most common statistical tool for the evaluation of continuous classifiers that attempt 

to discriminate between two distinct classes is the Receiver Operating Characteristic (ROC) 

curve ([1]). It has been a commonplace strategy to evaluate the discriminating ability of 

various kinds of classifiers such as blood-based tests, urine-based tests, imaging, cognitive 

tests etc. Typically, in many biostatistical applications biomarkers attempt to discriminate 

between a non-diseased and a diseased group. An underlying assumption in many ROC 

studies is that the density ratio is monotone. This implies the traditional setting found in 

the literature where the higher the marker score, the greater the suspicion for the disease 

(or the mathematically equivalent claim that the lower the marker score the higher the 

suspicion for the disease). In such cases the marker scores comply with the stochastic 

ordering assumption of the form X < Y, where X is the random variable that refers to the 

scores of the non-diseased group and Y is the random variable that refers to the marker 

scores of the diseased group. Under this scenario we have concavity of the ROC curve and 

an appropriate and popular summary measure of the discriminatory ability of a continuous 

marker is the area under the ROC curve (AUC) which is equal to the probability P(X < 

Y). The popular Mann-Whitney test-statistic ([2]) is simply a two-sided test of the null 

hypothesis that states that the AUC is equal to 0.5. In cases where the density ratio is not 

monotone we obtain non-concave (also known as improper) ROC curves. When concavity 

is severely violated then the use of typical ROC analysis may be very misleading. In some 

cases, improper ROCs indicate differences in terms of scale apart from differences in terms 

of location. The vast clinical literature that deals with biomarkers focuses on the traditional 

settings. However, it may be the case that in many applications there are biomarkers of great 

promise that exhibit improper ROC curves. They may yield an AUC that is very close to 

0.5, potentially misleading a researcher to dismiss such biomarkers as uninformative, in spite 

of their potentially high discriminatory ability. As we will see in the discussion to follow, 

it may be the case that a marker is perfect and yet its AUC is equal to 0.5. As a result, 

when traditional measures such as the AUC are blindly applied in large lists of candidate 

biomarkers, then potentially excellent biomarkers that are not monotone are doomed to be 

missed. Modern high-throughput technologies allow us to simultaneously assay hundreds 

or even thousands of markers, a practice quite common in cancer research. This situation 

illustrates a need for a robust statistical framework that can reveal all useful markers whether 

they are monotone or not. Once these are discovered then it is of interest to evaluate them 
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with clinically appealing measures such as the sensitivity and specificity tradeoffs, that 

need to be redefined for non-monotone markers. Finally, once the useful markers have been 

identified clinical interest lies in determining decision making cutoffs.

One example of the aforementioned setting refers to assays that involve blood-based 

biomarkers for the detection of pancreatic cancer. Pancreatic ductal adenocarcinoma (PDAC) 

is the third leading cause of cancer-related mortality in both men and women in the United 

States. Overall, PDAC is associated with a dire prognosis and a 5-year survival rate of 

approximately 8%, which makes PDAC the most deadly of cancers by organ site ([3]). The 

diagnosis of PDAC at an early stage is uncommon and usually incidental, with the majority 

of patients (∼85%) presenting with locally-advanced or metastatic disease ([4]). Currently, 

no individual marker has adequate performance characteristics for detecting early stage 

PDAC in asymptomatic individuals. High throughput technologies like mass-spectrometry 

and protein microarrays are commonly used for biomarker discovery, often providing a very 

large set of candidates that initially need to be ranked based on some criterion. Common 

criteria are the area under the ROC curve or the sensitivity/specificity at a (clinically 

affordable level. While these criteria enjoy a broad acceptance in both statistical and clinical 

literature, they fail to capture biomarkers that are of improper behavior. Selection based 

on the AUC, initially studied by [5], implicitly assumes stochastic ordering of the two 

distributions (i.e., healthy versus diseased) of biomarker scores. There are cases, however, in 

which this single-directionality assumption is severely violated. For example, plasma tumor 

antigen levels may be associated with immune complex formation, leading to depletion of 

the free autoantibodies against the antigen as well as the antigen itself, which may serve as 

cancer biomarkers ([6]). Using conventional statistical techniques for discriminatory ability 

rankings might eliminate further consideration of promising or even excellent biomarkers 

without allowing researchers to question and explore them further. An additional example is 

studies associating lung cancer with levels of pro-surfactant protein B (ProSFTPB) ([7]), for 

which both non-detectable (very low) and higher levels of ProSFTPB are being associated 

with the disease.

When a stochastic ordering does not hold, we cannot rely on the regular definitions of the 

sensitivity and specificity for ranking the candidate biomarkers. The notion of sensitivity 

and specificity needs to be extended to take into account this improper behavior. When 

stochastic ordering is violated, the AUC can be equal to 0.5, even when the underlying 

biomarker is perfect. The partial AUC (pAUC) can also be subject to that artifact. In 

Figure 1 we provide such an example, which also is discussed in [8]. Some authors 

have considered alternative criteria to capture such biomarkers in similar situations. Parodi 

(2008) [9] et al. propose the area between the ROC curve and the reference diagonal 

(named as ABCR). It is defined as ABCR = ∫0
1 |ROC(t) − t |dt and can be easily shown to be 

equal to ∫−∞
∞ FY (z) − FX(z) fX(z)dz. Even though such a measure does manage to attribute 

discriminatory ability to markers that may be rejected by the AUC, it is still a hostage of 

directionality. For example, consider the two perfect markers shown in Figure 1. The ABCR 

for the upper panels is equal to 0.5 while for the lower panels it is equal to 0.25. Another 

interesting measure discussed in the same paper is the TNRC which is a useful measure 
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to detect improper markers. We note that all these criteria refer to the two-sample problem 

which is also the focus of this paper.

When the stochastic ordering assumption is violated, essential differences between the two 

groups are frequently implied in terms of dispersion. As a result, goodness-of-fit tests, such 

as the Kolmogorov Smirnov and the two-sample extension of the Anderson Darling test, 

might provide useful alternatives ([10], [11]). Another measure proposed in [12] is the 

projected length of the ROC curve. Even though this measure is immune to directionality 

and can be linearly transformed to attain an interpretation as a probability, it is geometrically 

difficult to visualize. In addition, its asymptotic behavior is not yet thoroughly studied.

One measure that was very recently studied under a binormal setting is the length of the 

ROC curve ([13]). Therein, the utility of the length of the binormal model-based ROC 

curve as an accuracy index is discussed. In this paper, we study its use as a measure for 

ranking biomarkers in a general setting that involves discrimination of cases and controls 

that includes non-monotone biomarkers under general parametric as well as non-parametric 

frameworks. The length successfully captures useful markers, which would have been 

rejected using traditional measures. We illustrate that the length of the ROC is directly 

related to a ϕ divergence and we provide a test statistic for inference. We show that the 

length of the common ROC curve is identical to the length of the optimal, likelihood 

ratio-based, ROC curve. In other words, the length does not change when one applies 

the likelihood ratio transformation to the marker values. As we discuss, this is true for 

any ϕ divergence. Hence, a ϕ divergence reflects the potential discriminatory ability of 

a biomarker. Among possible ϕ divergences one might employ for inference, the length 

has the advantage of being geometrically appealing to practitioners. Furthermore, we 

apply isoperimetric methods to explore its relationship to the AUC of the optimal ROC 

curve. In other words, given the length of an ROC curve we obtain lower and upper 

bounds of the AUC of the optimal (likelihood ratio) ROC. We study the asymptotic 

behavior of the estimated length and its related test statistic assuming a general parametric 

family. Furthermore, in a non-parametric framework we estimate the length using kernel-

densities and explore its statistical properties via bootstrap and permutation tests. Based on 

simulations, we observe that when the stochastic ordering assumption is violated, then the 

test based on the length outperforms traditional tests, such as the Wilcoxon, the t-test, and 

the Kolmogorov-Smirnov test.

Once the initial ranking is done, interest lies in clinically relevant measures that will provide 

insights regarding the performance of a selected biomarker. While the traditional ROC curve 

is the most popular statistical tool for the evaluation of a biomarker, it should be avoided 

when it is improper. We present an appropriate analogue of the ROC graph that visualizes 

the sensitivity and specificity in the ROC space under a framework that uses two cutoff 

points. We define an optimal ROC curve, under the notion of a unimodal likelihood ratio 

ordering, which defines a dispersion ordering. This optimal ROC curve is identical to the 

generalized ROC curve (gROC) first introduced in [14]. A parametric estimator has been 

considered in [15] and its Youden index in [16]. Optimality of the gROC under the normality 

assumption has been shown in [17]. In this paper, we show that the gROC is the optimal 

ROC under the assumption of a unimodal density ratio. We further discuss the notions of 
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sensitivity and specificity in the presence of two cutoffs which we estimate based on an 

extension of the Youden index initially discussed in [18] and provide inferences around them 

that can also accommodate costs.

This paper is organized as follows: In Section 2 we present the proposed measure for 

biomarker ranking. We discuss its properties and provide results that relate the length of the 

ROC curve to the length and area of the optimal (likelihood ratio transformed) ROC curve. 

In addition, we explore the estimation and statistical inference based on this measure. In 

Section 3 we explore the appropriate ROC analogous when two cutoffs are considered and 

discuss the conditions under which the two-cutoff ROC is optimal. We present an example 

that illustrates the fact that a common ROC curve does not reveal the discriminatory 

ability of an improper marker and the appropriateness of using the length as a measure 

of discriminatory ability. In Section 4 we discuss estimation and inference for the sensitivity 

and specificity of such markers under different parametric and non-parametric settings. In 

Section 5 we discuss our simulations and in Section 6 we employ our approaches in two data 

sets related to cancer.

2. Length of the ROC Curve and ϕ Divergence

Let Y denote a continuous biomarker score in a study of n0 healthy individuals and n1 

patients of the diseased group. Denote with f0( ⋅ ) and f1( ⋅ ) the densities of the healthy 

and the diseased group, respectively. Also denote the corresponding cumulative distribution 

functions as F0( ⋅ ) = 1 − S0( ⋅ ) and F1( ⋅ ) = 1 − S1( ⋅ ). We assume that the two distributions 

have common support. The traditional ROC curve is defined as ROC(t) = S1 S0
−1(t) , 

t ∈ (0, 1). The length of a differentiable ROC curve, lROC, is given by the following two 

equivalent expressions:

lROC = ∫
0

1
1 + dgROC(t)

dt
2
dt = ∫

−∞

+∞ dFPR(c)
dc

2
+ dTPR(c)

dc
2
dc (1)

where FPR = S0(c) and TPR = S1(c) for a given cutoff c. Using the result in [1] (pg. 70), 

dgROC(t)
dt =

f1 S0
−1(t)

f0 S0
−1(t)

 we obtain

lROC = ∫
−∞

+∞
1 + f1(x)

f0(x)
2
f0(x)dx = ∫

−∞

+∞
f1

2(x) + f0
2(x)dx . (2)

We see that 2 ≤ lROC < 2. The minimum value, 2, is attained if and only if the distribution 

of the diseased is identical to that of the non-diseased, which implies a non-informative 

marker. The quantity lROC − 2, the difference between the length of the ROC curve and 

the length of a non-informative marker, is a ϕ divergence and is equivalent to the perimeter 

divergence measure studied by [19], as it is simply equal to the difference in perimeter of the 

set underneath the ROC curve between the marker studied and a non-informative marker. As 

shown in [19], the square root of this divergence is a metric divergence.
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The following theorem shows that the length (and the corresponding divergence measure) 

remains the same when one considers the likelihood ratio ROC curve based on the marker 

Y, which is the length of the ROC curve associated with the random variable W =
f1(Y )
f0(Y ) . 

It is well known that the likelihood ratio ROC is concave and is the optimal ROC one can 

construct based on a given marker.

Theorem 1

Denote the length of the ROC curve obtained by using the untransformed Y by lROC
Y  and 

the length of the likelihood ratio ROC curve by lROC
W  (obtained by using the transformation 

W =
f1(Y )
f0(Y ) . Then lROC

W = lROC
Y .

Proof: The proof follows from the fact that the likelihood ratio of the likelihood ratio equals 

the likelihood ratio (see [1], pg. 94), that is 
g1(w)
g0(w) = w, where g0 and g1 denote the densities 

of W for the healthy and diseased respectively. Let ϕ(u) = 1 + u2. We have

lROC
W = EG0ϕ g1(W )

g0(W ) = EG0ϕ(W ) = EF0ϕ f1(Y )
f0(Y ) = lROC

Y □ . (3)

We note here that it is evident from the proof that the above result is valid for all 
ϕ divergences. Thus, one can argue that ϕ divergences are well suited for making fair 

comparisons between markers based on a single ROC summary measure, as they are 

invariant to the optimal (likelihood ratio) transformation of the marker values. This is 

especially obvious in the case when no directionality of disease is assumed by the 

researchers. The length has the advantage of being a geometrically appealing measure. 

Moreover, we can relate the length to the AUC of the optimal (likelihood ratio) ROC. If the 

likelihood ratio and its distribution were known, then the AUC of the optimal ROC could 

be computed directly. This is almost never the case in practice. However, one can use the 

following theorem, which provides bounds on the AUC of the optimal ROC curve, given 

the length of the original ROC curve. These bounds can be used by practitioners to assess 

biomarkers.

Theorem 2

Let lROC
Y = l and denote the AUC of the optimal ROC by AUCW. Then 2a) For 2 ≤ l ≤ π

2
we have

1
2 +

l2 − 2
4(l − 1) < AUCW ≤ 1

2 + S, (4)

where S equals the area of a circular segment with chord length equal to 2 and 

corresponding arc length equal to l. 2b) For π
2 < l < 2 we have
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1
2 +

l2 − 2
4(l − 1) < AUCW < 1 − (4 − 2l)2

4(4 − π) . (5)

Proof: Note that we are dealing here with isoperimetric problems. Since the likelihood 

ratio ROC curve is concave, and as we have shown earlier has length l, we consider the 

mathematically equivalent problems of maximizing and minimizing the area among all 

convex sets within the right isosceles triangle ABC (see Figure 2) formed by a rope of length 

l tied to the edges B and C.

The maximization of the area given the rope’s length, l, is a variant of the famous 

Dido problem, and is dealt with in [20] (pg. 4, 5, and 292) using methods of optimal 

control. Although the maximization problem is typically formulated without the convexity 

constraint, its solution forms a convex set, and hence is the solution to our problem. It turns 

out that if the rope length, l, does not exceed π/2, then the solution is to place the rope so 

as to form a partially circular region (see Figure 3). The area of the convex set formed can 

be found numerically (the solution coincides with that of the Dido problem, since, in this 

case, the circular arc stays within the triangle ABC). When l is larger than π/2, we lay the 

rope on the two sides AB and AC, moving along the sides an equal distance until we have 

enough rope remaining to draw the arc of a quarter circle inside the triangle ABC. It can 

be shown that the distance we need to move up on each side equals (2l − π)
(4 − π) , and the quarter 

circle arc corresponds to a circle with radius equal to (4 − 2l)
(4 − π) . The area of the maximizing 

convex set is then computed using elementary geometry. The corresponding optimal ROC 

curve in this case is not attained in our framework, due to our assumption that the densities 

for diseased and non-diseased have common support. An ROC curve in our setting, however, 

can be infinitely close to the optimal one.

There are two solutions to the minimization problem, which yield a lower bound for AUCW. 

One is the triangle BCD, with the length of CD, let γ, equal to 
l2 − 2

2(l − 1) . The other is a 

triangle symmetric to the above around a line passing through point A and perpendicular 

to BC. These two solutions, along with the corresponding minimum area, are obtained by 

considering the dual problem of maximizing the perimeter of a given area. We spare the 

reader of the mathematical details of the minimization problem and provide the related 

Theorem in Web Appendix A □.

Table 1 gives the lower and upper bounds of the optimal (likelihood ratio) ROC for select 

values of the length.

Inference on the length of the ROC curve is rather straightforward, if we assume that 

the distributions of diseased and non-diseased belong to the same parametric family, with 

density f(x;θ), where θ is an M × 1 parameter vector. Let f x; θ0 = f0(x) and f x; θ1 = f1(x)
denote the densities of the non-diseased and diseased populations, respectively.
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The quantity lROC − 2 can be written as an (h, ϕ) divergence measure (see [21]). Since the 

two distributions have densities, an (h, ϕ) divergence is defined as

Dϕ
ℎ θ0, θ1 = ∫

Λ
ℎα ∫

−∞

+∞
ϕα

f x; θ1
f x; θ0

f x; θ0 dx − ϕα(1) dη(α), (6)

where ℎ = ℎα α ∈ Λ and ϕ = ϕα α ∈ Λ are real valued C2 functions, with ℎα(0) = 0 and η is 

a σ-finite measure on the measurable space (Λ, β). Furthermore, for every α, either ϕα is 

convex and ℎα is increasing or ϕα is concave and hα is decreasing. The divergence measure 

lROC − 2 is obtained by letting Λ = 1, η a point mass at 1, ℎ1(u) = u, and ϕ1(t) = 1 + t2.

Let θ0 and θ1 be the maximum likelihood estimators of θ0 and θ1, and consider the 

divergence statistic

l ROC − 2 = ∫
−∞

+∞
1 +

f x; θ1
f x; θ0

2
f x; θ0 dx − 2 (7)

We obtain the following result, presented as a theorem, to test the null hypothesis H0 : θ1 = 

θ0.

Theorem 3

Under the null hypothesis H0 : θ1 = θ0, and assuming 
n0

n0 + n1
λ ∈ (0, 1)

4 2n0n1
n0 + n1

l ROC − 2 χM
2 (8)

Proof: The proof is an immediate consequence of the Corollary 2.(b) in [21] □.

The theorem above allows us to test, within a parametric framework, whether a marker 

is informative. It is a divergence-based test of the equality of two distributions within 

a parametric family and is closely related to the likelihood ratio test. We explore the 

power and size of this test in our simulation studies where we consider also randomization 

(permutation based) versions of it under different parametric assumptions (results are 

presented in Web Appendix C and discussed in our simulation section). If the null 

hypothesis is rejected, then the following theorem, which is an immediate consequence 

of Corollary 2.(a) in [21], allows the construction of a confidence interval for the length of 

the ROC curve.

Theorem 4

Under the alternative hypothesis HA:θ1 ≠ θ0, assuming 
n0

n1 + n0
λ ∈ (0, 1)
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n0n1
n0 + n1

l ROC − lROC N 0, λtTI−1 θ1 t + (1 − λ)sTI−1 θ0 s , (9)

where I θ1  and I θ0  are the Fisher information matrices associated with θ1 and θ0, and the 

elements of the M × 1 vectors t and s are given by

ti = ∫−∞
+∞

f x; θ1
f x; θ0

1 +
f x; θ1
f x; θ0

2
df x; θ1

dθ1i
dx

si = ∫−∞
+∞

1 +
f x; θ1

f x ∣ ; θ0

2df x; θ0
dθ0i

−

f x; θ1
f x; θ0

1 +
f x; θ1
f x; θ0

2
df x; θ0

dθ0i
f x; θ1
f x; θ0

dx

Theorems 3 and 4 assume a common parametric family for the two distributions and are 

well suited for modeling data sets with large sample sizes using flexible parametric families, 

which is typically not the case in biomarker discovery. An alternative is to obtain smooth 

nonparametric estimates for the two distributions and estimate the length of the ROC curve 

based on equation (2). Testing can then be performed using a randomization test and 

bootstrap confidence intervals for the length can be obtained.

It should finally be noted that the length of the empirical ROC curve cannot be used for 

statistical inference, since it can easily be seen that, in the absence of ties, the length of 

the empirical ROC equals 2. So, in practice the length is estimated either by plugging 

in estimates of the parameters involved when assuming a parametric family or by first 

obtaining smooth nonparametric estimates of the densities involved. Further note, that under 

the classical binormal setting, in the case of equal variances knowledge of the AUC implies 

knowledge of the length of the ROC and vice versa.

3. The ROC with two cutoffs

Under the usual setting where it is assumed that the higher the measurement 

the more likely the existence of disease, the common ROC analysis 

plots the sensitivity Se(c) = TPR = 1 − F1(c) = S1(c) over the false positive rate 

1 − Sp(c) = FPR = 1 − F0(c) = S0(c) for all possible cutoffs c, with c ∈ ( − ∞, + ∞). In the 

case where we consider very high and very low measurements as indicative of the disease, 

while measurements of the healthy are considered to lie in a bounded interval, let (c1, c2), 

then a proper analogous to an ROC plot can be considered that may be more appropriate to 

assess the biomarker’s performance. In this case the sensitivity, the specificity, and the false 

positive rates are defined as follows:
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Se c1, c2 = F1 c1 + S1 c2 Sp c1, c2 = F0 c2 − F0 c1 F p c1, c2 = F0 c1 + S0 c2 ,

where c1 < c2. To perform an ROC analysis one can plot two surfaces in the unit 

cube, one that refers to the sensitivity and one that refers to the specificity for all 

c1 < c2, ci ∈ ( − ∞, + ∞), i = 1,2 (see Figures 4 and 5). Proceeding further, one can 

construct an equivalent definition, analogous to the one in the common settings in which 

ROC(t) = S1 S0
−1(t) , t ∈ (0, 1). In our case, since we have two cutoffs, there is the implication 

that for different pairs of c1 and c2 we may get the exact same sensitivity and specificity. 

Observe that by setting the false positive rate equal to an argument t ∈ (0, 1) we derive:

F p c1, c2 = t c2 = S0
−1 t − F0 c1 , F0 c1 < t < 1 (10)

and by substitution to the sensitivity we derive:

Se t; c1 = F1 c1 + ROC t − F0 c1 , F0 c1 < t < 1. (11)

Obviously, as c1 − ∞ we obtain the classical ROC setting. Note that as t 0 Se t, c1 1. 

Formula (11) above implies that for a given cutoff c1 we can plot a projection of the 

sensitivity surface on the unit rectangle for all t′ ∈ 0, 1 − F0 c1  where t′ = 1 − t expresses 

the specificity. One could derive this plot by scanning c1 restricted on a straight line parallel 

to the c2–axis (i.e. taking an infinitely thin slice) of the sensitivity surface. It can be easily 

shown (since the derivative of the ROC curve equals the density ratio evaluated at the t-th 

upper quantile of the healthy distribution) that the derivative of the sensitivity w.r.t. c1 is

dSe t; c1
dc1

= f0 c1 r c1 − r S0
−1 t − F0 c1 . (12)

If one is interested in forcing desired sensitivity levels to derive the corresponding specificity 

values, then using the argument t* to avoid confusion, we get:

Se c1, c2 = t* c2 = F1
−1 F1 c1 + 1 − t* F1 c1 < t* < 1 (13)

and by substitution to the specificity we derive:

Sp t*; c1 = F0 F1
−1 F1 c1 + 1 − t* − F0 c1 , F1 c1 < t* < 1. (14)

Similar expressions for given c2 can be also derived. Given two cutoffs we utilize the 

dominant generalized ROC curve (gROC):

gROC(t) = sup
F0 c1 + S0 c2 = t

F1 c1 + S1 c2

= sup
c1 ≤ F0

−1(t)
Se t; c1 = sup

c1 ≤ F0
−1(t)

F1 c1 + ROC t − F0 c1 t ∈ (0, 1) . (15)
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The above ROC curve was first introduced in [14]. They refer to it as the generalized 

ROC (gROC) curve. We follow this terminology even though one could hypothesize that 

a generalized ROC would, in principle, refer to settings with more than two cutoff points. 

Whereas considering more than two cutoff points may be useful in general classification 

problems with multimodal distributions, we find it hard to imagine practitioners entertaining 

this idea when dealing with biomarkers.

It is easily seen that gROC(t) 0 as t 0, gROC(t) 1 as t 1 and is non-decreasing. 

Furthermore, by observing that Se(t; − ∞) = ROC(t) and Se t; F0
−1(t) = 1 − ROC(1 − t), we 

have that gROC(t) ≥ ROC(t) and gROC(t) ≥ 1 − ROC(1 − t). We note here that 1 − ROC(1 − t)
is the appropriate ROC curve in the case where smaller measurements are indicative of the 

disease.

The two cutoff ROC curve is optimal under the assumption that the density ratio r(y) =
f1(y)
f0(y)

is unimodal in the sense that there exists y* (possibly −∞ or +∞) such that r(y) is strictly 

decreasing in −∞, y*  and strictly increasing in (y* = + ∞). This is easy to see since the 

ROC curve based on the density (likelihood) ratio transformed measurements results in a 

two cutoff decision rule. The assumption of a unimodal density ratio is a dispersion ordering 

of the two distributions involved (the distribution of healthy individuals is less dispersed 

than the distribution of the diseased) and is closely related to the uniform conditional 

variability ordering studied in [22]. Note that in the case of a multimodal density ratio one 

would need to consider more than two cutoffs to define an optimal ROC.

We note that when y* = − ∞ then we have an increasing density ratio and gROC(t) = ROC(t)
for 0 < t < 1, whereas when y* = + ∞ then we have a decreasing density ratio and 

gROC(t) = 1 − ROC(1 − t) for 0 < t < 1. Also, when y* is a real number and r( − ∞) = r(∞)
(as is the case with two Normal distributions with the variance of the diseased greater than 

the variance of the healthy) for each t we obtain two cutoffs that are real numbers. In this 

case, by setting the expression in equation (16) equal to 0, we obtain the unique solution for 

the lower cutpoint, c1*(t), that satisfies

r c1 = r S0
−1 t − F0 c1 . (16)

Obviously the second cutoff equals c2*(t) = S0
−1 t − F0 c1* . Thus 

gROC(t) = F1 c1*(t) + S1 c2*(t) . A straightforward application of the envelope theorem (see 

for example [23], pg. 603–609) yields

dgROC(t)
dt = r c1*(t) = r c2*(t) (17)

Furthermore, the Youden index of gROC(t), which is commonly used to select cutoff points 

in an ROC setting, is given by
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sup
0 < t < 1

gROC(t) − t = sup
0 < t < 1

(gROC(t) − t), (18)

since, in this case, gROC(t) is the optimal ROC curve and thus concave. It is easy to see that 

maximization of gROC(t) − t leads to selecting the two cutoff points that satisfy

dgROC(t)
dt = r c1*(t) = r c2*(t) = 1 (19)

This method of obtaining cutoffs can be extended to the situation where costs are available. 

For example, as discussed in [1] (pg. 31,32,72), denote by C the cost of performing the test, 

CD
(1) and CD

(0) the costs of treatment and morbidity for diseased subjects that test positive 

and negative respectively, CD
(1)

, the cost of work-up, stress and unnecessary treatment for the 

non-diseased that test positive. Then minimization of the overall cost of disease per subject 

in the population in the presence of testing leads to selecting the two cutoff points that 

satisfy

dgROC(t)
dt = r c1*(t) = r c2*(t) = 1 − ρ

ρ
CD

(1)

CD
(0) − CD

(1) , (20)

where ρ denotes disease prevalence. In the following section we discuss, among other 

things, the estimation of cutoffs in various settings and the associated inference.

Example:

Consider two markers M1 and M2 that both follow a standard normal distribution for the 

non-diseased population. Assume the measurements of the diseased population for the first 

marker, M1, follow a N(1, 12) distribution, whereas the measurements of the diseased 

population for the second marker, M2, follow a N(0, 42) distribution (see Figure 6 for the 

discussion that follows). The ROC curves for these two markers are: ROC1(t) = Φ 1 + Φ−1(t)

(with AUC1 = 0.76025 and length lROC1 = 1.5465) and ROC2(t) = Φ 1
4Φ−1(t)  (with AUC2 = 

0.5000 and length lROC2 = 1.6701). By examining the two ROC curves one will be tempted 

to conclude that M1 is superior to M2. The same conclusion would follow by comparing 

the two AUCs. However, whereas ROC1(t) is the optimal curve for M1, ROC2(t) is not 

the optimal curve for M2. The density ratios for the two markers are r1(y) = e
1
2(2y − 1) and 

r2(y) = 1
4e

15
32y2

. Since an ROC curve is invariant to monotone transformations, the optimal 

curve (likelihood ratio ROC) for M1 is based on the measurements themselves whereas the 

optimal curve for M2 is the curve based on the squared values of the measurements, which 

here yields gROC2(t) = 1 − G G−1(1 − t) /16 , where G is the cdf of a χ1
2 distribution. We 

have AUCgROC2 = 0.8440, lgROC2 = 1.6701. Note that the length of the optimal ROC for the 

second marker is the same as that of ROC2. By comparing the two markers based on their 
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optimal ROC curves one would conclude that the second marker is superior, which is the 

conclusion one would arrive at when using the length as a summary measure.

To obtain cutoffs based on the Youden index criterion we simply set the density ratios to one 

and thus obtain a single cutoff for M1 (c = 0.5) and two cutoffs for M2 (c1 = −1.71972 and c2 

= +1.71972). For M1 this results in a false positive rate of 0.308538 and a sensitivity equal to 

0.691462. For M2, using two cutoffs, the false positive rate is 0.0854834 and the sensitivity 

is equal to 0.667246.

4. Estimation and inference for the sensitivity and specificity of the 

selected markers

In a given set of the top candidates, both proper and improper ROC curves might appear. 

For those biomarkers that exhibit proper ROC curves, well defined and studied measures 

are available in the literature in order to evaluate them. For the evaluation of those 

biomarkers that exhibit an improper ROC curve, caution is required. The AUC bounds 

of the optimal ROC curve for a given marker (see Theorem 2) provide a rough indication 

of the discriminatory potential of the marker. Obviously, the full potential of the marker 

can be assessed by using the likelihood ratio transformation (see also [24]). However, in 

practice the likelihood ratio is not known. Martínez-Camblor et al. (2018) ([17]) explore 

functional transformations to deal with this problem but as they note this practice can 

produce classification regions with no practical interpretation. An alternative would be to 

consider nonparametric estimation of the density ratio under the assumption of unimodality, 

but we leave this as the goal of future research. Furthermore, given a large number of 

candidate biomarkers to be ranked, exploring a suitable functional transformation for each 

would be a daunting task. We present below a simplified framework with which we can 

estimate the sensitivity, specificity, Youden-based optimal cutoffs (possibly modified to 

account for costs), and the appropriate construction of confidence intervals. Below we 

explore parametric and non-parametric approaches.

4.1. Normality assumption

4.1.1. Estimation and inference for the sensitivity and specificity when given 
a pair of cutoffs—For given cutoffs of an improper marker the corresponding sensitivity 

and specificity under the normality assumption (binormal setting) we have:

Se c1, c2 = Φ
c1 − μ1

σ1
+ Φ

μ1 − c2
σ1

, Sp c1, c2 = Φ
c2 − μ0

σ0
− Φ

c1 − μ0
σ0

and the estimated sensitivity and specificity for given c1, c2 are given by plugging in 

maximum likelihood estimates of the corresponding means and variances: μ0, σ0, μ1, 

and σ1. For the construction of the underlying confidence intervals, one can simply 

apply the delta method: V ar(Se) ≈ ∂Se
∂μ1

, ∂Se
∂σ1

Σ1
∂Se
∂μ1

, ∂Se
∂σ1

′ where an estimate of the 2 × 2 

diagonal covariance matrix Σ1 can be derived by using V ar μ0 =
σ1

2

n1
 and V ar σ1 =

σ1
2

2 n1 − 1 . 
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The partial derivatives can be derived in closed form. A similar expression is derived 

for V ar(Sp), for which the involved partial derivatives also can be derived in closed 

form. In order for the proposed confidence intervals to avoid exceeding the bounds 

of (0,1), following the ideas presented in [25], we first transform the sensitivity using 

Φ−1( ⋅ ), then derive based on the delta method a 95% confidence interval for the 

transformed sensitivity, and finally back transform the endpoints of that confidence interval 

with Φ( ⋅ ). Thus, the proposed confidence interval is: Φ Φ−1(Se) ± 1.96 V ar Φ−1(Se) , 

where V ar Φ−1(Se) ≈ ∂Φ−1(Se)
∂μ1

, ∂Φ−1(Se)
∂σ1

Σ1
∂Φ−1(Se)

∂μ1
, ∂Φ−1(Se)

∂σ1
′
. The derivation for the 

corresponding confidence interval of the specificity is similar.

4.1.2. Estimation and inference for the sensitivity and specificity when the 
pair of cutoffs is estimated—In the absence of any clinical insight regarding where to 

locate the two cutoff points, we can estimate them under the optimization of some clinically 

relevant criterion. Such a criterion is the Youden index initially suggested in [26] for the 

single cutoff setting and extended to the dual cutoff framework given in [18]:

J = maxc1, c2:c1 < c2 Se c1, c2 + Sp c1, c2 − 1 (21)

Under the normality assumption, the pair of cutoffs can be derived in closed form by:

J = maxc1 Φ c1 − μ1
σ1

+ Φ μ0 − c1
σ0

+ maxc2 Φ μ1 − c2
σ1

+ Φ c2 − μ0
σ0

− 1 (22)

To maximize J, we need to separately maximize both terms of (22), which are both 

equivalent to the maximization of the regular Youden index in the common single cutoff 

setting of the binormal case. Hence, under the necessary assumption that σ0 < σ1, the pair of 

cutoffs can be derived in closed form by:

c1, 2* =
σ0

2μ1 − σ1
2μ0 ± σ0σ1 μ0 − μ1

2 + σ0
2 − σ1

2 log
σ0

2

σ1
2

σ0
2 − σ1

2
(23)

We note that in the binormal setting the density ratio is unimodal and the two cutoffs 

are obtained by solving equation (19). The estimated cutoffs can be derived by simply 

plugging in (23), the maximum likelihood estimates of the means and variances. After 

the pair of cutoffs is estimated, then the corresponding sensitivity and specificity (at 

the estimated pair of cutoffs) are correlated, as opposed to the previous section where 

the cutoffs were given. Following the ideas in [25] we denote δe = Φ−1 Se c1*, c2*  and 

δp = Φ−1 Sp c1*, c2* . We can derive the estimates δe and δ p by simply plugging in the 

maximum likelihood estimates of the means and variances i.e., μ0, σ0, μ1, σ1). Then, based 

on the delta method we derive: V ar δe ≈
∂δe
∂μ0

,
∂δe
∂σ0

,
∂δe
∂μ1

,
∂δe
∂σ1

Σ
∂δe
∂μ0

,
∂δe
∂σ0

,
∂δe
∂μ1

,
∂δe
∂σ1

, where 
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Σ is the diagonal matrix Σ = diag V ar μ0 , V ar σ0 , V ar μ1 , V ar σ1  and V ar μ0 =
σ0

2

n0
, 

V ar σ0 =
σ0

2

2 n0 − 1 , V ar μ1 =
σ1

2

n1
, and V ar σ1 =

σ1
2

2 n1 − 1 . The corresponding estimates, and 

thus ∑ , can be derived by simply plugging in the maximum likelihood estimates of the 

means and variances. The expression is similar for V ar δ p . The covariance can be derived 

by: Cov δe, δ p ≈
∂δe
∂μ0

,
∂δe
∂μ0

,
∂δe
∂μ1

,
∂δe
∂σ1

Σ
∂δ p
∂μ0

,
∂δ p
∂μ0

,
∂δ p
∂μ1

,
∂δ p
∂σ1

′
. All partial derivatives can be 

found in closed form. An approximate joint confidence region for (δe, δp) can be obtained by 

the ellipse defined by (x − a)′Σ−1(x − a) = q, where a = δe, δ p  and q is the 95%th percentile 

of a χ2
2. To derive a joint confidence region of the estimated sensitivity and specificity within 

the ROC space, we back-transform the elliptical confidence region by applying Φ( ⋅ ) on 

its coordinates, and hence derive an egg-shaped confidence region for (Se, Sp). Marginal 

Wald type 95% confidence intervals for the sensitivity and specificity can be also derived 

within the ROC space by Φ δe ± 1.96 V ar δe  and Φ δ p ± 1.96 V ar δ p , respectively. Based 

on the Bonferroni correction, once the marginal confidence intervals are derived, we also 

can proceed with rectangular confidence regions that are more easily communicated to 

clinicians. By constructing the rectangle with sides based on Φ δe ± 2.24 V ar δe  and 

Φ δ p ± 2.24 V ar δ p  that correspond to adjusted 97.5% marginal confidence intervals, we 

obtain a 95% confidence rectangular region for the (Se, Sp). However, such a rectangular 

region does not accommodate the implied correlation of the estimated sensitivity and 

specificity at the Youden-based cutoffs, and for that reason it consistently provides a larger 

area compared to the egg-shaped proposed region previously described. This is observed 

in our simulation studies (Web Appendix C). In case normality is violated, transformations 

to normality might be useful alternatives for a selected marker. A discussion about the 

Box-Cox transformation ([27]) in this setting is given in the Web Appendix B.

4.2. Estimation and inference using kernel density estimates

4.2.1. Estimation and inference for the sensitivity and specificity when given 
a pair of cutoffs—When no parametric assumptions can be justified by the data at hand, 

then we need to proceed non-parametrically. In such a case, we employ the kernel density 

estimate of the form:

f0(y) = 1
n0ℎ0

∑
i = 1

n0
K y − Y 0i

ℎ0
, (24)

where h0 is the bandwidth for which one can use a simple plug-in expression like 

the one given by Silverman’s rule ([28]): ℎ0 = 0.9min sd Y 0 , iqr Y 0 /1.34 n0
−0.2, where 

Y 0i, i = 1, …, n0 are the marker scores for the healthy group. Similarly for f1(y). Given 

the cutoffs we obtain for the sensitivity and specificity: Se c1, c2 = F1 c1 + 1 − F1 c2 , 

Sp c1, c2 = F0 c2 − F0 c1  where F0(x) = ∫−∞
x f0(z)dz, and similarly for F1(y) = ∫−∞

y f1(z)dz. 
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A common choice that we employ in practice is the normal kernel. This allows us to write 

F0(y) = 1
n0

∑i = 1
n0 Φ

y − Y0i
ℎ0

 and F1(y) = 1
n1

∑j = 1
n1 Φ

y − Y1i
ℎ1

. From standard kernel theory 

(see [29] and [30]) it can be shown that kernels are asymptotically equivalent to empirical 

estimates (Theorem 2.1. of [31]), and thus we have:

V ar Se c1, c2 ∼ 1
n1

F1 c1 1 − F1 c1 + 1
n1

F1 c2 1 − F1 c2 −
F1 c1 1 − F1 c2

n1
.

Similarly for the specificity. An estimate can be derived by simply 

plugging in the estimated kernel-based distribution functions. Using the delta 

method we have V ar Φ−1 Se c1, c2 =
∂Φ−1 Se c1, c2

∂Se c1, c2
× V ar Se c1, c2 , and thus 

the proposed 95% confidence interval for the sensitivity is given by 

Φ Φ−1 Se c1, c2 ± 1.96 V ar Φ−1 Se c1, c2 . Similarly for the specificity. For a joint 

confidence interval, one can readily obtain a rectangular region based on the Bonferroni 

adjustment, since the estimated sensitivity and specificity are uncorrelated, as the cutoffs are 

given.

4.2.2. Estimation and inference for the sensitivity and specificity when the 
pair of cutoffs is estimated—Since the kernel based cutoffs cannot be derived in closed 

form, a numerical procedure is needed to obtain the estimates of the optimal pair of cutoffs, 

c1* and c2*. Once the corresponding Se c1*, c2*  and Sp c1*, c2*  are derived, then we consider 

again: δe = Φ−1 Se c1*, c2* , δ p = Φ−1 Sp c1*, c2* . To derive estimates of V ar δe  and V ar δ p

and Cov δe, δ p , we employ the following bootstrap scheme:

• Step 1: Calculate the bandwidths h0 and h1 based on the scores of the healthy and 

diseased group respectively. Derive the corresponding estimates of the cutoffs 

using the kernel density estimates f0 and f1. Obtain numerically the Youden-

based optimal pair of cutoffs (c1*, c2*) as well as Sp c1*, c2*  and Se c1*, c2* .

• Step 2: Sample with replacement from the scores of the healthy and diseased 

group separately, let Y 0
(b) and Y 1

(b).

• Step 3: Set Y 0i
(s) = Y 0i

(b) + e0i, where e0i ∼ N 0, ℎ0
2 , and Y 1i

(s) = Y 1i
(b) + e1i, where 

e1i ∼ N 0, ℎ1
2 . Using Y 0

(s) and Y 1
(s) obtain numerically the Youden-based optimal 

pair of cutoffs (c1*, c2*), as well as Sp c1*, c2*  and Se c1*, c2* .

• Step 4: Use the Φ−1( ⋅ ) transformation and derive the current (for the current 

bootstrap sample) Φ−1 Sp c1*, c2*  and Φ−1 Se c1*, c2* .
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• Step 5: Repeat Steps 2 and 4 B times, and based on these B estimates derive the 

bootstrap-based estimates of V ar Φ−1 Sp c1*, c2* , V ar Φ−1 Se c1*, c2*  and the 

underlying Cov Φ−1 Sp c1*, c2* , Φ−1 Se c1*, c2* .

• Step 6: Construct the 95% elliptical confidence region for 

Φ−1 Sp c1, c2 , Φ−1 Se c1, c2  and then construct the egg-shaped confidence 

region in the ROC space by transforming back the coordinates of the elliptical 

confidence region using Φ−1( ⋅ ).

In practice, we use B = 400 bootstrap samples. An approximate joint confidence region 

for (δe, δp) can be obtained as described in the previous sections, using the construction 

of an ellipse defined by (x − a)′Σ−1(x − a) = q, where q is the 95%th percentile of a χ2
2. 

The resulting joint confidence region of a = (Se, Sp) in the ROC space is obtained by back-

transforming. Note that in Step 3 we add a generated error term to the bootstrapped sample 

of each group. Alternatively, one could simply proceed with the drawn bootstrap samples 

instead. However, as we point out later in our simulation study, we find the presented smooth 

bootstrap scheme to perform better than a regular bootstrap algorithm that would not involve 

the addition of these error terms. Such a finding is in-line with similar conclusions under a 

different ROC setting presented in [32].

5. Simulations

To evaluate our approaches, we consider Monte Carlo simulations under various scenarios. 

Our simulations refer to the evaluation of the following:

• The size and the power of the test statistic related to the proposed length of the 

ROC curve (thoughout our simulations the significance level considered is a = 

0.05).

• The coverage of the egg-shaped versus the rectangular confidence region, when 

the two underlying cutoffs are estimated by the data.

In our simulations we have generated data from normal distributions, gamma distributions, 

as well as a mixture of normals to explore the robustness of our approaches. In terms 

of sample size, we considered scenarios with (n0, n1) = (50,50),(100,100),(200,200), and 

(500,500). All tables of our simulation results are given in Web Appendix C.

5.1. Size and power of the proposed test based on the length of the ROC curve

Regarding the size and power of the proposed test, we consider both traditional scenarios 

in which the stochastic ordering X < Y holds (or traditional setting), as well as scenarios 

in which this assumption is violated (or non-traditional setting). In both cases we compare 

the size and power of our statistic to the well-known Wilcoxon (Mann-Whitney), t-test, 

and the Kolmogorov-Smirnov test (KS). For the traditional setting, we consider 12 different 

scenarios in terms of distributions for each sample size: 6 related to normal distributions and 

6 to gamma distributions. We observe that, in terms of size, our test provides satisfactory 

performance, just as the competing well-known tests (see Tables 1-2 of the Web Appendix). 
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In terms of power, for the normal related scenarios, we observe that the t-test and the 

Wilcoxon test exhibit the best performances, as expected. However, even though our 

performance is inferior, as anticipated, the differences compared to the traditional tests are 

not dramatic. For example, after applying a Box-Cox transformation our test exhibits almost 

equivalent performance with the Kolmogorov Smirnov test, even in the gamma-related 

scenarios. Our performance is even better if we assume normality, and the generated data 

are indeed normally distributed. This is not a surprise, as we can accommodate such an 

assumption. We observe that the Box-Cox based length-test works similarly well in all 

scenarios, in spite of the estimated extra parameter. Regarding our kernel based approach, 

we observe nice size performance, as well as satisfactory power performance throughout.

Regarding the non-traditional scenarios, we consider two settings for the power. One that 

refers to two underlying normal distributions with unequal variances, and one that refers 

to two gammas (the selected parameters are given in the Web Appendix). Under the non-

traditional scenarios, the differences are dramatic in favor of our methods. More specifically, 

we observe that the t − test and the Wilcoxon test completely collapse, as expected. The 

KS test is dramatically outperformed by our approaches throughout, even in the cases for 

which we do not make any distributional assumption (see Tables 1-2 of the Web Appendix). 

Furthermore, even in cases for which we make the wrong distributional assumptions, since 

a gamma model does not lie in the Box-Cox family, we still observe better performance in 

favor of our test (see Table 2 of the Web Appendix).

5.2. Coverage and areas of egg-shaped and rectangular confidence regions of the 
sensitivity and the specificity

For this setting we consider both cutoffs to be unknown, and we estimate them based 

on the extension of the Youden index. Thus, we compare the approaches of egg(normal), 
egg(BC), and egg(kernels), depending on our underlying assumption of the distribution of 

the two groups. We compare these confidence regions in terms of coverage and area to 

their rectangular counterparts: rect(normal), rect(BC), and rect(kernels). We observe that the 

rectangular regions are more conservative throughout, and that they are outperformed by 

the proposed egg-shaped confidence regions in terms of their area. The reason is that the 

egg-shaped regions take into account the underlying correlation of the estimated pair of 

sensitivity and specificity, whereas the rectangular confidence regions do not. All relevant 

results are presented in Table 3. We observe that a smooth bootstrap ([32], [33]) scheme is 

more preferable in attaining the desired coverage as opposed to a traditional bootstrap based 

algorithm.

5.3. A note on bandwidth selection

As pointed out by a referee different kernel based strategies may provide improved 

results with regards to our non-parametric strategy. This is true as presented in the vast 

literature regarding bandwidth selection when kernel density estimates are involved. For our 

methods and simulations, we have used a simple closed form bandwidth [28]. Other more 

sophisticated bandwidths used in kernel density estimation are available in the literature. 

A standard textbook that contains such strategies is given by [29] among others. Another 

kernel technique of interest is presented in [34] and is based on diffusion. We have compared 
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the latter with the standard plug-in bandwidth of Silverman’s rule previously discussed 

in section 4. Our comparisons are focused on the bias, the standard error, and the MSE 

that relate to the estimation of the length of the ROC curve. We have considered our 

aforementioned gamma related scenarios as well as the bimodal mixture (for the values of 

the parameters considered see Web Appendix C) and used 1000 Monte Carlo iterations. 

Our results are presented in Table 4 of the Web Appendix C where we compare the two 

kernel strategies. We observe that for the gamma related scenarios the diffusion is the clear 

winner while results are similar in the bimodal setting. Generally, the optimal bandwidth 

strongly depends on the underlying setting. For that reason, inferences based on smoothed 

estimations are generally complex. Further comparisons with cross validation bandwidths 

are also of interest but such issues lie beyond the scope of this study and are left for future 

research.

6. Applications

6.1. Pancreatic Cancer

We investigated the contribution of autoantibodies as potential circulating biomarkers for 

PDAC early detection using a case-control study design. To assess autoantibody levels in 

early stage PDAC patient samples, we used microarray slides coated with a nitrocellulose-

surface and spotted with 121 proteins, previously described as tumor-associated antigens 

across different solid tumor types from multiple prior studies ([35], [6], [36]). We tested 

three independent plasma sample sets: set 1 consisted of stages IB to IIB PDAC cases (n 
= 10), healthy controls (n = 10), and chronic pancreatitis cases (n = 10); set 2 consisted 

of early-stage (IA to IIA) PDAC cases (n = 42), healthy controls (n = 50), and chronic 

pancreatitis cases (n = 50); and set 3 consisted of resectable PDAC cases (n = 21) 

and benign pancreatic cyst cases (n = 14). Plasma samples were individually hybridized, 

and immunoglobulin G reactivity against each spotted antigen was quantified using an 

indirect immunofluorescence protocol. In our analysis, we consider the performance of the 

autoantibodies for group separation of the healthy versus the PDAC patients, after merging 

the data of all three sets. This suggests a total sample size for the control group of n0 = 

60, and a sample size for the PDAC group of n1 = 73. In Figure 7, we plot the AUC of all 

121 autoantibodies versus the kernel-based length, and we observe that the highest length 

is achieved by the autoantibody HNRNPUL1. The empirical and the kernel-based estimates 

of the traditional ROC of HNRNPUL1 are shown in Figure 8. The empirical AUC of that 

autoantibody with the corresponding 95% confidence interval is 0.4468(0.3392,0.5544). For 

the kernel-based length, we derive an estimate of 1.8255 with a 95% confidence interval 

of (1.7846–1.8748). We note that, based on Theorem 2, a length of 1.8255 corresponds 

to an area under the optimal ROC curve between 0.9035 and 0.9645, which implies that 

the marker has high potential. We provide the estimated kernel-based dominant generalized 

ROC (gROC) curve in Figure 8 which is obtained by simply using the ratio of the kernel 

based estimators. Its AUC equals to 0.9154. We have to stress that in theory the gROC is 

the optimal ROC under the condition of a unimodal likelihood ratio and thus not always 

optimal. Moreover, the estimation of the gROC is computationally intensive, especially 

if one wants to obtain the gROC estimates for a large number of biomarker candidates. 

On the other hand, estimates of the length are computationally trivial to obtain and at 
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the same time it provides estimated bounds of the optimal and unknown optimal AUC. 

the theoretical gROC is not always the optimal ROC and is computationally intensive. 

The surfaces of the sensitivity and specificity of HNRNPUL1 are given in Figure 9. This 

plot helps an investigator visualize on the original scale of the marker the tradeoff of the 

sensitivity and specificity for various pairs of c1 and c2. The top panel of Figure 9 provides 

the egg-shaped confidence region around the Youden-based optimal pair of sensitivity and 

specificity. Remember that a perfect marker always yields a length of 2, while a useless one 

would yield a length of 2. The kernel density estimates for the healthy and the PDAC group 

are presented in Figure 9. We observe a bimodality for the PDAC-group related density that 

extends to the right and to the left of the estimated density of the controls. Namely, PDAC 

patients do exhibit either very high or very low measurements of this autoantibody compared 

to the healthy group. The reason is that the increase of tumor antigen levels in the plasma is 

associated with immune complex formation, leading to the depletion of free autoantibodies 

against the antigen ([6]).

We proceed by further evaluating this autoantibody in terms of sensitivity and specificity. 

As there are no available clinical insights regarding the underlying cutoffs, we estimate 

them by the data at hand. In this data set, as the diseased group exhibits bimodality, we 

do not proceed with the parametric-based approaches, but with our kernel-based approaches 

throughout. The kernel-based estimated cutoffs are derived to be (−2.1336, 1.8944) and are 

visualized in Figure 9. The underlying Youden-based sensitivity and specificity, along with 

their marginal 95% confidence intervals, are 0.8429(0.7946, 0.8831) and 0.9502(0.8498, 

0.9880). The corresponding egg-shaped and rectangular 95% confidence regions are given 

in the first panel of Figure 9, in which we observe that the area of the egg-shaped region 

is 0.0151, and smaller than the rectangular one that yields an area of 0.0164. The surfaces 

of the sensitivity and specificity within the ROC space, which now is the unit cube, are 

given in Figure 9 (middle panel). A contour plot of those are given in the bottom two 

panels of Figure 9. By those figures, it is evident that the specificity achieved based on the 

Youden-based cutoffs is impressively large for any pair of cutoffs for which c1 < −2.1336, 
c2 > 1.8944. In the contour plots of Figure 9, we also visualize by a dot the corresponding 

pair of the Youden-based optimal pair of cutoffs. Overall, our results show a very promising 

performance of this autoantibody, which would have been rejected had we relied on the 

traditional empirical-based AUC.

6.2. Esophageal squamous cell carcinoma

Esophageal squamous cell carcinoma (ESCC) is an aggressive form of cancer with poor 

prognosis [37]. Biomarker discovery for its early detection is important since esophageal 

cancer is usually detected only after an advanced stage. Su et al. (2011) ([37]) focus on 

profiling global gene expression and their study revealed 159 genes that showed statistically 

significant difference between cases and controls based on fold-changes. Out of those 116 

are derived to be up-regulated while 43 down-regulated. Their study involves 53 cases and 

53 controls, and their data are publicly available from Affymetrix U133A expression arrays. 

These data are also discussed in [18] where it is also pointed out that non-monotone (or 

‘non-traditional’) markers are also available in this data set.
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For probe 209644 the empirically estimated AUC is 0.5421 (0.4175–0.6667). This indicates 

that probe 207039 would be discarded as uninformative. By employing the proposed 

approaches, we derive the length of the ROC that corresponds to this marker to be 1.6518 

and statistically significant (95% CI is 1.5938–1.7403). The two cutoff Youden yields a pair 

of Spec and Sens equal to (0.8754, 0.6659). In addition, the area under the gROC for this 

marker is 0.8238. The sensitivity and specificity surfaces along with the confidence region 

around their Youden based optimized values are given in Figure 10.

Results are analogous for probe 207039. The empirical AUC is equal to 0.5180(0.3963–

0.6397). Namely, this marker too was discarded as uninformative while in fact the length 

of its ROC is equal to 1.7442 and statistically significant with a 95% CI (1.6807–1.8101). 

The two cutoff analysis results to a pair of (Spec, Sens) equal to (0.9180, 0.7648). The area 

under the gROC of this marker is equal to 0.8858 which implies a potentially promising 

marker that would have been missed with traditional ROC methodology. The sensitivity and 

specificity surfaces along with the confidence region around their Youden based optimized 

values are given in Figure 11. The corresponding gROCs for both probes are shown in 

Figure 12.

7. Discussion

Nowadays, high throughput technologies allow for the simultaneous input of hundreds of 

markers. Hence, there is a crucial need of proper biomarker ranking. Traditional measures 

involve the AUC, as well as affordable levels of sensitivity and specificity that may be ill 

posed under a potential improper behavior of a biomarker, implying a severe violation of the 

underlying stochastic ordering assumption of the healthy and cancer patients.

In this paper we explore the properties of the length of the ROC curve both under a 

parametric and a non-parametric setting. We illustrate that the length of the ROC can be 

expressed as a ϕ−divergence and for parametric models we study its asymptotic distribution. 

We provide a link of the length of the ROC with the area of the optimal ROC. Namely, 

given the length, we provide the upper and lower bounds of the AUC of the optimal ROC 

which reveals the full potential of a marker. We focus on settings where the density ratio 

is unimodal and thus the gROC is optimal. For cutoff derivation we explore the two cutoff 

Youden index and illustrate that under this context the sensitivity and the specificity are 

surfaces that can be visualized in the unit cube to reveal the usual sens/spec tradeoff. We 

further provide joint confidence regions for the achieved sensitivity and specificity. We 

provide both parametric and non-parametric frameworks.

Our approaches can have a broad application in the biomarker field as they may be safely 

applied to any candidate list, ensuring that all four kinds of markers will be captured: 1) 

markers of the usual monotone ordering (i.e. the higher the marker score the greater the 

suspicion of the disease), 2) markers of the reverse ordering (the lower the marker score the 

greater the suspicion of the disease), 3) a non-monotone behavior which is commonplace 

in many mundane tests and may sometimes be present in cancer biomarkers. That is, very 

high and very low scores tend to correspond to diseased individuals while the healthy scores 

tend to lie in a zone in between. Finally, 4) more complex non-monotone behaviors than in 
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case (3) that could imply more than two cutoffs (when the density ratio has two or more 

modes). We note that under a biomarker setting, it is hard to think of plausible situations 

where more than two cutoffs are necessary. Regarding case (3) above, we have illustrated 

three examples of such markers in our application section. The non-monotone behavior of 

HNRNPUL1 can be explained biologically. For example, we have previously observed that, 

with tumor development and progression, elevated levels of antigen in the plasma lead to 

the formation of circulating immune complexes, which deplete plasma of free autoantibodies 

against the antigen ([6]). This could explain the improper behavior of autoantibodies against 

the protein HNRNPUL1, implying that very high and very low measurements are indicative 

of cancer. We have observed that immune complexes for HNRNP family members can 

be identified in the plasma of cancer patients, and that their levels are, similarly, either 

elevated or decreased in patients, compared to matched controls. These results suggest 

that autoantibodies and immune complexes for the same antigen may exhibit an inverse 

relationship, leading to the improper behavior which is the focus of our paper. Based on 

previously discussed traditional biomarker ranking approaches, an improper behavior of the 

autoantibody HNRNPUL1, in terms or recognizing early PDAC stages, would naively lead 

to its rejection as uninformative. In this paper, we provide a complete framework to discover 

and then evaluate such promising biomarkers. Our approaches fill in an essential literature 

gap, which may have caused the rejection of very useful biomarkers of this nature.

There are several points for future research. One practical topic that needs to be further 

investigated is the efficiency of different versions of bandwidth especially since this setting 

may involve bimodal densities. Further comparisons based on other measures can also be 

of interest. One such measure is the overlap coefficient (OVL) discussed in [38], [39], 

[40], and [41]. Graphically, the OVL is the area between the densities of the non-diseased 

and the diseased group when those are plotted on the same axes and is related to Kullback-

Leibler divergence ([42]). An interesting measure that can be used in conjunction with our 

approaches is the TNRC (see [9]) to classify which of the detected markers are improper. As 

discussed above, it is important to note that our approach may reveal markers for which the 

use of more than two cutoffs is suggested. A smooth graph of the density ratio could be used 

for revealing such markers. A graph suggesting a monotone density ratio indicates a proper 

ROC curve whereas a graph suggesting a unimodal density ratio indicates the need of two 

cutoffs. Other type of configurations may indicate the necessity of more than two cutoffs 

which, as stated above, is hard to justify when dealing with biomarkers.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Upper panels: An example of a perfect biomarker where the densities of the controls and the 

diseased (left) comply with a traditional framework, under which the stochastic ordering X 
< Y holds, and the corresponding ROC curve is in the right panel. Corresponding metrics: 

AUC = 1, pAUC(t1, t2; t2 > t1) = t2 − t1, area between the ROC and the reference diagonal= 

0.5, proposed length= 2. Lower panels: An example of a perfect biomarker in which the 

stochastic ordering X < Y cannot be assumed. Corresponding metrics: AUC = 0.5, pAUC(t1, 

t2;t2 > t1) = 0.5(t2 − t1), area between the ROC and the reference diagonal= 0.25, proposed 
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length = 2 (the proposed length is immune to directionality and characterizes the underlying 

biomarker as perfect in both cases, as opposed to all other measures.)

Bantis et al. Page 26

Stat Med. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Geometric representation of the problem of finding the max and min area under the curve, 

when assuming convexity for a given length of the rope (ROC). Under convexity, it is 

enough to study the area between the reference diagonal and the rope. Hence, we only can 

focus on the right panel (b), which is equivalent to the left panel (a).

Bantis et al. Page 27

Stat Med. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Upper panels:
Geometric representation of the maximum area for a given length when the length is larger 

than π
2  (panel (a)), and the minimum area for the same given length (panels (b) and (c)). 

Both panels (b) and (c) correspond to the same area. All three panels correspond to the same 

length. Lower panels: Geometric representation of the maximum area for a given length 

when the length is smaller than π
2  (panel (a)), and the minimum area for the same given 

length (panels (b) and (c)). Both panels (b) and (c) correspond to the same area. All three 

panels correspond to the same length.
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Figure 4. 
Example of a sensitivity surface when the density of the controls is N(8,1) and the density of 

the cases is a two component normal mixture: 0.5N(6, 1) + 0.5N(10, 1). The sensitivity plot 

is given under four different angles (panels above) for better visualization. We observe that 

when c1 is very small and c2 is very large then the sensitivity yields very low values since 

the mass of both densities is low below c1 and beyond c2. In addition, if c1 is very close to c2 

then we expect that almost all individuals that are diseased will be categorized as such since 

it is very likely that they will not be between c1 and c2 and thus the sensitivity for those 

cutoffs is very high (red regions).
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Figure 5. 
Example of a specificity surface when the density of the controls is N(8, 1) and the density 

of the cases is a two component normal mixture: 0.5N(6, 1) + 0.5N(10, 1). The specificity 

plot is given under four different angles (panels above) for better visualization. We observe 

that when c1 is very small and c2 is very large then the specificity yields very high values 

as expected since most healthy individuals will lie within (c1, c2). In addition, if c1 is very 

close to c2 then we expect that almost all individuals that are healthy will be categorized 

as diseased and since it is very likely that they will not be between c1 and c2 and thus the 

specificity for those cutoffs is very low (blue regions).
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Figure 6. 
ROC curves for the hypothetical example with markers M1 and M2. Both ROC curves are 

illustrated and would tempt us to consider M1 as an overall better biomarker. The gROC of 

marker 2 is presented as well showing its potential in actually outperforming M1. The gROC 

of M2 and the ROC of M2 have exactly the same length that is larger than the length of M1.
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Figure 7. 
Scatterplot of the AUCs and proposed lengths of all 121 autoantibodies.
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Figure 8. 
Left Panel: Traditional ROC curves for the top performing autoantibody: dashed line refers 

to the empirical, and solid line refers to the kernel-smoothed based one. The corresponding 

AUCs and 95% CIs are 0.4468(0.3392, 0.5544) and 0.3892(0.3055,0.4730), respectively. 

The estimated kernel-based length with the corresponding 95% CI is 1.8255 (1.7846–

1.8748). Right panel: The corresponding kernel-based estimated gROC. The area under 

this kernel based estimate of gROC is 0.9154.
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Figure 9. 
Top left: Egg shaped 95% confidence region for the sensitivity and specificity at the Youden-

based estimated cutoffs. Top right: Underlying kernel densities of the healthy and the 

diseased. Middle: Surfaces of sensitivity and specificity along with the estimated Youden-

based optimal pair of cutoffs. Bottom left: Contour plot of the surface of sensitivity for all 

possible cutoffs, along with the estimated Youden-based optimal pair of cutoffs (black dot). 

Bottom right: Contour plot of the surface of specificity for all possible cutoffs, along with 

the estimated Youden-based optimal pair of cutoffs (black dot).
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Figure 10. 
ESCC data (probe 207039).Top left: Egg shaped 95% confidence region for the sensitivity 

and specificity at the Youden-based estimated cutoffs. Top right: Underlying kernel densities 

of the healthy and the diseased. Middle: Surfaces of sensitivity and specificity along with 

the estimated Youden-based optimal pair of cutoffs. Bottom left: Contour plot of the surface 

of sensitivity for all possible cutoffs, along with the estimated Youden-based optimal pair of 

cutoffs (black dot). Bottom right: Contour plot of the surface of specificity for all possible 

cutoffs, along with the estimated Youden-based optimal pair of cutoffs (black dot).
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Figure 11. 
ESCC data (probe 209644). Top left: Egg shaped 95% confidence region for the sensitivity 

and specificity at the Youden-based estimated cutoffs. Top right: Underlying kernel densities 

of the healthy and the diseased. Middle: Surfaces of sensitivity and specificity along with 

the estimated Youden-based optimal pair of cutoffs. Bottom left: Contour plot of the surface 

of sensitivity for all possible cutoffs, along with the estimated Youden-based optimal pair of 

cutoffs (black dot). Bottom right: Contour plot of the surface of specificity for all possible 

cutoffs, along with the estimated Youden-based optimal pair of cutoffs (black dot).
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Figure 12. 
gROCs for both probes discussed in the application that refers to the esophageal data. Left 
panel: gROC for probe 209644 with an area under it equal to 0.8238. The two cutoff 

Youden-based sensitivity and specificity are derived to be (0.8754, 0.6659). The area under 

the usual empirical ROC estimate is 0.5421 (0.4175–0.6667) which implies that this marker 

would have been discarded as uninformative in spite of its discriminatory ability. Right 
panel: gROC for probe 207039 with an area under it equal to 0.8858. The two cutoff 

Youden-based sensitivity and specificity are derived to be (0.9180, 0.7648). The area under 

the usual empirical ROC estimate is 0.5185 (0.3963–0.6397) which implies that this marker 

would have been discarded as uninformative in spite of its discriminatory ability.
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Table 1.

Attained lower and upper bounds of the AUC for some given values of the length.

length lower bound of AUC upper bound of the AUC

2 0.50000 0.50000

1.65 0.77788 0.85729

1.75 0.85417 0.92719

1.85 0.91838 0.97379

1.95 0.97434 0.99709

2.00 1.00000 1.00000
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