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ABSTRACT

Promoter-proximal Polymerase II (Pol II) pausing is a
key rate-limiting step for gene expression. DNA and
RNA-binding trans-acting factors regulating the ex-
tent of pausing have been identified. However, we
lack a quantitative model of how interactions of these
factors determine pausing, therefore the relative im-
portance of implicated factors is unknown. Moreover,
previously unknown regulators might exist. Here we
address this gap with a machine learning model that
accurately predicts the extent of promoter-proximal
Pol II pausing from large-scale genome and tran-
scriptome binding maps and gene annotation and se-
quence composition features. We demonstrate high
accuracy and generalizability of the model by vali-
dation on an independent cell line which reveals the
model’s cell line agnostic character. Model interpre-
tation in light of prior knowledge about molecular
functions of regulatory factors confirms the intercon-
nection of pausing with other RNA processing steps.
Harnessing underlying feature contributions, we as-
sess the relative importance of each factor, quantify
their predictive effects and systematically identify
previously unknown regulators of pausing. We addi-
tionally identify 16 previously unknown 7SK ncRNA
interacting RNA-binding proteins predictive of paus-
ing. Our work provides a framework to further our
understanding of the regulation of the critical early
steps in transcriptional elongation.

GRAPHICAL ABSTRACT

INTRODUCTION

Transcription of genes is an essential mechanism to main-
tain cell homeostasis and enable adaptation to changing in-
ternal and external stimuli (1,2). It is tightly regulated by
chromatin state and transcription factors (TFs) functioning
in a highly coordinated fashion (3). The transcriptional cy-
cle starts with the recruitment of the RNA polymerase into
the pre-initiation complex (PIC) (4,5). During transcrip-
tion initiation, a short fragment of nascent RNA is synthe-
sized. The polymerase is then paused at the promoter before
entering into productive elongation upon further regula-
tory signals or terminating prematurely (6). This promoter-
proximal pausing is a key rate-limiting step for gene ex-
pression as it decides whether a full-length transcript will
be made or not (7,8). At equilibrium, paused RNA poly-
merase accumulates at the promoter since the transcrip-
tional initiation rate is faster than the rate of productive
elongation or premature termination (9,10). In vivo, this ac-
cumulation can be observed in assays that monitor nascent
transcription, such as global run-on sequencing (GRO-seq)
(11). Based on this data, the equilibrium between transcrip-
tion initiation and productive elongation, which is decisive
for the regulation of gene expression, can be quantified by
the pausing index (PI), also known as the traveling ratio
(TR) (12–14). It is defined as the ratio of GRO-seq reads
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in a window around the promoter compared to the rest of
the gene body.

Promoter proximal pausing is the default state after
transcription initiation (10,15–17). In addition, the du-
ration of pausing is regulated by the interplay of spe-
cific factors that either promote pausing or elongation
(16). Pause promoting factors include the DSIF com-
plex consisting of SUPT5H and SUPT4H1, the nega-
tive elongation factor NELF, the 7SK complex, consist-
ing of the most highly expressed non-coding RNA 7SK
and proteins such as LARP7, and also specific features of
the DNA/RNA sequence (7,18–23). The most important
elongation-promoting factor is the positive transcription
elongation factor B (P-TEFb), which consists of CDK9,
CCNK, CCNT1 and CCNT2 (24,25). Biochemical block-
ing of P-TEFb showed that its activity is critically impor-
tant for pause release (26–30). Positive and negative regu-
lators are tightly interlinked. P-TEFb is bound by the in-
activating 7SK complex and can be released into its active
form by BRD4 (31). Once active it phosphorylates regula-
tors of elongation, such as DSIF, as well as other regula-
tors of chromatin state and RNA processing (32). In addi-
tion to these direct regulators, pausing is also indirectly reg-
ulated by factors that determine transcriptional initiation
and transcript processing (33,34). For example, SRSF2 reg-
ulates splicing and has been demonstrated to also determine
the duration of pausing (35,36).

Recruitment of P-TEFb to specific promoters through
interactions with individual TFs (e.g. NFKB), Media-
tor, coactivators, and RNA-binding proteins (e.g. DDX2,
SRSF2) has been described (35,37–39). Large-scale binding
maps of hundreds of RNA binding proteins (RBPs) have
recently become available from the ENCODE project (40).
Together with the DNA binding maps and GRO-seq, these
data allow us to systematically address several key ques-
tions about the regulation of pausing at specific promoters.
First, which sequence or protein factors determine the re-
cruitment of regulators to a specific promoter? Second, how
do signals from positive and negative regulators translate
into the extent of pausing quantitatively?

Here, we address these questions by training machine
learning models that predict the extent of promoter-
proximal pausing quantified by the pausing index from
large-scale genome and transcriptome binding maps as
well as gene annotation and sequence composition fea-
tures. We demonstrate high accuracy and generalizability
of the model by validation on an independent cell line and
we show that the model can accurately predict differential
pausing between cell lines indicating that the model cap-
tured general cell line independent rules of pausing regu-
lation. Model interpretation allows for assessing the rela-
tive importance of each factor, quantifying their effects and
predictive values, and systematically identifying previously
unknown regulators of pausing. Grouping of factor contri-
butions by molecular functions confirmed the strong inter-
connection of pausing and co-transcriptional splicing and
other steps of gene expression. We additionally identified
16 previously unknown 7SK interacting RBPs predictive of
pausing. These novel pause regulators allow for a system-
atic and targeted investigation of the regulation of pausing
at specific promoters in more detail. Moreover, they pro-

vide entry points for experimental manipulation (e.g. with
knockdown experiments) to assess their downstream effects
on pausing and gene expression in general.

MATERIALS AND METHODS

Transcript annotations (GENCODE)

To engineer gene-centric features of protein binding events
and gene annotation and sequence composition features
as predictors in our machine learning models we obtained
transcript annotations for protein-coding genes and non-
coding RNAs from the GENCODE (41) database for the
hg19 (GrCH37) genome build. We obtained 81 745 an-
notated protein-coding transcripts for 20 167 genes. Of
these transcripts, 30 186 (18 889 genes) were supported by
RefSeq (42) annotations and selected as high-confidence
transcripts for the analysis. From the annotations, we ob-
tained 5-prime, intronic, coding exonic and 3-prime ge-
nomic regions for each transcript which served to cap-
ture interpretable binding sites when integrating CHIP-seq
and eCLIP-seq data sets (see CHIP-seq data integration
& eCLIPseq data integration). HUGO gene nomenclatures
(HGNC) (43) from GENCODE were used to further anno-
tate the transcripts with their respective gene symbols.

A set of non-coding transcripts was obtained through ap-
propriate filtering of the GENCODE transcript annotation
set for transcripts that were annotated as one of miscRNA,
miRNA, snoRNA, snRNA and lincRNA which represent mis-
cellaneous, micro, small nucleolar, small nuclear and long
intervening RNA biotypes, respectively. These non-coding
transcripts were used to engineer features for the machine
learning task as well as other downstream analyses, espe-
cially in the context of the 7SK non-coding RNA (see Iden-
tification of 7SK Interacting Proteins). Analogous to the
protein-coding transcripts, the genomic regions (5-prime,
intronic, exonic, and 3-prime) of non-coding transcripts
were used to create binding site features based on CHIP-
seq and eCLIP-seq data sets.

Transcript quantifications (RNA-seq)

To ensure that only expressed transcripts are considered
we obtained pre-processed transcript quantifications from
total RNA-seq experiments from the ENCODE (44,45)
project for the K562 and HepG2 cell lines for the hg19
(GrCH37) genome build. Each experiment had two biolog-
ical replicates. The obtained transcript expressions were re-
quired to have a valid ENSEMBLE (46) ID, to be anno-
tated in the aforementioned GENCODE and RefSeq tran-
script annotation set, to be expressed (fragments per kilo-
base million (FPKM) > 0) in both of the replicates. The
FPKMs were log10-transformed for downstream analyses.
After these filtering steps, we considered 16 403 (K562) and
16 670 (HepG2) of the 30 186 protein-coding transcripts
and 2655 and 1950 non-coding transcripts for the K562
and HepG2 cell lines, respectively. The transcript quantifi-
cations data sets (tsv-files) were taken from ENCODE ex-
periments ENCSR885DVH (K562) and ENCSR181ZGR
(HepG2), with accession numbers of replicated experi-
ments ENCFF424CXV and ENCFF073NHK for the K562
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cell line and accession numbers ENCFF205WUQ and
ENCFF915JUZ for the HepG2 cell line, respectively.

Transcript quantification for the Hela cell line were taken
from GSM2400170 and were processed in analogy to the
RNA-seq data sets of the K562 and HepG2 cell lines. We
thereby obtained the expression profiles of n = 17 934
protein-coding and n = 3331 non-coding transcripts in the
Hela cell line.

Transcription start site annotations (CAGE)

To increase the confidence in the expressed transcripts,
we further integrated Cap-analysis Gene Expression Data
(CAGE) (47) transcription start sites (TSS) for the K562
and HepG2 cell lines. CAGE read counts of the most cor-
related replicates were aggregated per cell fraction per cell
line. Reads were normalized to transcripts per million reads
(TPMs). Resulting TSS were then parametrically clustered
(48) into CAGE transcription start site clusters (CTSS clus-
ter) with a TPM threshold of 0.1. Singletons with TPM
<0.1 were excluded. Only transcripts whose transcription
start site (TSS) was also the dominant CAGE transcription
start site (CTSS) in a cell-type specific CTSS cluster were re-
tained. We thereby were left with 16 194 and 16 412 protein-
coding transcripts in the K562 and HepG2 cell lines, respec-
tively.

Quantifying promoter-proximal pol II pausing (GRO-seq)

We integrated Global-Run-On-sequencing (GRO-seq) (49)
data to quantify transcriptional pausing at protein-coding
genes with the commonly used pausing index (PI) also
known as the traveling ratio (12,27). The PIs served as tar-
gets to be predicted in a machine learning task. GRO-seq
captures the nascent fragments that build up during the
transcriptional cycle and thereby allows us to assess Pol II
productivity based on the nascent RNA fragment output.
As it is commonly done in the field, we have defined the
PI as the log2 ratio of GRO-seq read counts (number of
30 bp reads overlapping at each position) at the transcrip-
tion start site (TSS) to the GRO-seq read signals in the gene
body. To optimize the PI definition we have built pausing in-
dices with varying TSS window sizes and chose the window
size maximizing the negative correlation of the PI with the
corresponding transcript expressions (Pearson’s � = −0.68
(K562) and � = −0.66 (HepG2); see Supplementary Fig-
ure S1 pausing index optimization). This was motivated by
the fact that high PIs, representative of transcriptional paus-
ing, should result in low gene expression profiles and vice
versa. This led to a sharp TSS window size of 3 bp rang-
ing 1 bp up- and downstream of the TSS while rendering
the remaining part of the transcripts as the gene body win-
dow. Read lengths of 30 bp (K562, GSM1480325) and at
least 25 bp (HepG2, GSM2428726) ensure that the most fre-
quent Pol II pause site and associated components (50) are
covered. Each signal (counts of GRO-seq reads within win-
dows) was then normalized by the respective window size. A
pseudo count of 1 read was added to each resulting window
for the log2 transformation when building the ratio. The PI
was calculated for each of the 16194 and 16412 expressed
protein-coding transcript in a strand-specific manner for

the K562 and HepG2 cell line, respectively. Only transcripts
that solely contained the DNA base letters (A, T, C, G)
along the whole transcript were considered. This further
led to the exclusion of 16 and 9 protein-coding transcripts
in the K562 and HepG2 cell lines, respectively. This filter-
ing ensures that we exclude reads that might be erroneously
mapped such that we capture the full GRO-seq read signals
along the remaining transcripts and thereby obtain compa-
rable signal counts. Overlapping protein-coding transcripts
were excluded given the fact that corresponding GRO-seq
signals can not be uniquely ascribed to a particular tran-
script and consequently would result in convoluted PI sig-
nals. Transcripts that had no GRO-seq signal neither at the
TSS nor in the gene body were excluded as well (n = 129
in K562; n = 196 in HepG2). This has led to the considera-
tion of 8426 and 8260 protein coding transcripts in the K562
and HepG2 cell lines, respectively (see Supplementary Fig-
ure S2 for distribution of pausing indices). The correspond-
ing GRO-seq wig-files can be found under GEO accessions
GSM1480325 and GSM2428726 for the K562 and HepG2
cell lines, respectively.

The pausing index based on GRO-cap data for the cross-
technology evaluation in the K562 cell line was calculated
on data obtained from GSM1480322 and processed in anal-
ogy to the K562 and HepG2 GRO-seq data sets. The GRO-
seq data for the Hela cell with read lengths of 36bp was
taken from GSE62046 and also processed in analogy to the
K562 and HepG2 data set, providing the pausing index for
n = 8428 protein-coding transcripts in the Hela cell line.

DNA binding sites (CHIP-seq)

Chromatin immunoprecipitation sequencing (CHIP-seq)
(51) data served to engineer features of gene-centric ge-
nomic protein binding events, which were used as input for
the machine learning models. These binding sites for DNA
binding proteins (DBPs) were obtained from all available
CHIP-seq experiments from the ENCODE project for the
K562, HepG2 and Hela cell lines for the hg19 (GrCH37)
genome build through corresponding peak-called data sets
(bed-files). Perturbation experiments were excluded and
only optimal (according to irreproducible discovery rate
(IDR)) (52) thresholded replicated peaks were considered
for downstream analyses to increase the confidence in the
obtained binding sites. Experiments with antibodies directly
against the factor of interest and newer versioned experi-
ments were prioritized over epitope-tagged and older ver-
sioned experiments. We thereby obtained 5041190 (K562),
4138805 (HepG2) and 1010402 (Hela) genomic binding
sites for 309 (K562), 211 (HepG2) and 62 (Hela) factors (see
Supplementary Tables S1–S3 for CHIP-seq factors per cell
line) that served feature engineering purposes (see Feature
Engineering). ENCODE CHIP-seq accession numbers for
each cell line can be found in Supplementary Tables S4–S6.

RNA binding sites (eCLIP-seq)

Enhanced crosslinking and immunoprecipitation (eCLIP-
seq) (53) data served to build gene-centric transcriptomic
protein binding features. Binding sites of all RNA-binding
proteins (RBPs) from the ENCODE project for the K562



Nucleic Acids Research, 2023, Vol. 51, No. 4 1611

and HepG2 cell lines were obtained for the hg19 (GrCH37)
genome build through corresponding peak-called data sets
(bed-files). Perturbation experiments were excluded and
only optimal IDR thresholded replicated peaks were con-
sidered. Newer versioned experiments were prioritized over
older versioned experiments. We thereby obtained 409839
(K562) and 435015 (HepG2) transcriptomic binding sites
for 120 (K562) and 103 (HepG2) factors (see Supplemen-
tary Tables S7 and S8 of eCLIP-seq factors per cell line) for
feature engineering (see Feature Engineering). ENCODE
eCLIP-seq accession numbers for each cell line can be found
in Supplementary Tables S10 & S11.

Transcriptomic binding sites (n = 3 035 169) in the Hela
cell line were taken from the POSTAR (54) data base for all
available factors (n = 30; see Supplementary Table S9) and
lifted to the hg19 genome build.

Identification of 7SK interacting proteins

We filtered the GENCODE transcript annotation data set
for all 7SK annotated transcripts to enable the identifica-
tion of known and novel 7SK binding proteins via observed
CLIP-seq signals (eCLIP-seq or POSTAR-derived binding
sites) on corresponding transcripts and assess their predic-
tive value in the context of transcriptional pausing. In par-
ticular, 7SK transcripts which were labeled as pseudo ver-
sions were included if they were expressed at least at the
median expression level of all expressed non-coding tran-
scripts. Their inclusion was motivated by the idea that fac-
tors that also bind these pseudo 7SK transcripts may com-
pete (55) for respective binding sites with factors that bind
the non-pseudo version. The set of 7SK binding factors was
defined for each cell line as all factors with at least one CLIP
binding site on any of the 7SK transcripts (see Supplemen-
tary Tables S12 - S14).

Feature engineering

For the machine learning task of predicting the gene-wise
pausing index of protein-coding genes we engineered fea-
tures of DNA- and RNA binding events at protein-coding
and the closest proximal non-coding transcripts upstream
and downstream of the TSS of each protein-coding tran-
script. In addition DNA sequence and annotation features
of protein-coding transcripts served as predictors for the
models. The following features were created:

• transcript length (tx.len)
• strand specification (tx.strand)
• chromosome specification (tx.chr.loc)
• location on the linear genome (tx.loc)
• number of annotated exons (tx.ex.num)
• average exon width (tx.ex.width)
• exon density (tx.ex.ratio; ratio of the length of the tran-

script including introns to the number of exons)
• fraction of exonic sequence (tx.ex.seq; ratio of the length

of all exonic sequences to the transcript length)
• GC content of the whole transcript including introns

(tx.gc.seq)
• Width of CAGE transcription start site cluster (CTSS)

(tx.tss.width)

• AT content of CTSS (tx.tss.at.cont)
• distance to most proximal CpG island (cpg.island.dist)

along with information about the CpG island length
(cpg.island.length), and features of the sequence:
number of CpGs (cpg.island.count), percentage C
or G (cpg.island.percent.cg), percentage of CpG
(cpg.island.percent.cpg), and ratio of observed to
expected CpG (cpg.island.percent.exp.v.obs))

• binary encoding whether the transcript is a housekeeping
gene (housekeeping)

• binary encoding of RBP binding events separately for
5′/3′-UTR, introns and coding exons

• binary encoding of DBP binding events separately for
5′/3′-UTR, introns and coding exons excluding Pol II
bindings as these are expected to be naturally correlated
with the prediction target

• binary encoding of RBP/DBP binding events separately
for 5′/3′-UTR, introns and coding exons of the two most
TSS proximal non-coding RNAs excluding polymerase II
bindings as these are expected to be naturally correlated
with the prediction target

Binary encodings start with either ‘chip’ or ‘clip’, fol-
lowed by the protein and the genomic or transcriptomic
region of the proteins binding events on DNA (‘chip’)
or RNA (‘clip’). For instance, ‘chip.RBFOX2.5prime’
denotes a binding event of RBFOX2 on the 5′ end
of genomic regions of transcripts. Analogously,
‘clip.RBFOX2.5prime.Proxmial.ncRNA.2’ denotes a
binding event of RBFOX2 on the 5′ end of transcriptomic
regions of the second most TSS-proximal ncRNA of
transcripts. CpG islands have previously been implicated
in pausing (56), therefore we included CpG island anno-
tations from the UCSC golden path for the hg19 genome
build (cpgIslandExt.txt.gz), to engineer CpG island-centric
model features. Annotations of housekeeping genes were
taken from (57). The number of proximal ncRNAs was
fixed to two since in combination with CHIP-seq and
eCLIP-seq signals on these proximal ncRNAs the feature
space would otherwise overgrow the number of genes (and
therefore data points in the regression task) which would
result in overfitting of the models. Numeric features not
in the range [0:1] were rescaled to that range to achieve
faster and more accurate model convergences. DNA- and
RNA-binding signals went into the model as binary fea-
tures (binding (1) or non-binding (0)) (see Supplementary
Tables S15 - S17 for the number of binding events per
factor on individual genomic or transcriptomic regions
for each cell line). The distribution of annotation-based
features for the K562 and HepG2 cell lines can be found
in Supplementary Figures S3 and S4, respectively. These
feature vectors served as a scaffold to build various data
matrices for a machine learning regression task based
on different feature sub-spaces defined by prior domain
knowledge as discussed in the next section.

Feature subsets based on prior knowledge

We stratified the feature space into functionally related
sets of proteins in order to characterize the relevance and
quantify the importance of pre-, co- or post-transcriptional
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events in the context of transcriptional pausing. These
subsets of binding features of DNA- and RNA-binding
factors implicated in specific biological processes were
constructed by integrating Gene Ontology (GO) (58,59)
annotations. Functional sets of factors (Chromatin, Ini-
tiation, Elongation, Termination, Splicing) were gener-
ated based on whether a specific factor was annotated
to a biological process (BP) ontology term of any of
the following sets: Chromatin (chromosome organization,
GO:0051276; chromatin organization, GO:0006325; chro-
matin remodeling, GO:0006338), Initiation (RNA poly-
merase II preinitiation complex assembly, GO:0051123;
transcription initiation from RNA polymerase II pro-
moter, GO:0006367), Elongation (transcription elongation
from RNA polymerase II promoter, GO:0006368), Ter-
mination (termination of RNA polymerase II transcrip-
tion, GO:0006369), Splicing (mRNA splicing via spliceo-
some GO:0045292; regulation of alternative mRNA splic-
ing via spliceosome, GO:0000381) and Processing (mRNA
export from the nucleus, GO:0006406; mRNA 3′-end pro-
cessing, GO:0031124). The set of Elongation factors was
further extended by pause regulatory factors from the liter-
ature (16,60,61) if not already included in the GO-derived
factor set Elongation. These were super elongation com-
plex (SEC) factors CCNT1, CCNT2, ELL, ELL2, ELL3,
AFF1, AFF4, MLLT1, MLLT3, established pausing fac-
tors NELFA, NELFB, NELFCD, NELFE, SUPT4H1,
SUPT5H, SUPT6H, SUPT16H, BRD4, MYC, TAF1, TBP,
PAF1, and CDK9 (P-TEFB), as well as 7SK ncRNA pause
mediator complex binding factors LARP7, HEXIM1,
HEXIM2 and MEPCE (see also Supplementary Table S13).
However, we could only consider a subset (n = 19) of all es-
tablished pausing factors, which were assayed in the CHIP-
seq and eCLIP-seq experiments. The Elongation factor set
thus contained POLR2A, POLR2B, POLR2G, POLR2H,
MLLT1, SUPT5H, GTF2F1, BRD4, WDR43, NCBP2,
HNRNPU, LARP7, MYC, TAF1, TBP, AFF1, EZH2,
PAF1 and SSRP1. However, polymerase associated factors
(POLR2A, POLR2B, POLR2G, POLR2H) were excluded
since these are expected to correlate with the pausing sig-
nal. A set of 7SK binding proteins derived from binding
sites observed in the eCLIP-seq data was generated to quan-
titatively assess the importance of unknown or less well-
established 7SK-associated factors (see 7SK non-coding
RNA or Supplementary Tables S12-S14 of 7SK binding
factors per cell line). A set representative of general paus-
ing associated factors was generated by forming the union
of the Elongation and 7SK associated factor set (Elonga-
tion + 7SK). For a list of factors in each resulting functional
factor set per cell line see Supplementary Tables S19 & S20.

Each resulting factor set was further stratified into
sequence-specific and non-sequence-specific binders. The
Molecular Signatures Database (MSigDB) (62,63), a col-
lection of annotated gene sets, the Catalog of Inferred Se-
quence Binding Preferences (CIS-BP) (64), a library of tran-
scription factors and their binding motifs, and the Homo
sapiens comprehensive model collection (HOCOMOCO)
(65), a collection of transcription factor binding models for
human and mouse via large-scale ChIP-seq analysis based
on binding motifs, were queried to identify sequence specific
factors (see Supplementary Tables S21 & S22).

The feature vector space of binding events was then ac-
cordingly grouped by these factor sets (see Supplementary
Table S23 of factor presence in feature subspaces) to form
different feature matrices, always accompanied by DNA se-
quence and annotation features of protein-coding genes.
These feature matrices based on prior domain knowledge,
7SK ncRNA associations, and sequence-specificity served
to build an array of predictive models based on features with
a defined biological function. For a baseline comparison
of model performances, we have further built 100 random
models which randomize over the number of factors, the
factors themselves, and their binding patterns. The binding
patterns were randomized according to the observed bind-
ing proportions.

Model training

Models of transcriptional pausing were obtained by train-
ing Extreme Gradient Boosting Tree (XGB) regressors to
predict the pausing index with each of the feature subsets
(see previous section). Models were trained in each cell line
and validated with (i) a 5-fold cross-validation and the ap-
plication of the model on a 50% holdout test data set from
the same cell line taken at random prior to training (individ-
ual models) and with (ii) data from an independent cell line
with features that are common to both cell lines (synchro-
nized models). This provided us with an unbiased estimate
of the model performances as trained models have neither
seen the gene’s target distribution nor the specific feature
distributions of the other cell line. Although the first valida-
tion approach is not based on data from an independent cell
line as is the case with the synchronized models, it still pro-
vides an unbiased model performance estimate as trained
models have also not seen any of the data points from the
50% hold out test data set taken prior to training (cross-
validation).

Regression with squared loss was chosen for the learning
objective. The coefficient of determination (R-squared, R2)
was used as the evaluation metric to compare and evaluate
trained models. See Supplementary Table S24 for hyperpa-
rameter specification and the Zenodo repository for R-Data
structures with all model matrices (model.matrices.RDS).

Feature scoring

Shapley additive explanations (SHAP) (66,67) were used as
a scoring metric for feature contributions. SHAP is a game
theoretic approach to explaining the output of any machine
learning model. In contrast to the well-known variable im-
portance metric, it is able to show the positive or negative
relationship for each feature with the target. As opposed to
most feature importance metrics that average over all genes,
each gene receives its own set of SHAP values, greatly en-
hancing the prediction transparency. SHAP values are ad-
ditive and allow us to aggregate over contributions of sub-
sets of features which enabled us to capture contributions of
binding features per protein and subsequently group these
proteins into sets of positive and negative regulatory fac-
tors. For instance, we obtain contribution scores for a tran-
scription factor binding on the 5′UTR, exons, introns, and
3′UTR on the genome and transcriptome as identified by
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CHIP-seq and eCLIP-seq, respectively. We derived total
factor contributions by aggregating the SHAP scores per
factor over each gene region which enabled us to identify
specific pause regulatory factors by selecting factors with
high effect sizes.

RESULTS

Predictive models of transcriptional pausing

The transitioning of promoter-proximally paused Pol II
(Figure 1A, promoter-proximally paused Pol II) into its
elongating phase of nascent RNA synthesis (Figure 1A,
elongating Pol II) is regulated by trans-acting protein co-
factors as well as cis-regulatory DNA and RNA sequence
features (16,18) which we refer to as chromatin signatures.

For the identification of such specific regulatory chro-
matin signatures, we used large-scale genomic and tran-
scriptomic protein binding maps from ENCODE and com-
piled gene annotation and sequence composition features.
We then followed a systematic machine learning approach
to predict the degree of transcriptional pausing at protein-
coding genes (Figure 1B) through the integration of these
chromatin signatures in a regression model with Extreme
Gradient Boosting trees (XGB) with the potential to reveal
explanatory factors (Figure 1C).

To facilitate the validation in independent cell lines we
obtained relevant data sets for two different cell lines (K562
and HepG2). The prediction target was defined as the gene-
wise pausing index (see Materials and Methods; see Sup-
plementary Figure S2 for pausing index distributions). It
quantifies the degree to which a gene is paused (high paus-
ing index) or elongated (low pausing index). As compared
to traditional definitions of the PI, our flexible definition
seeks to identify the threshold that is best aligned to the
expected relation to transcript levels and covers the more
clearly distinguishable peak that lies more proximal to the
TSS (see Supplementary Figure S2C–E). To construct the
feature matrix of predictors as input for our models we sys-
tematically integrated genome-wide CHIP-seq (see Materi-
als & Methods) and eCLIP-seq (see Materials and Meth-
ods) data from the ENCODE project, providing DNA and
RNA binding sites on the genome and transcriptome re-
spectively (see Supplementary Tables S15 and S16). Gene-
centric annotation and composition features were mainly
engineered based on GENCODE transcript annotations
(see Materials and Methods, Supplementary Figures S3 and
S4). CAGE transcription start sites were integrated (see Ma-
terials & Methods) to define high confidence TSS and fur-
ther validate the expression of transcripts. We thereby ob-
tained a total of 2503 features of 2485 DNA & RNA bind-
ing and 18 gene annotation features in the K562 cell line and
1832 features of 1814 DNA and RNA binding and 18 gene
annotation features in the HepG2 cell line. We then trained
an Extreme Gradient Boosting Tree regressor (see Materials
and Methods and Supplementary Table S25) to predict the
pausing index of protein-coding genes (n = 8426 in K562)
with high accuracy and explain up to 68% of the observed
variance (R2 ∼ 0.68 on 50% hold-out test data set, K562) of
the pausing index (Figure 2A).

The model performances can be further evaluated
through (i) the application of a model trained on one cell

line and applied to the full data of the other cell line (Figure
2B), (ii) the application of a model trained on one cell line
and applied to genes that are only expressed in the other cell
line (Figure 2D) and (iii) the application of a model trained
on one cell line and applied to genes present in both cell lines
with significantly different pausing indices representing ex-
treme observation specific to the other cell line (Figure 2F).
See Supplementary Figure S5 for model performances of a
model trained on the HepG2 cell line and validated on the
K562 cell line.

The predictive power and generalizability of the model
were supported by the high prediction performance on the
independent cross-cell type test data set (Figure 2B, perfor-
mance on HepG2 data of K562 model) in which it was still
able to explain up to 53% of the variance. The decreased
model performance with an R2 of 0.53 as compared to 0.68
(Figure 2A) is likely due to the reduced amount of features
that are available in the HepG2 cell line (39% of all features
(n = 987) of n = 2503 features available in the K562 cell
line).

A good performance in the cross-cell type prediction task
(Figure 2B) can have two reasons: (i) the model captures
the signal of ubiquitously expressed genes that are simi-
lar between cell types, as might be the case with house-
keeping genes, or (ii) it learned general rules that would
also allow for predicting cell type-specific pausing indices
from cell type-specific chromatin signatures. To distinguish
these scenarios we identified the sets of exclusively expressed
genes (Figure 2C) and assessed the performances of models
trained on one of the cell lines on the genes exclusively ex-
pressed in the other cell line (Figure 2D). The K562 model
was able to explain up to 57% and the HepG2 model up to
58% of the observed variance in the pausing indices in the
HepG2 and K562 cell line respectively.

We further validated that our model can also identify
quantitative changes on transcripts which showed differ-
ential (fold change ≥ 2) cell type-specific distributions of
the pausing indices. For these sets of transcripts (Figure
2E, blue, green) we evaluated the concordance of observed
pausing index differences between the cell lines against the
differences in predictions of the pausing indices using mod-
els trained in one of the cell lines and applied them to data
in the other cell line (Figure 2F). Although we can recognize
a substantial decrease in model performances with a corre-
lation of 0.24 (Figure 2F, HepG2 specific pausing indices;
green) as compared to 0.73 for the prediction on the entire
HepG2 cell type data (Figure 2B) or 0.76 on HepG2 cell
type-specific genes (Figure 2D), the model not only predicts
extreme cases but also captures quantitative differences of
pausing indices specific to the cross cell type to a certain
extend. This further underlines the ability of the model to
generalize to other cell lines and shows that cross cell type
predictions are not only driven by ubiquitously expressed
genes.

To further increase the confidence in the obtained mod-
eling results we have additionally investigated (i) data on
a third cancer cell line (HeLa), (ii) three additional ma-
chine learning methods (Ridge Regression (RR), Random
Forests (RF), Gradient Boosting Trees (GBDT)) and (iii) a
model based on the pausing index calculated on a differ-
ent run-on-assay (GRO-cap). These served to additionally
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Figure 1. (A) Central question as to which specific factors are implicated in the transitioning of promoter-proximally paused polymerase II into its elon-
gating phase of nascent RNA synthesis. (B) Integration of large-scale genomic data sets to build the chromatin context of transcriptional pausing (A) with
protein binding events and gene annotation and sequence composition features for the prediction task of promoter-proximal pausing of the polymerase II.
Pausing is quantified by relating GRO-seq read densities at the TSS to GRO-seq read densities in the gene body. (C) Machine learning approach to predict
promoter-proximal Pol II pausing with chromatin signatures (B), followed by the integration of prior knowledge and selection of factors as regulators of
promoter-proximal Pol II pausing.

validate the cross-cell line prediction performances, rule
out prediction performance differences potentially resulting
from the selection of the architecture of the machine learn-
ing model, and rule out technological bias.

A 5-fold cross-validated and regularized XGB regres-
sion model in the Hela cell line (n = 92 DNA- and RNA-
binding factors) achieves an R-squared of 0.56 (Pearson’s
rho = 0.75) when applied to an independent 50% hold-out
test dataset from the same cell line taken prior to train-
ing (see Supplementary Figure S6A). This performance is
lower than the other full model’s performances (R-squared
HepG2: 0.62, K562: 0.68). The difference can be attributed
to the fact that the Hela model includes four times fewer
factors than the full K562 model (n = 92 versus n = 404).
Models trained on each cell line using only features present
in the HeLa data achieve comparable and expectedly lower
model performances of R-squared between 0.53–0.56 (see
Supplementary Figure S6B). Nevertheless, this reduced set
of factors (37/295, only 12% of available factors in HepG2
and 47/404, only 11% of available factors in K562) is still
predictive of pausing.

To evaluate the impact of the type of model on prediction
performance, we have conducted a systematic comparison
with three alternative methods based on the full K562 data
set (see Supplementary Table S26), namely Ridge regression
(RR), Random Forests (RF), and Gradient Boosting De-
cision Trees (GBDT). As expected, RR analysis performs
worst (R-squared 0.6 on K562 50% hold-out test data). The

tree-based RF and GBDT models perform similarly well,
also compared to the XGB model (R-squared RF: 0.69,
GBDT: 0.71, XGB: 0.68) and greatly outperform linear re-
gression analysis, as these algorithms can take non-linear
relationships into account. The fact that all models perform
reasonably well underlines the predictive power of underly-
ing features. These results suggest that the tree based models
can be used interchangeably.

To assess whether the model learned a technology bias
inherent to GRO-seq, we trained analogous models based
on GRO-cap data from K562. The GRO-cap model showed
even slightly higher performance (R-squared = 0.72, Pear-
son’s rho = 0.85; see Supplementary Figure S7A) than the
GRO-seq data (R-squared = 0.68, rho = 0.83; see Supple-
mentary Figure S7A) on a hold-out data set of GRO-cap
pausing indices. To distinguish if both models learned pat-
terns related to pausing or a technology bias, we applied
models trained on one technology to predict the pausing
index of the genes in the hold-out test set and compared
these predictions to the observed pausing index measured
with the second technology (cross-technology evaluation).
In this comparison, the GRO-seq model can explain 53% of
the variance in the GRO-cap measurements and the GRO-
cap model can explain 44% of the variance of the GRO-
seq measurements respectively. Given the noise introduced
by the different technologies (R-squared between GRO-
seq and GRO-cap: 0.74) and the uncertainty of the model
predictions (R-squared GRO-seq model: 0.68), we can cal-
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Figure 2. (A) Observed versus predicted pausing indices (log2 scale) of a 5-fold cross-validated and regularized XGB regression model in the K562 cell
line applied to an independent 50% hold-out test dataset from the same cell line taken prior to training. Pearson’s correlation coefficient rho (� ) with the
associated p-value is depicted in the upper left. (B) Observed vs. predicted pausing indices of a 5-fold cross-validated and regularized XGB regression model
in the K562 cell line applied to the independent test dataset from the cross cell line (HepG2). The model was trained with features common to both cell
lines. Pearson’s correlation coefficient rho (� ) with the associated p-value is depicted in the upper left. (C) Venn diagram of transcripts between cell lines.
(D) Observed vs. predicted pausing indices of a 5-fold cross-validated and regularized XGB regression model from each cell line applied to data of genes
exclusively expressed in the cross cell line. Pearson’s correlation coefficient rho (� ) with the associated P-values are depicted in the upper left. (E) Observed
pausing indices from the K562 versus HepG2 cell line. Transcripts with at least a 2-fold higher pausing index in one but not the other cell line are colored
either green (HepG2 specific transcripts) or blue (K562 specific transcripts). Transcripts with similar pausing indices (less than a 2-fold change) in both cell
lines, thus not specific to any of the cell lines, are colored in orange. Pearson’s correlation coefficients (� ) for each of the groups with associated p-values are
depicted in the upper left. (F) Observed pausing index differences between cell lines against differences of predicted pausing indices obtained from models
trained in each cell line and applied to data from the cross cell line. Models were trained on features common to both cell lines. Differences are shown for
genes which showed a 2-fold change between cell lines as identified in E).
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culate the expected proportion of variances explained by
the product 0.74 · 0.68 = 0.50. Therefore, the observed R-
squared of 0.53 (GRO-seq) is well in line with our expec-
tation. These results suggest that the models can generalize
between technologies and prediction are not dominated by
technology biases.

Given the high predictive power of the obtained model
not only on intra-cell type holdout test data sets (Figure
2A), the inter-cell type test data set (Figure 2B) as well
as its ability to predict pausing indices of cell type-specific
genes (Figure 2D) and cell type-specific differential paus-
ing indices (Figure 2F), we concluded that our model cap-
tured general rules of pausing regulation independent of
the cell type and that the underlying chromatin signatures
of the models would have sufficient discriminatory power
to explain the observed variance in the pausing index. The
successful validation of model performances on data of a
third cell line (see Supplementary Figure S6), with alter-
native model architectures (see Supplementary Table S26)
and an alternative Pol II run-on-assay (see Supplementary
Figure S7) further increased the confidence in the obtained
modeling results. We thus continued with downstream fea-
ture interpretation and selection approaches to suggest po-
tential novel regulators of transcriptional pausing. Down-
stream analyses were performed on data from the K562 cell
line due to the increased amount of features available.

Contribution of individual transcript processing steps to the
prediction of pausing

We next aimed to gain a mechanistic understanding of the
underlying predictive contributions. To measure the contri-
butions of model features we have used Shapley Additive
Explanations (SHAP) (67,68) as a feature scoring metric
(see Materials and Methods) which captures the directional
contribution of each model feature specifically for each gene
on the target variable. A model feature may increase or de-
crease the pausing index or exert no effect at all depending
on the factors relevance for pausing and their interaction
with other features of each gene (Figure 3A). Their com-
bined effects converge in predicted pausing indices which in
turn represent the average output whether a gene is paused
or not.

Because transcriptional pausing is connected with other
steps of gene expression from chromatin organization (69–
71), transcription initiation (8,50,72), to splicing (33,73,74)
and post-transcriptional transcript processing (34,75,76),
we assessed the regulators of these pre-, co- or post-
transcriptional events according to their importance in pre-
dicting pausing. To that end, we have generated sets of reg-
ulators (see Methods and Supplementary Tables S18 - S20)
representative of specific RNA processing events (Chro-
matin, Initiation, Elongation, Splicing, Termination, Pro-
cessing) based on Gene Ontology (GO) annotations. The
Elongation factor set was further extended by established
pausing factors from the literature. The 7SK non-coding
RNA complex is a key regulator of pausing (35,77–81). To
assess the role of RNA binding proteins participating in the
7SK complex for pausing, we additional built a set of fac-
tors that bind the 7SK ncRNA in the eCLIP-seq datasets
(see Methods and Supplementary Tables S12 and S13 for

7SK binding factors per cell line). This set included the
well-known 7SK binder LARP7, the pausing-related regu-
lator AQR previously not associated with the 7SK as well as
the following factors not previously associated with paus-
ing: SSB (LARP3), HNRNPK, DGCR8, PCBP1, ATF,
ZNF800, XRCC6, NCBP2, SBDS, YWHAG, GRWD1,
ZNF622, SRSF7, TARDBP and BUD13. A set consist-
ing of the union of Elongation and 7SK-associated fac-
tors were generated as well (Elongation + 7SK). All sets
of regulators were further stratified into known sequence-
specific and non-sequence-specific binders (see Supplemen-
tary Tables S21 and S22) in order to assess the relevance of
sequence-specific binding events. For each factor in the re-
sulting functional set of regulators we aggregated their fea-
ture contributions (Figure 3A) per functional process (Fig-
ure 3B).

Splicing factors had the highest contributions followed
by elongation and 7SK binding proteins. This strongly sup-
ported the intricate connection to co-transcriptional splic-
ing events (36,73,82) and strengthened the role of the newly
identified 7SK binding proteins as transcriptional pause
regulatory factors. The Elongation factor set of established
pausing factors served as a validation of our approach.

We next asked how models would perform if they are
trained exclusively on the features defined by each of the
previously defined sets of regulators. For a baseline com-
parison models were also trained on randomized input data
(see Materials and Methods). Figure 3C shows the model
performances (R2 values) for each of the feature subspaces
of cross-validated models in the K562 cell line on the inde-
pendent 50% holdout test data sets (see also Supplementary
Table S25 for all model results). In general, all models per-
form reasonably well relative to the number of features they
incorporate. As an example, the splicing factor based model
(Splicing) incorporates only 14% (n = 57) of all available fac-
tors yet performs almost equally well as the full model (All)
incorporating all available factors (n = 398). Likewise, the
Initiation model considers only about half the number of
factors than the chromatin-associated model (Chromatin)
yet performs slightly better (R2 of 0.54 versus 0.53).

As expected, the 7SK ncRNA-associated factor model
(7SK.Binding) and the model with previously established
pausing factors (Elongation) perform very well despite the
low number of factors considered in those models. The pre-
dictive power of pausing/elongation factors becomes fur-
ther evident when we consider the model of the union of
7SK and established elongation factors (Elongation + 7SK)
which outperforms (R2 0.62) each individual factor set
alone (7SK.Binding: R2 = 0.55, Elongation: R2 = 0.56) and
performs almost equally well as the full model (R2 = 0.62
versus 0.68). This result highlights the relevance of the novel
set of 7SK binders identified by protein-RNA interactions
as putative pause regulators. Taken together, the majority
of factor sets show high predictive power relative to the
number of factors they incorporate but their performances
should not be compared directly to each other due to the
variable amount of factors considered in the models. Their
predictive value demonstrates the interconnectedness of un-
derlying processes with the transcriptional pausing out-
come. It further supported and strengthened the role of the
7SK ncRNA as a transcriptional pause mediator complex
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Figure 3. (A) Individual feature contributions (SHAP feature contributions, y-axis) on each transcript (x-axis) with a sample zoom-in on a subset of
transcripts for better visual investigation. Only the top 5 most influential features are colored and remaining features aggregated in ‘Other’, see legend.
Feature ‘ChIP RBFOX2 5′’ refers to the binary indicator variable for a RBFOX2 binding site determined by ChIP-seq being present in the 5′ region of
the transcript (see Methods section on feature engineering). The other ChIP-seq data sets are labeled analogously. (B) Aggregate absolute contributions of
factor classes based on prior knowledge, further divided by sequence and non-sequence specific binding factors. The process ‘Processing’ refers to mRNA
polyadenylation and export from the nucleus. Number of factors are given behind the bars, only factors with non-zero contributions were counted. (C)
R2 performances of individual models of factor classes based on prior knowledge on 50% holdout test data set. Number of factors associated with each
functional process are given behind the bars, irrespective of their contributions scores, i.e. same factor sets as in (B) which in turn shows only factors with
contributions >0. (D) Aggregate absolute contributions of factors based on their binding modes.

and allowed us to suggest the factors from the set of 7SK as-
sociated factors (7SK.Binding) (see Supplementary Tables
S12 and S13) as additional 7SK ncRNA binding proteins
to be implicated in the regulation of pausing based on their
predictive value.

We next asked whether protein-DNA or protein-RNA
binding events contributed to the explanatory power of the
models. We found that the individual contributions of RNA
binding events are generally higher than those of DNA

binding events (Figure 3D). Investigating the contributions
of factors by their functional classes within the highest
ranked class (RNA introns) (see Supplementary Figure S9
& S10) reveals that splicing factors are enriched for RNA
intron binding sites (Fisher’s exact test, one-sided (greater),
P = 0.034, odds ratio 4.45, confidence interval [1.11;Inf] in
K562 and P = 0.032, odds ratio 7.1 [1.15;Inf] in HepG2).
The high contributions of genomic binding events on the
5′ region of transcripts (Figure 3D, DNA five prime) are in
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line with observed 5′ modulated transcriptional pause states
(83).

Overall the results for the HepG2 cell line are very sim-
ilar and support the conclusions (Supplementary Figure
S8). Although gene annotation and composition features
account for 26% of all feature contributions (see Supple-
mentary Figure S11–S14) they are static in their nature and
cannot explain the variation of pausing between cell lines.
Therefore, we focus the discussion on individual proteins
and their binding events as they are dynamic between cell
lines.

Modulators of transcriptional pausing

Based on our model, we aimed to identify specific pause reg-
ulatory factors. To obtain a ranking of the importance of in-
dividual DNA- and RNA-binding factors for predicting Pol
II pausing, we aggregated the SHAP contributions (see Sup-
plementary Figures S15 and S16 for individual feature con-
tributions per cell line) into a single contribution score per
factor and selected the minimal set of most influential fac-
tors (16 out of 398) that makes up 50% of all feature contri-
butions (Figure 4A). Established pausing factors from the
literature (Figure 4A, highlighted in red) are ranked among
these top influential factors, validating our factor ranking
approach. Three factors not primarily related to pausing
were ranked higher than the established pausing factors and
are potential novel modulators of pausing with at least the
effect size of the established factors. However, all other fac-
tors have similarly high contributions and can be considered
almost equally important.

A minimal model that only operates on the features of
these 16 most influential factors (including gene annotation
and composition features) which includes only five known
pausing or 7SK-related factors (AQR, BRD4, SUPT5H,
TAF1, TBP) achieves an R2 of 0.65 (on 50% holdout test
data set; see Supplementary Figures S17 and S18 perfor-
mances of minimal models per cell line) and thus performs
almost equally well as the full model with all 398 factors
and an R2 of 0.68. Additionally, it outperforms the Elon-
gation + 7SK model (Figure 3) which incorporates almost
twice as many factors (n = 27) of 7SK-associated and estab-
lished elongation factors which, although highly predictive,
only achieved an R2 of 0.61 as compared to an R2 of 0.65
of the minimal model which indicates that not all pausing
related factors were captured in the Elongation + 7SK set.
The minimal model (n = 9) of the HepG2 data consisted of
RBFOX2, AQR, TAF1, TBP, RBM15, RBM22 KHSRP,
PRPF8 and YBX3, which are all included in the minimal
model identified in K562.

To obtain a reference of the predictive power of ob-
tained factors we trained another model solely based
on Pol II CHIP-seq binding data (binding patterns
of POLR2A, POLR2AphosphoS2, POLR2AphosphoS5,
POLR2B, POLR2G and POLR2H) since promoter prox-
imal pausing is tightly related to the phosphorylation state
of RNA Pol II which should contain the information nec-
essary to explain the extent of promoter proximal pausing
of each transcript and hence be able to predict the extent of
pausing defined by the pausing index computed from GRO-
seq data. This model (see Supplementary Figure S19) can

explain up to 60% of variance in the pausing index as com-
pared to the full K562 model (n = 398 factors) which can
explain up to 68% or the minimal model (n = 16 factors)
which can explain up to 65% of variance in the pausing in-
dex. The Pol II-only model is missing further subunits (like
POLR2C, POLR2E etc.) which is likely the reason why not
more of the variance can be explained. However, an addi-
tional 8% can be explained by non-polymerase II-associated
factors. This is in addition to the 60% of variance explained
by polymerase II-associated factors, which underlines non-
polymerase II-associated factor’s predictive power for tran-
scriptional pausing. This comparison validates our feature
engineering, model selection and model training approach,
as the model behaves as expected, providing high predic-
tive power. However, for a mechanistic understanding of the
regulatory networks in which a variety of factors and co-
factors beyond polymerase subunits are interacting to co-
modulate different transcriptional processes (e.g. pausing,
elongation, splicing) the integration of only polymerase-
associated subunits would lead to a circular reasoning
and limit the discovery of additional explanatory factors,
which necessitates the integration of protein binding data
for a broad range of proteins, ideally on the DNA and
RNA level.

Lastly, investigating the factor rankings of the previously
trained models based on (i) data on of a third cancer cell
line (HeLa), (ii) three additional machine learning meth-
ods (Ridge Regression (RR), Random Forests (RF), Gra-
dient Boosting Trees (GBDT)) and (iii) the pausing index
calculated on a different run-on-assay (GRO-cap), shows
that certain factors are consistently ranked high across all
validation settings which greatly increases the confidence
in the factor’s regulatory role in transcriptional pausing.
To begin with, a comparison of the top 15 ranking fac-
tors (see Supplementary Figure S6 C) from model’s trained
in each cell line and validated on cross-cell type data with
pairwise shared features between the cell lines (see Sup-
plementary Figure S6 B) shows that six factors (TAF1,
TBP, UPF1, TIA1, PTBP1 and U2AF2), including the well-
established pausing factors (TAF1, TBP) are consistently
ranked high across all models. Both included in our minimal
factor set (n = 16). To continue, a comparison of the tree-
based models trained during the evaluation of model ar-
chitectures (see Supplementary Table S26) shows that 56%
(9/16) factors are common among the top 16 ranking fac-
tors of trained models. This set consists of RBFOX2, AQR,
SMAD5, TAF1, SUPT5H, YBX3, RBM15, KHSRP, and
PRPF8. The presence of two well-established pausing fac-
tors (TAF1 and SUPT5H) again validates our factor rank-
ing, model building, and selection approach. Moreover, all
of these factors are included in our minimal factor model
which further increases the robustness of our results as dif-
ferent model architectures converge on a similar ranking
of explanatory predictors. Finally, a comparison of the 16
top contributing factors (see Supplementary Figure S7 B) of
models trained to predict pausing indices based on different
sequencing protocols (GRO-seq versus GRO-cap) (see Sup-
plementary Figure S7 A), with the top ranking factors from
the minimal K562 model, shows that 68% (11/16) of these
factors are common across both models providing predic-
tive power across both sequencing protocols. This set of
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Figure 4. (A) Increasingly ordered aggregate factor contributions of factors that make up at least 50% of model contributions. Established
pausing/elongation factors are colored red. The bar fill colors identify DNA-binding (DBP; dark red), RNA-binding (RBP; orange), or DNA- and RNA-
binding (DBP/RBP; grey) factors. (B) A conceptual view on the interconnection and interplay of identified transcriptional pause regulatory proteins with
associated transcriptional regulatory processes (Chromatin Remodelling, Transcription Activation/Repression, Transcriptional Pausing, R-Loop resolu-
tion and Splicing).

factors consists of RBFOX2, SMAD5, TAF1, AQR,
SUPT5H RBM15, YBX3, KHSRP, ZFX, TBP and EP400.
These factors represent confident regulators of transcrip-
tional pausing as they are selected across different sequenc-
ing protocols.

Upon investigation of the identified most influential
pausing factors (n = 16, K562) defined by our model
the interconnection of pausing with other RNA-processing
events becomes further apparent. An interesting picture
emerges considering the functional background of these
factors (Figure 4B).

Pausing factors

Several pausing factors are well established (TAF1, TBP,
SUPT5H) and occupy high ranks in our models. TAF1 and
TBP are components of the pre-initiation complex (PIC).
Its formation inherently leads to pausing (61). This behav-
ior can be modulated by other pausing factors, especially
the protein complexes NELF and DSIF (SUPT5H) increase
pausing whereas the P-TEFb complex associates with pause
release.

Chromatin remodelers

The chromatin remodeler EP400 had a large impact on our
model. Chromatin state is defined by nucleosome position-
ing and posttranslational modification of its histones. It is
tightly linked to transcription initiation, elongation, and co-
transcriptional splicing and can be actively modulated by
chromatin remodelers (84–87). EP400 is a histone acetyl-
transferase and promotes gene activation after PIC assem-
bly through the depositioning of H3.3/H2.AZ into promot-
ers and enhancers (88). It interacts with the well-known
pausing factor MYC (27,88,89) and might be linked to tran-
scriptional pausing through this association. In fact, regu-
lation of Pol II pausing at promoter-proximal nucleosomes
by chromatin remodelers like for instance CHD1 (90) has
already been established.

Transcriptional repressors and activators

Among the top influential factors we can find activating
transcription factors ZFX, JUN, and JUND as well RB-
FOX2 as a repressive transcription factor. ZFX family
members exert a transcription-activating function in mul-
tiple types of human tumors and bind downstream from
the TSS at the majority of CpG island promoters regulat-
ing genes for essential housekeeping functions. ZFX fam-
ily members have been suggested to act in a similar man-
ner as the MYC family of transcription factors due to their
shared pervasive binding at promoter sites as well as simi-
lar profound proliferation defects upon knockdown (91,92).
Given that MYC plays an important role in transcriptional
pause release through the recruitment of P-TEFb (27,93), a
similar connection could exist for ZFX. Moreover, a com-
parison of the binding patterns of ZFX with Pol II and
H3K4me3 has shown that ZFX is slightly downstream from
the most frequent Pol II pause site and slightly upstream of
the downstream peak of the H3K4me3 signal (91,92), fur-
ther suggesting a role of ZFX in regulating Pol II pausing.

JUN and JUND are subcomponents of the activating
protein 1 (AP-1) (94,95) which in turn controls cell prolif-
eration, neoplastic transformation, apoptosis, and the ex-
pression of immune mediators. AP-1 is suppressed by the
negative elongation factor NELF (96), but so far no regula-
tion of transcriptional pausing by AP-1 has been reported.

RBFOX2 acts both, as a regulator of alternative splic-
ing as discussed later, and transcriptional repressor through
the binding to chromatin-associated RNA, especially
promoter-proximal nascent RNA, through the recruitment
of the polycomb-complex 2 (PRC2) to its site of action
(91,97,98). In fact, knockout of RBFOX2 in cardiomy-
ocytes leads to decreased pausing indices and suggests that
RBFOX2 and PRC2 enhance coordinated transcriptional
pausing at gene promoters (98).

Co-transcriptional splicing and mRNA regulatory factors

The presence of several splicing-associated factors (RB-
FOX2, PRPF8, RBM15, RBM22, KHSRP, YBX3,
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AQR) further strengthens the intricate connection to
co-transcriptional splicing events (33,74,99,100). Co-
transcriptional splicing of pre-mRNAs is dependent on
the availability of the nascent RNA that forms during the
transcriptional cycle which in turn is a function of Pol II
pausing. In fact, it has been shown that active spliceosomes
are complexed to the Pol II S5P C-terminal domain during
elongation and co-transcriptional splicing (101). In par-
ticular, it has also been shown that transcription kinetics
strongly impact splicing decisions, such that slow Pol II
elongation rates allow more time for spliceosome assembly
and thereby favor splicing. Moreover, the inhibition of
the spliceosomal U2 snRNP function has been shown
to enhance Pol II pausing in promoter-proximal regions,
impair the recruitment of P-TEFb and thereby reduce
Pol II elongation velocity at the beginning of genes (82).
These indicated that the release of paused Pol II requires
the formation of functional spliceosomes and that positive
feedback from the splicing machinery to the transcription
machinery exists. In this context, RBFOX2 acts as a well-
established regulator of alternative splicing (102–104) with
an integral role in transcriptional pausing (98). Likewise,
RBM15 (105), RBM22 (106,107), PRPF8 (108), KHSRP
(109), and YBX3 (110) as pre-mRNA splicing factors
or spliceosome components are likely to have a similar
connection to pausing as is the case for RBFOX2 and
splicing in general.

AQR is a high-ranking R-loop resolution factor (111). R-
loops are RNA/DNA structures in which nascent RNA an-
neals back to the template DNA (112–115). It has also been
suggested that R-loop formation is likely part of the mech-
anism for Pol II pausing (114) to hold back the elongation
of Pol II (116) and the DNA replisome (117). The impor-
tance of splicing events for pausing is further strengthened
by splice defect-induced R-loop formations as a result of
increased RNA-DNA hybrid annealing due to the lack of
splicing-dependent nascent RNA processing which would
otherwise prevent the formation of such structures through
timely splicing events.

Novel pausing factors

For the factors ZBTB40 and SMAD5 not previously associ-
ated with the regulation of pausing we suggest a novel link.
ZBTB40 is not well characterized but has been established
to be a regulator of osteoblast activity and bone mass (118).
SMAD5, together with other SMAD proteins, is a signal
transducer and is activated in the cytoplasm and accumu-
lated in the nucleus where it regulates transcription via re-
modeling of the chromatin architecture through the recruit-
ment of a variety of coactivators and corepressors to the
chromatin (91,97), suggesting a role regulating transcrip-
tional pausing outcomes through a series of chromatin re-
modeling events and recruitment of transcription factors.

DISCUSSION

The understanding of promoter-proximal Pol II pause reg-
ulatory elements is an important step towards disentangling
the gene regulatory mechanisms underlying cell homeosta-
sis and plasticity. We improved our understanding by train-

ing machine learning models that predict the extent of pro-
moter proximal pausing from large-scale genome and tran-
scriptome binding maps, as well as gene annotation and se-
quence composition features providing insights into cis- and
trans-acting regulatory elements underlying transcriptional
pausing. Recent models of transcriptional pausing based on
random forests in the Hela cell line (18) focused on NET-
seq derived pause sites that are not necessarily promoter
proximal. This model solely incorporated DNA sequence
features like DNA structures (Z-DNA, repeats etc.), methy-
lation states or transcription factor binding motifs. This is
similar to another recent machine-learning approach with
a deep-learning architecture called PEPMAN (Feng et al.
2021) to systematically model Pol II pausing events from
high-throughput sequencing data based on raw DNA se-
quence input features. The author’s also suggest a strong
connection of transcriptional pausing to co-transcriptional
splicing events which is very much in line with our results.
In contrast to both approaches, our model relies on experi-
mentally determined binding sites of both DNA and RNA
binding proteins, which integrate information on the pres-
ence of binding sites but also on the cellular context. For
example, not all binding motifs are necessarily bound by
trans-acting factors in all cell lines.

Our model achieves high predictive accuracy (R2 ∼ 0.68
with n = 389, factors; R2 ∼ 0.65 with only n = 16 fac-
tors), indicating that the binding of identified trans-acting
protein factors to DNA and RNA explains a large part of
the variability of the extent of pausing. The accurate pre-
diction of differential pausing based on cross-cell type spe-
cific binding data (R2 ∼ 0.52) demonstrated that the model
learned general rules, which are not cell type specific. This
is in line with the observation that the pausing of genes
is consistent across a large proportion of cell types (12).
Models built from subsets of proteins implicated in all steps
of gene expression, including chromatin remodeling, tran-
scription initiation, elongation, splicing, and further down-
stream transcript processing demonstrated high predictive
power. This confirms the intimate cross-talk between these
processes (8,16,50,69,70,73,119,120). Of note, factors im-
plicated in splicing have the highest predictive power for
pausing. This is in line with many studies that show dual
roles for individual proteins such as RBFOX2 (102–104),
SRSF2 (33), U2AF65 (82) or MAGOH (82) providing a di-
rect causal link between the two processes. One important
goal of our analysis was to identify novel potential pausing
regulators. We achieved this using two approaches. First, we
identified novel 7SK binding RBPs and showed that their
binding patterns are highly predictive of pausing. Second,
we analyzed the feature importance in our model and pin-
pointed protein factors with higher feature importance than
established pausing factors. Many of these factors such as
RBOFX2 (102–104), AQR (111), JUN, and JUND (94)
have been demonstrated to affect pausing or are implicated
in processes that have already been associated with paus-
ing. These factors constitute interesting targets for further
experimental validation, as our results already provide some
initial mechanistic hypotheses.

We chose to analyze data from the HepG2 and K562 cell
lines since they have been extensively characterized in the
ENCODE project. The number of DNA and RNA bind-
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ing maps available is unparalleled and enables the iden-
tification of previously unknown regulators of promoter
proximal pausing. These data sets come with the limitation
that not all previously characterized regulators of pausing
are available. The second limitation is that only GRO-seq
data and similar variations are available to quantify pro-
moter proximal pausing. Recent multi-omics approaches
based on TT-seq (121) and mNET-seq (7,8,122) have been
applied to K562 and Raji B cell lines to estimate the ki-
netic rates of initiation and pause duration more precisely.
These approaches provide ground for future studies of tran-
scriptional pausing with greater precision and detail once
broadly available across cell lines which would enable elab-
orate validation procedures. Unfortunately, such data are
not available for a second ENCODE cell line such that a
cross-validation of the model would not be possible. Taken
together, our work provides a framework to further our
understanding of the regulation of the critical early steps
in transcriptional elongation. We expect further improve-
ments with better kinetic profiling of the polymerase and
increasing availability of binding maps or improved predic-
tion of binding sites from sequence.
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numbers of replicated experiments ENCFF424CXV and
ENCFF073NHK for the K562 cell line, as well as the
experiment ENCSR181ZGR with accession numbers of
replicated experiments ENCFF205WUQ, ENCFF915JUZ
for the HepG2 cell line. RNA-seq data for the Hela
cell line was taken from GSM2400170. ENCODE Acces-
sion number of CHIP-seq and eCLIP-seq data sets can
be found in supplementary tables S4 - S6 and S10 &
S11, respectively. Annotations of housekeeping genes were
taken from (57) (see Supplementary Table S27; house-
keeping.RDS in zenodo repository). CpG island annota-
tions were taken from the UCSC golden path for the hg19
genome build (cpgIslandExt.txt.gz) (see Supplementary Ta-
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notations along with HGNC and RefSeq metadata files
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S27). CAGE transcription start sites for all cell lines are
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